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Abstract:

This deliverable presents work on DIRAC demonstrator D6.2 - Omnidirectional
Camera Tracking. A web page (http://cmp.felk.cvut.cz/projects/dirac/omni_track) has
been set up to complement this report with the demonstrator summary and up to
date videos and VRML models of reconstructed camera trajectories. We describe a
SW platform developed for calibration of omnidirectional cameras in the DIRAC
project and we show how it is integrated into an existing 3D reconstruction module.
We also describe an alternative approach to camera motion recovery using wide
baseline stereo with omnidirectional images. We discuss integration of
omnidirectional images into cognitive loops for detection of objects in the scene.
Technical details and experimental results are given in an appendix.



SIS

Table of Content

INErOdUCHON ..o
Omnidirectional Camera Tracking...........cocoeeveveieieiciccccccc e
Relation to Cognitive loops — Deliverable D3.1, Expected Improvements.........

CONICIUSION 1ttt et e e e e e e e et eeeeeeeeeseeteeeeeeeeassaneaaeeessseaasseeeeeesseaaannanee

Reference



1. Introduction

This deliverable presents technical material for DIRAC demonstrator D6.2—Omnidirectional
Camera Tracking. A web page (http://cmp.felk.cvut.cz/projects/dirac/
omni_track) has been set up to complement this report with the demonstrator summary
and up to date videos and VRML models of reconstructed camera trajectories.

The report consists of three parts. The summary of the work on omnidirectional camera
tracking and its integration into the KUL scene modeling framework is given in Section 2.
Section 3 presents the relationship to a higher-level scene modeling, object and event
recognition and cognitive loops. The appendix contains more detailed technical descriptions
of omnidirectional camera calibration in Appendix A, image matching and epipolar geometry
estimation in Appendix B, and tracking of a pair of omnidirectional cameras and its
integration into the KUL scene modeling framework in Appendix C.

2. Omnidirectional Camera Tracking

We follow on work described in deliverable D1.1 “Omnidirectional Sensors and Features for
Tracking and 3D reconstruction” which describe prototype omnidirectional sensors and
discussed several feature descriptors suitable for processing of omnidirectional images. The
sensors were successfully used in acquisition of several datasets for the DIRAC project.
Figure 1 depicts contribution of using different feature detectors in images. While MSERs
(Matas et. al. 2004) are good in urban environment, APTS (Mikolajczyk et. al. 2002) are
more suitable for natural scenes.

Figure 1 Features detected in omnidirectional images. Left, an urban environment results in sufficient
number of MSERs. Right, a natural scene requires APTS to obtain enough features.

We have integrated support for omnidiretional input images into two different 3D
reconstruction frameworks; the wide-base line stereo tool at CMP (Matas et. al. 2004) and the
strusture from motion (SfM) framework at KUL (Cornelis et. al. 2006). The first integration
required error measures for determining the quality of the estimated epipolar geometry and
the second one required inclusion of calibrated omnidirectional images and changes in
interest point detector. We will discuss these modifications in more detail in the next



paragraphs and with technical details in the appendix. The error for quality measure of
epipolar geometry has to be defined by angles

instead of pixel distances for omnidirectional images. This is because omnidirectional images
have generally non-uniform image resolution. Figure 2 shows different camera motions
resulting in varying quality of a standard epipolar geometry computation with image
reprojection error, while the angular error gives stable results.

(a) Easy (c) Very difficult

Figure 2 Four examples of camera motions. Red circle, blue up facing triangle, and green down facing
triangle represent the true epipole, the epipole computed by maximizing the number of matches, and
the epipole computed by soft voting for the position of the epipole, respectively. Small dots show the
matches giving blue up facing triangle. (a) The camera translates forward. Many regions have been
detected. Finding the camera motion is easy. (b) Camera translates forward and rotates 45° to the right.
Most of the overlapping field of view has been occluded by a moving vehicle in the left image. Regions
have been detected only in a small part of the view field. Finding the motion by reprojection error
failed but angular error was successful. (¢c) The camera translates forward and rotates by 30°. Many
regions detected on bushes do not correspond to stable 3D structures and their descriptors are all very
similar. Finding camera motion is more difficult due to the low fraction of correct matches. The
Algorithm B.3.3 can find the correct motion.

Calibrated omnidirectional images mean that we can define a light ray for each pixel. In
contrary for classical pinhole model, the rays are not defined as a vector between the image
center and the respective pixel in the image plane, we have to consider a spherical “retina”
and the light rays have to be oriented and rays represented by unit vectors have to be used
instead of image pixels, and forcing the stereo constraints. Our experiments proved that using
two cameras bound into a stereo rig improves the stability of the reconstruction and helps to
keep its overall scale.

Moreover, omnidirectional images have also visible boundary between the (usually circular)
part with image data and “black pixels” around this part, see Figure 3, left. The feature
detector in the SfM framework had to be modified to ignore matches at this boundary. These
are the necessary changes that had to be made for inclusion of support for the omnidirectional
images into the KUL SfM framework.
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Figure 3 Left, features detected in omnidirectional images using the KUL SfM framework with proper
treating of the image boundary. Right, ground plane comcomputed from the camera motion.

3. Relation to Cognitive loops — Deliverable D3.1, Expected
Improvements

In deliverable D3.1 “Framework for Bottom-up 3D Reconstruction” a system was described
which was able to reconstruct an a-priori unknown environment from a mobile stereo
platform. At the time this platform was equipped with two normal perspective cameras. This
framework already succeeded in computing the platforms trajectory for general motions and
in building up a dense textured reconstruction of the scene.

Among the challenges faced by this first reconstruction system are the handling of fast turns
in the platform motion, which impedes feature tracking as features disappear quickly out of
the field of view. In addition, the texture of the final dense 3D model can only be extracted
from the narrow field-of-view images offered by the perspective cameras. This results in
typically good texture quality for the lower levels of the scene which are in view the longest,
whereas higher parts, such as roof tops, etc disappear quickly from the viewing frustum of the
cameras. This leads to poor texture quality for the aforementioned parts of the scene.

