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1 Proposed method

We studied different object detection and recognition techniques with special attention
on objects present in urban environment. Since many of these objects are meant to be
very well distinguishable based on color or shape (e.g. traffic signs, road markings,
touristic navigation signs, etc.) we designed a special detection pipeline which allows
to detect most of these objects for very low computational cost. The pipeline which is
outlined on Figure 1, consists of the following stages:

e Segmentation - very fast preprocessing step, where the optimal combination of
simple (i.e. computationally cheap) methods adjustable by many different pa-
rameters (e.g. color thresholding or shape detection) selects thousands of possi-
ble bounding boxes where the object might be present. Segmentation is designed
to have very low False Negative (FN, i.e. missed traffic signs) and reasonably
high False Positives (FP, i.e. hallucinated traffic signs). An example of segmen-
tation is a selection of connected components of a thresholded image.

e Detection - These bounding boxes are further verified by a binary classifier
which filters out the bounding boxes containing background samples. We use
cascades of Adaboost classifiers combined with Haar-like features.

e Recognition - Types of traffic signs within selected bounding boxes will be dis-
tinguished by a multiclass classifier, but we haven’t yet worked on it.
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Figure 1: Proposed pipeline consists of segmentation, detection and recognition.

We formulate the learning of the segmentation as the Boolean Linear Optimization
problem, which allows to consider various trade-offs among FN, FP and computational
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Figure 2: Demonstration of simple segmentation method for threshold 7' =
(0.5,0.2,—0.4,1.0) "

cost. The proposed method was implemented in MATLAB environment and prelimi-
nary experiment showed that searching for the globally optimal solution is tractable in
minutes if the data is preprocessed, i.e. scores of different methods on the training data
set are precomputed.

2 Segmentation

The simplest (very often used) segmentation method is detection of connected com-
ponent of a thresholded image, as demonstrated in Figure 2, where thresholded image
with threshold 7' = (t,a,b,c) " of a color image with color channels (I, I, Ig) is
defined as follows:

1 - I b- I I <t
I(T) = a-1IR + ¢tc Ip<
0 otherwise

Since there is no single threshold performing well by itself, it is necessary to com-
bine different thresholds 7 = {74, T3, . .. }. The more thresholds is used the lower the
FN but higher the FP and higher the computational cost.

2.1 Learning segmentation

Learning of segmentation is searching for 7 C P{T} ( where P{T} denotes power set
of the set of considered thresholds T') minimizing an error subject to some constraints.
Even though the interesting learning task are NP-complete (set covering problem),
we formulate them as the Boolean Linear Programming problems and experimentally
show that they are tractable even for very large P(T).

The simplest learning task is searching for the optimal trade-off between FP and
FN

T* = argmin FP(7) + K; - FN(7),
T

where FP(7) stands for FP of subset of selected thresholds 7 measured on a training
set and FN(7) stands for FN, respectively. K is scalar value weighting FP and FN.
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Figure 3: Demonstration of the extended threshold. The object is not well locally
separable from background, because bricks have similar color as the red boundary.
Therefore the inner white part is segmented and the received bounding is rescaled T' =
(0.1,-0.433, —0.250, 0.866,1.6,1.6) .

In order to avoid overfitting and also keep the segmentation reasonably fast we
introduce constraint on the cardinality card(7") of the subset of selected thresholds 7.

This could be either hard constraint card(7) < € or soft constraint, where K5 -
card(7") become part of criterion function:

T* =argmin FP(T)+ K; - FN(7) 4+ K3 - card(7T ),
T
We had better results with the soft constraint, but the hard constraint is an option if the
running time is an issue (e.g. real-time requirements are imposed).
Since accuracy is usually quite important we also add the term assuring that the
more accurate thresholds are prefered:

7" =argmin FP(7) + K; - FN(7) + K5 - card(7) + K3 - accuracy(7),
T
Scalars K1, Ko and K3 are parameters of the proposed method and we estimate them
by cross-validation test.

2.2 Scaling of segmented bounding boxes

Segmentation based on thresholding can perform well if and only if the object is locally
threshold separable from its background. If the condition is violated the traffic sign
cannot be revealed. We observed that in many traffic signs, the inner part contains
some very well threshold separable regions, the segmentation of which is no longer
dependent on background color. See for example Figure 3. We therefore introduce
extended threshold
T = (tv a, b) C, Sy, SC)T
T

which consists of original threshold 7" and scaling of the segmented bounding box
(81, 8¢). Such threshold! can reveal traffic sign, even if the outer boundary is not well

I'We further refer to the extended threshold as threshold.
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Figure 4: Not segmentable traffic signs. Traffic signs are not well locally separable
from background.
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Figure 5: Shape segmentation principle. Traffic signs are not well locally separable
from background.

locally threshold separable, as shown in Figure 3, where bricks have similar color as the
red boundary of the object. Learning is then searching for the subset of 6-dimensional
thresholds.