Omni-directional camera tracking will remedy both problems. The increase in viewing
volume as seen by the cameras will allow feature tracks to be tracked much longer, even in
fast turns of the mobile platform. In addition, the near 180 degree field-of-view will allow to
get a more global view of the objects. Enabling to get textures for these objects from much
closer viewpoints.

Now that omni-directional camera tracking is available, the new camera model requires
changes in both the 3D dense reconstruction module and the object recognition module,
which are coupled together into a cognitive loop in order to achieve robust dynamic scene
analysis. This work was presented in “Bastian Leibe, Nico Cornelis, Kurt Cornelis, and Luc
Van Gool, Dynamic 3D Scene Analysis from a Moving Vehicle” at CVPR 2007. Figure 4
demonstrates the cognitive loop setup.
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Figure 4: Overview of our combined system integrating recognition and 3D reconstruction.

The power of cognitive loops, as explained in more detail the aforementioned publication,
will become even more apparent when we will start to use omni-directional images and
tracking results. The use of omni-directional images makes object recognition a much harder
task because of the image distortion caused by the lens optics. They lead to deformations of
the objects to be recognized and a quick change in scale of these object in the image as they
approach the image borders.

The ground plane, as can be computed from the results from the omni-directional camera
tracking, will therefore be used to constrain the search for pedestrians, cars and other actors
on the road surface. Using the ground plane and the tracked camera poses, the world sizes of
detected objects (when assuming that they are on the ground plane) can be computed and
compared to a size prior. This helps in throwing out many false positives which will
undoubtedly occur because the object detection thresholds need be lowered to account for the
image formations caused by the fish-eye lens. Figure 5 shows several representative examples
of Omni images in which the indicated objects will need to be identified despite their
deformations.

Figure 5: Object recognition is challenged by the image deformations caused by fish-eye optics.

Also the dense reconstruction module as mentioned in D3.1, which is based on fast dense
stereo matches of vertical lines (see Figure 6 for a summary of dense stereo matching in D3.1)
will need to undergo a drastic change. This is the result of the fact that vertical lines in the 3D
world are no longer displayed as straight lines in the image, as was the case for normal
perspective images.



Best Match

Figure 6: Building up correlation space by calculating the pixel difference when matching each
vertical line of image 1 with image 2. Dynamic path programming is used to find the optimal path with
lowest cost throughout this correlation space.

4. Conclusion

We have presented work on implementing support for omnidirectional images into two
existing 3D reconstruction tools, the SfM framework at KUL and the wide-baseline stereo
tool at CMP. We have also discussed inclusion of omnidirectional inputs into the cognitive
loop for object detection. Technical details are given in the appendix and a web page
(http://cmp.felk.cvut.cz/projects/dirac/omni_track) has been set up to present up-to-date
videos and VRML models of results of omnidirectional camera tracking and 3D
reconstruction.
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DIRAC deliverable 6.2: Omnidirectional Camera
Tracking — technical details

Michal Havlena Akihiko Torii Hynek Bakstein
Tomas Pajdla

A Omnidirectional Camera Calibration

Omnidirectional camera calibration was implemented as an®dlule in MAT-
LAB with, see Figure 1 and can be distributed among the pestiehe calibration
can be both off-line using a known calibration target or aalibration, using point
correspondences detected in the images. Off-line caliloratses minimization of
the camera model parameterandb for the model

_a—+a?—46% )
"= 260 ’
wherer is the distance from the principal point afdds the angle between the

optical axis and a light ray of the corresponding image poirttie model has an
iverse form

ar
0=—_ . 2
1+ br2 2)
To relate the camera center and the origin of the coordinetes of the cali-

bration object, a rigid body transformation has to be inellith the minimization
adding additional 6 parameters.
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Figure 1: diracOmniCam - an SW platform for sensor calibrati



The autocalibration uses pairs of images with correspareteastablished with
some (wide baseline) matching tool to compute epipolar gdgmelating the two
images. The epipolar constraint formulation for a fisheys leads to a Quadratic
eigenvalue problem (QEP) [10]:

(D1 +aDs + CL2D3)1 =0,

whereD; is composed from the image coordinates of the pointscaeadhe model
parameter. The vectdrcontains the elements of the essential matrix and the pa-
rameterb. QEP problem can be solved linearly using 15 point corredponoes
and can be included in a RANSAC loop. This procedure was imefeed into the
software platform under the option ‘AutoCalibrate’.

Both off-line and auto calibration techniques can make afiefrom using
a reliable estimate of the principal point and the maximatatice (radius) of an
image point from the principal point, callegd,,,.. A simple procedure can be used
to robustly estimate this radius provided with an image ofhdtewall. This step
is available under option ‘FitCirle’. In fact, a simple edistant approximation
r = af of the projection of the omnidirectional camera can be deitged only
from r,,., and the maximal viewing anglé,,..., provided by the manufacturer
of the lens. This one parameter approximation is useful tdliey rejection in a
matching procedure but cannot be used for 3D reconstruatidrepipolar geome-
try estimation, since it deviates from the true projecticaimty at the border of the
field of view.

Two approaches to off-line calibration were implementée, first one uses a
calibration object developed in CMP and the second one gmalp object devel-
oped KUL. The next two subsections describe both calibmatigiects in detail.

A.1 Calibration object PLANETARIUM

Calibration object 'planetarium’ is designed for caliliwat of lenses with hemi-
spherical field of view. It is composed of LEDs arranged on hatf-spheres with
different diameters and a common centre. The LEDs are placedetal ribs and
the target is mounted in a black cylinder with detachablsdidhat the camera ob-
serves only the light from the LEDs and no parasite reflestidihe target has ad-
ditional single LED for establishing automatic correspamcks between detected
points in images and respective LEDs on the target and tligratidn process is
fully automatic. The target is available at CMP only. Anatbbject was designed
in KUL and can be easily reproduced by other partners.

A.2 Calibration object BOX

Calibration object 'box’ was designed in KUL to calibrate widlirectional lenses.
Five squarel00 x 400mm big plastic boards covered &5 x 2.5mm checker-
boards were mounted together to form five sides of a cube. Sbthe checker-
board squares are labeled and top-left corners of the ssywétrelabels are used for
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Figure 2: Calibration with PLANETARIUM. (a) the calibraticobject and (b) an
image captured by the camera.

calibration. Known 3D positions of these 160 points togetki¢h their known re-
projections into an acquired image give us both the extemmainternal parameters
of a camera with an omnidirectional lens as the result of almaar optimization.
The shape of the calibration object ensures good coveratie ofhole view-field
when a camera with an omnidirectional lens is inserted en#ig box viewing its
rear side.

Figure 3: Calibration with BOX. (a) the calibration objectda(b) an image cap-
tured by the camera.

A.3 Results

Figure 4 shows the mapping between the artgnd the radius in the image
using the model (1) for the calibration object BOX and PLAMIRIUM. The
resulting parameter values are summarized in Table 1. T piart of Figure 4
shows an enlarged part of the graph of the mapping, whereiffeestice between
the parameter sets is the most visible. It should be notedhba parameter affect
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Method a b

Autocalibration | 1.5550]| -0.0612
BOX 1.5689| -0.0461
PLANETARIUM | 1.6002| -0.0049

Table 1. Summary of values of parameterandb for different calibration objects
and methods.

the shape of the mapping function. As it was shown in [10]pfes 0, the model
function (2) becomes
0=ar ,

which is in fact an equidistant projection. We can obsereenfiFigure 4 that the
model parameters extiimated by different methods or objgiee slightly different
results, with the difference most aparent at the border effigeld of view. The
difference is caused by coverage of the field of view by thécaion objects
and by detected features for autocalibration and also bgigioa of detection of
features or calibration marks at the edge of the field of view.

Autocalibration d Autocalibration
700} | ——BOX —BOX .
= = =PLANETARIUM 750} | = = = PLANETARIUM

700

r [pix]

650

600

0 i i i i i 550 " ; i i i ;
0 20 40 60 80 100 60 65 70 75 80 85 90
0 [deg] 6 [deg]

Figure 4: Comparison of calibration using different cadifion objects and meth-
ods. Right: enlarged part of the left graph.
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B Omnidirectional lmage Matching and Epipolar Geom-
etry Estimation

In this section, we describe a procedure for computingivelabotion of one mov-
ing omnidirectional camera. We assume that the camera leasdadibrated, e.g.
by the technique described above.

tpN
a8

(a) Easy (b) Difficult (c) Very difficult

Figure 5: Four examples of camera motions. Relllue A, and greeny represent
the true epipole, the epipole computed by maximizing thelemof matches, and
the epipole computed by soft voting for the position of thgele, respectively.
Small dots show the matches giving blke (a) The camera translates forward.
Many regions have been detected. Finding the camera matieasy. (b) Camera
translates forward and rotatds°® to the right. Most of the overlapping field of
view has been occluded by a moving vehicle in the left imagagiéhs have been
detected only in a small part of the view field. Finding the imiby reprojection
error failed but angular error was successful. (¢) The canmnslates forward
and rotates by0°. Many regions detected on bushes do not correspond to stable
3D structures and their descriptors are all very similandifig camera motion is
more difficult due to the low fraction of correct matches. Higorithm B.3.3 can
find the correct motion.

We combine the following four principles and obtain a preatialgorithm for
epipolar geometry estimation. First, we show that the ebmetion is found much
sooner if the tentative matches are sampled after orddnamg by the similarity of
their descriptors. Secondly, we show that the correct cammation can be better
found by soft voting for the direction of the motion that byes#ing the motion
that is supported by the largest set of matches. Third, we $hat the residuals
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computed as the angle between a ray and its correspondipgl@pplane work
better than the image reprojection error. Finally, we shioat it is useful to filter
out the epipolar geometries which are not generated by poedonstructed in
front of cameras.

B.1 Thealgorithm

Algorithm B.3.3 presents the pseudocode of the algorithed s generate results
described in this work. Next we describe the key parts of therdghm in detail.

B.1.1 Detecting tentative matches and computing their descriptors.

MSER [8] and Harris-Affine and Hessian Affine [12] affine casat feature re-
gions are detected in images. Parameters of the deteceohasen to limit the
number of regions to 1-2 thousands per image. The deteajgzheeare assigned
local affine frames (LAF) [15] and transformed into standpoditions w.r.t. their
LAFs. Discrete Cosine Descriptors [16] are computed foheagion in the stan-
dard position. Finally, mutual distances of all regions medmage and all regions
in the other image are computed as the Euclidean distandbsiotlescriptors and
tentative matches are constructed by selecting the mytclakbest pairs.

MSER region detector is approximately 100 times faster thenHarris and
Hessian Affine region detector but MSERSs alone were not abdelive all image
pairs in our data. MSERSs perform great in urban environmédthteontrast regions,
such as windows, doors and markings. However, they oftevigganany useless
regions on natural scenes because they tend to extracasbregions which often
do not correspond to real 3D structures, such as regionsefblvg tree branches
against the sky or shadows casted by leaves.

B.1.2 Angular error

We compared the image reprojection error with the residerdduated as the an-
gle between rays and their corresponding epipolar planbghvwve refer as the
angular errorhere. When cameras are calibrated, the angular error cely sef
used instead of the image reprojection error. To be abdplaterect, every ray
should be accompanied by a covariance matrix determinggritertainty. The
matrix depends on (i) image measurement error model andr(ithe point posi-
tion in the image. The point position determines how the aimile around the
point maps into the cone around the ray. In this paper we oeglehe variabil-
ity of the covariance matrix across the field of view and assdithto be a scaled
identity.

We have observed that the number of epipolar geometriesajedeby ran-
domized sampling with correct motion directions, i.e. whiliffer not more tha°®
from the ground truth, was higher when using the angulardfig. 8. It is clearly
visible when sampling from matches ordered by their sintjigdSec. B.1.4), rows
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sim-r with sim-a, but it also holds for sampling by the standard RANSAC, rows
rnd-r andrnd-a.