2.3 Stability of segmented regions

If the illumination of traffic sign changes, the learned threshold might not segment
the traffic sign from its background with sufficient accuracy. Since it is impossible to
learn that many thresholds which would cover all the illumination variations, we adjust
the threshold to be locally stable in the sense defined by MSER. Instead of using the
bounding box directly segmented by the learned threshold (¢, a, b, ¢, s,, s.) , we use
bounding boxes from MSERs detected within range

< (t - 67 a? b’ C7 57'7 SC)? (t + 67 a’? b7 c’ ST’ SC) >’

where € is parameter of the method. Since MSERs are by themselves defined by sta-
bility parameter A, the method is parametrized by two parameters as MSER (e, A)
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Figure 6: Fuzzy template for separated shapes. Triangle-up, triangle-down, circle,
rhombus and rectangle. Notice that the first shape is triangle-up, but its fuzzy template
correspond to its point reflection.

Figure 7: Threshold specific fuzzy templates. Selected subset {23, 12, 28,32, 44}
from 44 fuzzy-templates.

2.4 Shape segmentation

Most of the traffic signs are segmentable by the previously described method however,
there are some exceptions like partially occluded, peeled or dirty traffic signs as shown
in Figure 4.

For these traffic signs we propose a shape segmentation method based on the ge-
neralized Hough transformation, which estimates known shapes in the boundary of the
segmented region. Principle is outlined in Figure 5.

In general there are several different shapes under many different affine transfor-
mations. Using the Hough transformation would require to detect every single shape
in 5 (or even 6) dimensional Hough accumulator. Hence, instead of using predefined
set of shapes in a high dimensional accumulator, we decided to learn so-called fuzzy
templates which incorporate small affine transformations and shape variations and ex-
plicitly model only position and scale in 3 dimensional Hough accumulator. The most
straightforward fuzzy templates, are templates learned as a probability distribution of
boundaries of segmented regions of predefined shapes, see Figure 6.

Such approach, however, requires to run the Hough transformation that many times
as many shapes are distinguished. Since the learned thresholds are usually highly spe-
cialized for some kinds of traffic signs, we learn threshold-specific fuzzy templates,
see Figure 7 for some examples. For each threshold, we first collect boundaries of seg-
mented regions which cast correct bounding boxes. Then the scale is normalized (as-
pect ratio is preserved) and the probability distribution of the shapes segmented by the
threshold is computed. Eventually, the fuzzy template is estimated as the point reflec-
tion of the probability distribution, because voting in the Hough accumulator requires
the inverse shape. It means, that for example the second fuzzy template in Figure 7
mainly corresponds to the traffic signs which look like triangle-up or circle, but the
fuzzy template corresponds to its point reflection, i.e. triangle-down and circle.

When a boundary is segmented by a threshold, the threshold-specific fuzzy tem-
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Figure 8: Maxima in the Hough accumulator. Maximum of the correct shape is
smaller than maximum of the region with curly boundary because of fuzzyness of the
template.
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Figure 9: Haar-like features used in our implementation.

plate is used to compute the Hough transformation. Bounding box corresponding to
the maximum in the three dimensional Hough accumulator (2 positions and 1 scale) is
reported if the maximum is sufficiently high.

We observed that curly shapes, like the one depicted in Figure 8 often cast higher
maxima in the Hough accumulator than the correct shape due to the fuzzyness of the
template. Therefore almost every maximum have to be considered to be sufficiently
high, which makes FP almost two times higher.

3 Detection

Detection is based on well known Viola and Jones’ Discrete AdaBoost classifier. In our
experiments, we generated in total 8.10% Haar-like features based on 6 Haar patterns
outlined on Figure 9. These features are computed independently for different color
channels. Since we have observed that the detection performs better on the HSI color
space than on the RGB or on the gray-scale, the HSI with the intensity channel (I)
normalized by the variance is used. We have experimentally shown that cascade of Ad-
aBoost classifiers runs 10 times faster than single Adaboost on the same performance
level and provides a better control of the overall performance.

We also trained separate classifiers for the main classes of shapes (triangle, circle,



rectangle).