The quality of the angular error also shows after selectiegest motion either
by maximizing the number of matches which support it, rowb)@, or by using
the soft voting (Sec. B.2), rows (a,b)V in Fig. 8.

Fig. 7 shows that motions estimated using angular error détes provide
epipolar geometries generated by a 5-tuple of matches wdaahot be recon-
structed in front of both cameras.
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Figure 6: Camera motion estimation by soft voting compaoedtfe (a) residuals
evaluated on reprojection into images (reprojection gwer (b) residuals evalu-
ated as the angle between rays and their correspondingl@ppanes (angular
error). Ordered sampling with 500 samples has been run Sstpnoviding 50
camera motions. N: The number of the camera motions with thigomdirection
not more tharg8° from the ground truth. Lighter colors represent higher nerap
white = 50, black= 0. S: The motion direction, which is supported by the largest
number of tentative matches in 50 motions, is not (white)sgblack) more than
8° from the true motion direction. V: The estimated motion diren, which is
closest to the global maximum in the accumulator, is not{gyhar is (black) more
than&8° from the true motion direction. Many more motion directicare within
the 8° limit when using the angular error compared to using theajeption error.
The best strategy, (b)V, for estimating the camera moti¢m isse the ordered sam-
pling with the angular error and to select the motion whicblésest to the global
maximum in the accumulator. limit.
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B.1.3 Orientation constraint

An essential matrix can be decomposed into four differemera and point con-
figuration which differ by the orientation of cameras andng®i5]. Without en-
forcing the constraint that all points have to be observefildnt of the cameras,
some epipolar geometries may be supported by many matchésneed not be
possible to reconstruct all points in front of both cameras.

For omnidirectional cameras, the meaning of infrontness generalization
of the classical infrontness for perspective cameras. Yétispective cameras, a
point X is in front of the camera when it has a positiveoordinate in the camera
coordinate system. For omnidirectional cameras, a poiigtin front of the camera
if its coordinates can be written as a positive multiple @f direction vector which
represents the halfray by whicti has been observed.

In general, it is beneficial to use only those matches whictegee points in
front of cameras. However, this takes time to verify it fdmahatches. On the other
hand, it is easy to verify whether the five points in the mirisample generating
the epipolar geometry can be reconstructed in front of batheras and to reject
such epipolar geometries which do not allow it.

Fig. 7 shows that the number of incorrectly estimated mestmecreased when
such epipolar geometries were excluded for both selectiategies.
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Figure 7: Camera motion directions that are not (white) ared(black) further
than8° from the true direction. The four rows show the four comhina of the
two residual errors with using and not using the orientationstraint. : resid-
uals evaluated on images (reprojection errar)residuals evaluated as the angle
between rays and their corresponding epipolar planes [@nguor).0: all epipo-

lar geometries contribute to the soft votirig,only epipolar geometries for which
the 5 points of their generating minimal sample get recontd in front of both
cameras (orientation constraint) contribute to the sofingo Using the angular
error significantly increases the number of correctly estéd directions. Using
the orientation constraint further improves the result.

B.1.4 Ordered randomized sampling

We useordered samplings suggested in [2] to draw samples from tentative matches
in ascending order by the distance of their descriptors. é¥ew we keep the orig-
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inal RANSAC stopping criterion plus we limit the maximum nber of samples
to 500. We have observed that pairs which could not be solyetihé ordered
sampling in 500 samples get almost never solved even aftey mare samples.
Using the stopping criterion from [2] often leads to endihg sampling prema-
turely since the criterion is designed to stop as soon agya l@wn-random set of
matches is found. Our objective is, however, to find a glgbatitimal model and
not to stop as soon as a local model with large support is met.

We have observed that there are often several alternatidelswwith the prop-
erty that the right model of the camera motion has a similamty slightly larger
support than other models which are not correct. Algorithi®.8Bwould provide
almost identical results even without the RANSAC stoppintgdon but the crite-
rion helps to end simple cases sooner than after 500 samples.

Having a calibrated camera, we draw 5-tuples of tentativiches from the
list M = [m]Y¥ of tentative matches in ascending order by the distanceeif th
descriptors. From each five-tuple, relative orientationasmputed by solving the
5-point minimal relative orientation problem for calibedtcameras [13, 17].

Figure 8 shows that many more correct motions have been sdnmpl500
samples of PROSAC using ordered matches than by using the samber of
samples on a randomly ordered list of matches.

140 160 180

Imagé numbBer

Figure 8. The number of estimated camera motion directibatdre not further
than8° from the ground truth. The motion direction were computeddiy voting
from the first 500 5-point samples drawn by the ordered sangpliLighter col-
ors represent higher numbers. The four rows show the foubowtions of the
two orderings of tentative matches with the two residuabrmstr sim: tentative
matches ordered by feature similarity,d: tentative matches ordered randomly,
r: residuals evaluated on reprojections to images (repiojeerror),a: residuals
evaluated as the angle between rays and their correspoeplipglar planes (angu-
lar error). Ordering of tentative matches by similarityajhe increases the number
of correctly estimated epipoles. The angular error furthgroves results, often
on difficult image pairs.

B.2 Soft voting

In this work, we vote in two-dimensional accumulator for #gsimated motion
direction. However, unlike in [7], we do not cast votes dileby each sampled
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epipolar geometry but by the best epipolar geometries eredvby ordered sam-
pling of PROSAC. This way the votes come only from the geoieetthat have
high support. We can afford to compute more, e.g. 50, epig#ametries since
the ordered sampling is much faster than the standard RAN®#&Ggether, we
need to evaluate maximally00 x 50 = 25000 samples to generate 50 soft votes,
which is comparable to running a standard 5-point RANSACeipected con-
tamination by84 % of outliers. The relative camera orientation with the matio
direction which is closest to the maximum in the voting spiadaally selected.
Figure 6 shows the improvement of using soft voting for figdihe relative
motion when casting 50 soft votes. On several difficult impgés, such as
Fig. 5(c), the motion supported by the largest number ofaterg matches gave
incorrect motion but soft voting provided a motion closehe ground truth.

B.3 Experiment
B.3.1 Imagedata

Experimental data consist of 189 image pairs obtained bscsrfj consecutive
images of an image sequence. The distance between two otimedmages was
1-3 meters. Most of the camera motions have rotations ulbtobut large rota-
tions of45° are also present. Images were acquired by Kyocera FinecahOm14
with Nikon FC-E9 fisheye-lens. The field of viewi83°. The image projection is
equiangular and was internally calibrated [11]. Imagesevdigitized in resolution
800 pixels/183°, i.e. 0.2° /pixel, which is comparable witB40 x 180 pixels for
more standard0° field of view. The sequence starts in a narrow street withdbuil
ings on both sides, then it continues to a wider street withynthiving cars, and
finally leads to a park with threes, bushes and walking people

B.3.2 Ground truth motion

For most image pairs, the “true” camera motions were reeal/ey running the
Algorithm B.3.3 a number of times and checking that (i) theetmotion has been
repeatedly generated by correctly matched 5-tuples offmeatand that (ii) the mo-
tion direction pointed to the same object in both images. fewaimage pairs, for
which we could not get a decisive number of consistent resilie true motion has
been generated from a 5-tuple of correct matches selectadaitya We estimate
the precision of our ground truth motion estimation to benkigthan4 % of the
view field, which corresponds ®& and32 image pixels.

B.3.3 Results

Figure 6(b)V shows the quality of the estimated camera mdijoAlgorithm B.3.3.
The algorithm looks for the motion with motion direction sést to the global max-
imum in the accumulator after casting soft votes from 50 orai The 50 motions
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for soft votes are estimated in 500 samples by the ordereglsaibased on resid-
uals evaluated as the angle between rays and their cordisgogpipolar planes.
All but two motions were estimated with motion directionsthvim 8°, i.e. 4 % of
the view angle, from the ground truth. The two image pairswhbich the motion
has been estimated incorrectly, are very difficult to solve tb small overlap of
their fields of view and large occlusions, Fig. 5(d).

B.4 Residual errors

In the following, image points are represented by unit vexte.g. ax andx’. For
a pair of correspondences« x’, the epipolar constraint becomes

x Ex=x"E x = 0,
epipoles are normalized
Ee=0, |le]=1 and ¢€"E=0, |l¢]=1,

and normals of epipolar planes yieldedbwndx’ are given as

. E'Y (LR RT(x xe) 5

Y= E T e >Txf|\ T x & )
_ _Ex Rle]xx  R(exx)

YT JEx] T R[] e xx]|

assumin@ = [e/|xR = R [e]«.
B.4.1 Imagereprojection error
The closest point on the epipolar plane generatedyin the right image to the

point x in the left image is obtained by rotatingarounde and along the great
circle passing througk andy’ into v, Fig. 9,

oo (=YY
I = (xTy") ¥')]
and similarly in the right image
_ - y)y)
1 = (xTy) y)ll

We compute the “image reprojection error” as

=) = fI] off = |IF () = FI
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Algorithm 1 Camera motion estimation by ordered sampling from tergatiatches with
geometrical constraints

e Input:

Image paitf1, I5.

6 := 0.3 ° ...the tolerance for establishing matches

o := 4° ...the standard deviation of Gaussian kernel for soft gptin
Ny, := 50 ...the number of soft votes

Ng := 500 ...the maximum number of random samples.

n := 0.95 ...the termination probability of the standard RANSAC [51f9].

e Output: Essential matrig™.

[

Detect tentative matches and compute their descriptors.

Detect affine covariant feature regions MSER-INT+, MSER-, MSER-SAT+,

MSER-SAT-, APTS-LAP, and APTS-HES in left and right imag8ec. B.1.1.
Assign local affine frames (LAF) [15] to the regions arahsform the regions into a standard position w.r.t. theiFsA

Compute Discrete Cosine Descriptors [16] for each regidghe standard position.

2. Construct the lisivi = [m]{v of tentative matches with mutually closest descriptorsdedthe list ascendingly by the distance of the
descriptors.N is the length of the list.

3. Find a camera motion consistent with a large number oatretmatches:
1: setD to zero. // Initialize the accumulator of camera transtatiirections.

2: fori:=1,..., Ny do
3: t := 0// The counter of samplesn := 5 // Initial segment length.
N := Ng /lnitial termination length.
4. whilet < Ny do
5: it = rzooooo(g)/({:)w [2] then
6: n := n + 1// The maximum number of samples for the current initial segtmeached, increase the initial segment
length.
7 end if
8: t :=t + 1// New sample
9: Select the5 tentative matched /s of thett’* sample by takingt tentative matches frorfm]’f’1 at random and adding
the5t" matchm,, .
10: E; := the essential matrix by solving the 5-point minimal problemM g [13, 17].
11: if My can be reconstructed in front of cameras [5, p. 26@h
12: St := the number of matches which are consistent withi.e. the number of all matches = [u;, us] for which
max(£(uy,Etug), £ (ug, E;rul)) < 0.
13: else
14: St =0
15: end if
16: Npg :=log(n)/log (1 — (Sst) / (g)) /[The termination length defined by the maximality constr{s, p. 119].
17: N7 := min(Np, Ng) // Update the termination length.
18:  endwhile
19: t= g1, Ng max St Il The index of the sample with the highest support.
20: E; = E;, &; := camera motion direction for the essential magjx
21: Vote in accumulatoD by the Gaussian with sigma and mean aé;.
22: end for
23:6:= Y c domain (D) MAX D (x) /l Maximum in the accumulator.
24 i = arg;_q ... 50 min £(&, &;) // The motion closest to the maximum.
25 E* := &, // The “best’ camera motion.
4. Returre™.
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where f is the mapping from a ray directional vector to the corresiioym image
point, Fig. 9.