4 Experiments

Large dataset (including arrows texts and many sub-signs
FN BBs FN TSs FP per
[%] | #/4333 || (%] | #/1477 || 2MP img
Segm (thresh.) 2.6% 113 0.94% 14 4 245
Segm (thresh.+MSER1) 2.4% 106 0.88% 13 4 852
Segm (thresh.+MSER2) 2.1% 93 0.88% 13 6 714
Segm (thresh.+shape) 2.1% 92 0.74% 11 8126
Segm (thresh.+shape+MSER1) | 2.0% 87 0.67% 10 8 562
Segm (thresh.+shape+MSER2) | 1.8% 78 0.67% 10 10 684
Det + Segm (thresh) 19.8% 856 11.4% 168 2.7
Det + Segm (thresh+MSER1) 18.9% 820 10.8% 159 3.2
Det + Segm (thresh+MSER?2) 18.4% 796 10.7% 158 4.0
Det + Segm (thresh)? |103% [ 446 [ 51% | 75 [ 151
Reduced dataset (basic traffic signs)
FN BBs FN TSs FP per
[%] [ #/3756 || (%] | #/1274 || 2MP img

Segm (thresh.) 1.4% 53 0.5% 6 4 307
Bulk + Segm (thresh) 7.4% 279 4.3% 55 2.2
Sep.casc. + Segm (thresh) 7.5% 282 4.0% 51 1.1
Bulk + Segm (thresh)? 4.8% 182 2.6% 33 9.1

Table 1: Summary of achieved results. Meaning of the above used abbreviations is
the following thresh means method described in Section 2.1+2.2, MSER is method
from Section 2.3 and MSERI1 stands for MSER (¢, A) = MSER(0.1, 0.2) and MSER2

is MSER(0.1,0.05), shape is Section 2.4. FN BBs means false negative with respect
to bounding boxes, FN TSs means false negative with respect to traffic signs. Compar-
ison of previous dataset (without turist signs and some information tables) and reduced
dataset (without arrows and all information tables and undersigns).

2Just another point of the detector’s ROC curve.

4.1 Ground truth data

Ground truth data so far provided by GeoAutomation consists of 7356 labeled im-
ages (in total 11219 bounding boxes), which correspond to 2459 poles. These images
contain 115 out of 210 defined traffic signs. Since some of the defined traffic signs are
combinations of basic traffic signs (e.g. “triangle with undersign” is defined as a special
traffic sign, or array of traffic signs), the experiment was conducted only on selected
subset of 90 basic traffic signs out of provided 115 types. More complex traffic signs



will be detected as a spatial constellation of these basic traffic signs. In addition to the
positive images, we also obtained 2974 non traffic signs images to make the extraction
of negative examples easier.

Since the visual appearance of information tables, text undersigns and arrows is
not well guaranteed we also perform experiment on reduced dataset, which contains
76 types out of 115 provided types.

4.2 Evaluation of the proposed method

Many different experiments with different numbers of features and different settings
of segmentation methods were conducted. We present the best so far achieved results
learned on 840 traffic signs, i.e. 4261 bounding boxes and on 1477 testing traffic signs,
4333 bounding boxes, respectively. Error is evaluated with respect to both bounding
boxes (BBs) and traffic signs (TSs). Since the traffic sign is usually present on several
views (usually 3 views per traffic sign are available), the error with respect to traffic
signs is significantly lower.

We define coverage-ratio between two bounding boxes as ratio between their in-
tersection and union. The error in Table 1 is evaluated with respect to the predefined
accuracy. FN is reported whenever none of the segmented and/or detected bounding
boxes does reach coverage-ratio > 0.65, which approximately corresponds to the shift
of 20 x 20 bounding box by 2 pixels in both directions.

Note that the testing data contains very challenging traffic signs, for example the
smallest traffic sign is 11 x 10. Approximately 25% of not-segmented bounding boxes
were smaller than 17 x 17, most of the others was either taken from oblique angles
and/or significantly visually corrupted. Some of the examples of not segmented traffic
signs are demonstrated in Figure 10. Traffic signs, which are not locally threshold
separable but which were segmented based on their shape are shown in Figure 10.

5 Summary and conclusions

1. Error on the reduced dataset is 2.5x smaller.

2. Separate cascade is used only on reduced dataset, which also makes the error 2x
smaller.

= (1)+(2) gives 5x smaller error, then on the original dataset.

3. We can have for example:

FNps =4.0%, FNgg = 7.5%, FP = 1.1/ 2Mpxl image
FNps =2.6%,FNgg = 4.8%, FP = 9.1/ 2Mpxl image

Note, that for some traffic signs only small number of samples was provided. In
this case the traffic sign is present in training data but missing in testing data (in order
to avoid testing on training meterial). This means that results are not evaluated on rare
traffic signs, if more data are provided results might get little bit worse.



Figure 10: Examples of not segmented traffic signs



Figure 11: Shape segmentable but threshold inseparable traffic signs - ground truth
is delineated by red rectangle, the best shape-based segmentation is in yellow and the
best threshold-based segmentation is in green.
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