This is, of course, only an approximation of the true imag®ogection error,
since the closest points v’ are found in space, not in the image, but this approxi-
mation is very close to the true reprojection error, sineeithage epiplolar curves
are very close to circles, and is much easier to compute.

The main character of the image reprojection error, i.e. itha evaluated in
the image where the point localization error is happenriggreserved.

B.4.2 Angular error

The angular error
)
BR = /2 —arccos(x'|y) = arcsin(x'y)

gl = x/2 —arccos(x'y’) = arcsin(x
corresponds to the angles between the ray direction veatatshe corresponding
epipolar planes, Fig. 9. The angles are in general différedifferent cameras.

B.4.3 Longitudal error

The longitudal error, Fig. 9,

(X X e) T
4 = arccos < o< el] TET] = arccos (yTRy’> = arccos (y’ R' y)

((x’xe’)T Ex >
= arccos .

[ > e[| [[Ex]]

T ETX/

is same in both cameras and equals the angle between théaepilames.

B.5 Error sensitivity of 5-point algorithm

Figure 10 shows sensitivities of the 5-point algorithm [18}the errors in point
localization. The errors are evaluated and the sensésviiested by the following
algorithm.

1. Generate five poinX in the space.
2. ProjectX into unit ray direction vectorg andx’ in the left and right camera.
3. forn=1:5

Repeat the following steps 1000 times
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Figure 9: Residual errors. Vectoxs x’ represent a pair of corresponding image
points represented by unit vectors. Vectgrsy’ represent normals of epipolar
planes yielded by andx’. Vectorsv, v’: The closest point on the epipolar
plane generated hy to the pointx in the left image obtained by rotatingaround

e and along the great circle passing throughndy’ into v. Anglesay, agr are
the image reprojection errors. Anglgg, (g are the angular errors. Angle is
the longitudal error.

e Add uniformly distributed noise in the rangeo x';" ;.
e EstimateE by the 5-points algorithm.

e Extract the epipoles frore and evaluate the angular errors to the
ground truth (GT).

4. end
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Figure 10:Sensitivity to errors of five points. x-axis: the size of taege of the uniformly
ditributed noise. y-axis: the angle between the epipolenaséd by the 5-point algorithm
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errors of 'T4F1’ and 'TOF5’, respectively.
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C Omnidirectional Camera Motion Estimation, Tracking
and 3D Scene Modeling

In this section we describe a technique for tracking a pairigifily connected
oimnidirectional cameras from a realatively dense videpseace of images. The
main difference to the approach described in the previocsoseis in the density
of the sequence which allows to use simpler and faster imeggere detecton and
extraction. The second difference that here we reconstinecscene 3D structure
to relate all camera positions to the original camera locati

A SfM framework [3] using a single perspective camera and &/B¥S has
been extended for using a stereo rig of omnidirectional casmacquiring an om-
nidirectional stereo video sequence. The following paplgs describe how the
modified framework works in detail.

C.1 Features

Detection, description, and tracking of corner-like imégatures is a crucial part
of the SfM framework. The green image channel is divided sgoare sections
containing &8 pixels and at most one feature per section is found to aetisest
processing.

The feature strength is computed from the values of the pixside a square,
which is divided into four subsquares and an average pixekeviaside each of
these subsquares is computed. The feature stréngghhen evaluated as

F = |(Myr + Mpg) — (Myr + Mpyr)], (4)

where My, Mygr, Mpr, and Mpg are average pixel values inside the up-left,
up-right, down-left, and down-right subsquares respeltiv

These features were primarily intended to detect cornebsiitifings and their
windows and they reliably detect corners where horizomdlertical lines meet.
The detection becomes worse for rotated corners. Furtherrabjects captured in
an omnidirectional image are radially distorted as they e@hser and closer to
the border of the circular view field and the feature stremgth differ dramatically
if computed on an object located in the center of the view falebn the same
object few frames later when it moves closer to the bordenwéver, when high
video framerate is used and only strengths of features fmexutive frames are
compared, this does not cause any problems.

Another problem arises from the shape of the image itselfy @uircular area
near the center of the frame is covered with the view fieldr#s¢ of the frame is
black. An additional position test had to be implementedrafeo not to allow the
detection of the corners in the area out of the view field ort®barder.
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Figure 11. The output of the feature detector without an taalthl test for its
position can be seen on the left image, the right image shbevsorners that
passed this test.

C.2 Omnidirectional Camera Calibration

Omnidirectional cameras are calibrated off-line usingtéodnique describe above
which builds on [1] and Mi€uSik’s two-parameter moddl, @hich links the radius
of the image point to the angle) of its corresponding rays w.r.t. the optical axis,

see Figure 12, as
ar

Uy o ®)

Projecting via this model provides good results even wheswaquality fish-
eye lens is used because the second parameter can comgengaigroper lens
manufacturing.

All operations in the SfM framework that compute a projecta a world 3D
point into the image or a ray casted through a pixel are usiisdens model. Con-
version from pixel positions to rays is precomputed intdxdetdo save computation
time when performing the conversion.

C.3 Initialization of a Euclidean Reconstruction

The structure from motion computation starts by initidiaa. Known internal
camera calibrations, which are then held constant for theleviideo sequence,
and a few initial camera poses are needed. Corners are dragke 5-10 images
and those, which are not lost, are then triangulated intddv@D points using
known camera poses. The whole initialization is done inddpatly for the left
and for the right cameras, so two sets of world 3D points aneptted.

Tracking is accomplished by connecting corners with sneddltive distances
and small differences in the feature strengths for eachoseof the previously
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Figure 12: Diagram (a) shows the equi-angular projectiafiopmed by a fisheye
lens. Angled measured between the casted ray and the optical axis deterie
radiusr of a circle in the image circular view field where the pixelnegenting the
value of the projected 3D point will lie. The Nikon FC-E9 lecenvertor can be
seen in (b).

processed image. Correlation is computed to accept ortseehatches and only
the best 1-to-1 matches pass through the final test. As thgeisneome from a

high framerate video sequence, corners do not change tegtiqms much, which

is used to search only in small neighbourhoods.

C.4 Expansion of the Euclidean Reconstruction

Once the Euclidean reconstruction is initialized, the nerdge pair in the stereo
sequence is taken and the reconstruction is expanded wsiFigei expansion con-
sists of several steps described below in detail.

First, the camera poses of the new stereo pair must be asiathli 3D points
reconstructed in previous frames are projected into theimages using the last
established camera poses. The corners that could prolentratks connected
with the projected 3D points are found in small neighboudsoof the projections
using the same tests as during the initialization. As careba & Figure 13, every
reconstructed 3D point e.g(}i2 - triangulated from corner posﬂmmﬁﬁ andxw
(if this point has not been refined yet)of andy’, . ; (ifit has been refined already)
is projected into the left and right images. We get mat(ﬂa’éﬁﬂ, z+J+1) and
(XE ZJr],yZﬂH) WhereacZﬂJrl is the position of a similar corner near the projection
to the image acquired by the camera where the reconstru€tgubidit originated
from andyﬁerrl is the position of a similar corner near the projection togea
acquired by the other camera. Corners in images from botlethand the right
cameras must be found to form a matety, ;2 ;1 vl 1)

Matches like( X7 H—]’yz—i-]—l—l) (not conventional matches liKeX Zﬂ, z+]+1))
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Figure 13: On the left you can see a 3D pomfiﬂ triangulated fromq:ﬁ and

xft ; or zf* andy/, ; projected into new images acquired by cam@‘é@Jrl and
Cﬁjﬂ Positions of the most similar corners are denote@h)fﬂ andz?
The diagram on the right shows the refinement of the 3D pXiﬁj;r into X7

2,0+j+1
using triangulation fronz? andylﬂJrl

H—]-i-l

are used as the input to a hypothesis-and-test loop to fhecpre-calibrated rigid

stereo constraint which binds the left and right camerasargtereo rig. We com-
pute the rotation and the translation from three 3D-to-taysespondences by Nis-
ter’s algorithm [14]. The main advantage connected with gigorithm designed

for non-central cameras lies in the fact that the rays do eetlrio be concurrent
and thus rays going through both the left and the right casneaa be combined
together in one sample.

Nister’'s algorithm leads to an 8-degree polynomial. Asehiserno analytical
way how to solve it, a numerical approach has to be used. Thieoth@escribed
in Appendix A of [13] uses Sturm sequences and bisection avfiked number of
iterations and gives accurate results in reasonable time.

The RANSAC [4] stopping condition ensures stopping depehde the prob-
ability of finding a better sample. Not to exceed the maximalcpssing time
available, an upper threshold for the number of iteratisnssed. Having the size
of the sample needed for setting up a hypothesis as small as @ huge influ-
ence on early stopping of the RANSAC loop. To save even mane,tthe test
for inliers is performed gradually on partitions of the nies and is stopped as
soon as it is clear that the new hypothesis cannot be betarthie best known at
the time. A match X/ Zﬂ, z+j+17 yly ;41) is an inlier if and only if both matches
(XZRH-]’ z+]+1) and (X} z+]7yz+]+1) are inliers.

Two refinements using the Levenberg-Marquardt non-lingdinozation are
used to process all the inliers. The first refinement use®jesgiion error as the
cost function. As one cannot be sure that the set of inliecsiisect and an outlier
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might have a big influence on the optimization, a fixed cosieras used when the
reprojection error is bigger than a threshold during th@sdaefinement. Again,
reprojection errors in both the left and right images aresus=d.

The tracks of the resulting inliers are prolonged and 3D tsatonnected with
these tracks are refined by re-triangulation. The rigidest@onstraint is enforced
in here again as corner positiong andy/, ; , , are used to triangulate the 3D point
X[, ;.1 The rest of the tracks, i.e. the tracks of the outliers amdtiticks that
did not have a corresponding match, are ended. If the samerdsrdetected later
again, a new track with a new connected 3D point is created matbinding to the
old one.

There are also tracks that do not have a 3D point connectédivain because
either they are too short or the angle between the two raysfosériangulation is
not yet large enough. Even these tracks are prolonged bititcardd geometry con-
straints derived from the established camera poses aras#@sdo restrict the set of
possible locations of the corners that could prolong thekgaFirst, a homography
through a non-existent plane in a fixed distance in front efdéamera is used to get
an estimate of the position of the corner and a circular fmghhood around this
location is searched. This distance should be set to thecesgaverage distance
of the features. An additional condition is the proximitytk@ matching epipolar
line. When having omnidirectional cameras, the residustdice is computed as
the distance between the corner position and the perpdadmwjection of the ray
going through the position of the corner into the matchinig@jr plane, projected
to the image.

C.5 Bundle Adjustment

The data computed from the image sequences during the éapams divided into
blocks, each of them holding information from 60 images. bhedle adjustment
routine running in parallel with the SfM framework refineg tbamera poses and
the positions of world 3D points iteratively using the attedinished data blocks.
First the positions of 3D points are refined with fixed camerags and then the
camera poses are refined with fixed positions of 3D pointst dred right eyes are
treated completely independently.

During this procedure, only the tracks visible in 4 framesymre are used
because they are considered to be more reliable than thdsh disappear very
quickly. No global geometrical constraints are being udlea, is why large errors
in camera poses cannot be repaired by this simple bundlstatiut.

C.6 Experiments

Several experiments were performed to prove the funciiyrafithe modified SfM
framework. First, some hardware suitable for acquiring ioiinectional stereo data
had to be chosen. The acquired image sequences were theasusezlinput for
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Figure 14: Kyocera Finecam M410R cameras with Nikon FC-Hfie lens con-
vertors and two conventional perspective cameras mourriea survey vehicle.
Perspective cameras are not used in our experiments.

the SfM framework in two setups: using the rigid stereo c@mst described in
Section C and without using it.

C.6.1 Hardware

Finding an appropriate hardware is not an easy task. Firg, has to choose
whether to use a small or a high quality fisheye lens. Smaddgtike Sunex DSL
125 can be mounted on industrial cameras like Unibrain Fpeviding 30fps
framerate. Unfortunatelly, not the whole circular field eéw is captured when
using this camera, the resulting view field is only ¥BD degrees. Other cameras
like Pixeling are able to capture the whole view field (185rdeg) but the image
quality is poor for desired feature detection because itiesaf the resulting view
field is only about 280 pixels and the image is blurred due tmaduality optics.
There are also problems with synchronizing two camerasesdle capturing a
video sequence and not single images.

When looking for a high quality fisheye lens, Nikon FC-E9 dfig 183 de-
grees field of view seems like a good choice. This lens is rdifgeand heavy
but it can be mounted on nearly any consumer camera. We hagermhkyocera
Finecam M410R because it was the only camera providing 3fph resolution
images with the radius of the captured view field approxifge8@0 pixels and a
very good image quality. We disassembled two cameras antected them to an
external trigger. The resulting compound device mounted sarvey vehicle can
be seen in Figure 14.

C.6.2 Parameter Values

The SfM framework contains many parameter values which tabe set before
running it. The first group of parameters concerns the deteeind tracking of
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Parameter name \ value

feature halfwindow size 8x 8 pixels
gradient threshold 16
minimum feature strength 16
search radius 64 pixels
maximum feature strength difference 4 per pixel
correlation window size 16x16 pixels
maximum correlation value differende 16 per pixel

Table 2: Parameters affecting the detection and the trgakithe corners.

the corners. The size of the feature window, the minimum igracof the pixel
intensity function, the minimum feature strength, the maxin allowed difference
between the feature strengths of the two consecutive coateng a track, and the
search radius constraining the area which is searcheddaathtinuation of a track
are some of them.

Experiments showed that while working with fisheye image#kild to half
size having the radius of the view field slightly smaller tH® pixels, a 1&16
feature square gives best results. It is big enough to be disdliminative and
severe radial distortion caused by the fisheye lens doesestiog the shape of
the corners completely. Other parameters should be sdultaraccording to a
concrete video sequence. Search radius should not be skgrsiinan the biggest
expected movement in consecutive images, otherwise sootktgarks would be
lost. On the other hand, setting the thresholds too loosecaase a lot of false
features and false tracks to appear and to make the recctimtrumore difficult
or even incorrect. Parameter values used with our test sequean be found in
Table 2.

The second group of parameters contains various threshsétsfor world 3D
points reconstruction. These thresholds should be indigpetron the input video
sequence and their main significance lies in setting the b&tiween the number of
tracks that survive for a long time and the number of recamitpnstructed tracks.
Proposed parameter values are mentioned in Table 3.

C.6.3 Structurefrom Motion with the Rigid Stereo Constraint

There are several ways how to get the camera poses needd fioitialization.
If the cameras are mounted on a vehicle riding at a constawikivelocity with
no changes in the direction of the movement during one se@iading camera
poses for the left camera can be computed easily. As we havpréacalibrated
rigid stereo constraint, starting camera poses for thd dgimera can be obtained
by a simple transformation.

Another approach does not rely on the pre-calibrated rigices constraint but
computes the starting camera poses together with thisreamst An omnidirec-
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Parameter name | value

max triangulation angle cosine 0.9995
min track length 2 frames
max initialization 3D point reprojection errgr 6 pixels
max inlier rep. error before refinement 6 pixels
max inlier rep. error after refinement 6 pixels
max distance from epipolar line 6 pixels
max new 3D point reprojection error 6 pixels

Table 3: Parameters affecting the reconstruction of the @Dtg.

tional WBS software can be used to get epipolar geometritgeles the first left

and first right, first left and sixth left, and first right anctsi left cameras. These
geometries can be then combined together to get a consisfieidtereo constraint
and movement estimation.

Both approaches were tested and both work good. The maimtdeof the
first approach lies in the fact that one needs no additionaS\e8ftware to start
the reconstruction so it is easier to use it in the final ngpeexnental setup. That
is why the first approach was used in our experiments.

Our test sequence is 870 frames long and the first and the ishgije were
used for the initialization with more than 200 correct tradr each eye recon-
structed into world 3D points. Straight street segmentsjaite easy, the support
of the RANSAC winner is usually more than 70% and only few tehuns of the
RANSAC loop are needed to find it. Segments with sharp turesrarch more
difficult, the support of the RANSAC winner and also the numinieactive tracks
drop dramatically. This is caused mostly by imprecise canard/or stereo rig
calibration because the world 3D points come closer to casn@nd start rotating,
which causes the errors in the estimations of their depthset@me much more
important than when these 3D points are distant and the meneirotation-free.

C.6.4 Structurefrom Motion without the Rigid Stereo Constraint

During the adaptation of the original SfM into an omnidirentl one, we first
adapted the geometry and RANSAC without forcing the rigedlesh constraint [6].
Stereo information was used only in the RANSAC loop wherddfiecamera pose
was estimated from 3D-to-2D matches from both cameras amdight camera
pose was computed from the estimated left camera pose aftésw

The framework worked fine when using additional GPS/INS dattafailed
when these data were not used. The reconstruction failseirfitst sharp turn
because the positions of world 3D points are not estimatdtl asethe scale is
being gradually lost.

A comparision with the original framework using perspeetbameras was not
performed but the result would be even worse because nottloalynissing rigid
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stereo constraint but also the lack of features caused byyssweall field of view
would play a role.

C.6.5 Performance

The original SfM framework is able to work in realtime and ibwd be exciting
to achieve the same speed even with fisheye cameras. Untilwewere inter-
ested more in functionality than in performance and theadpeed on a standard
2GHz Intel Pentium 4 computer is about 1.3fps. This is prilpaaused by the
size of the input images which is 88800 compared to 360288 used with per-
spective cameras. Working with smaller images makes it rdifieult to detect
and to correctly describe enough corners and making thedsagich smaller will
be possible only if a fisheye-oriented extension to featuteaetion would be pro-
posed and implemented. This extension would describe #tarés on a locally
unwarped image. As this unwarping would not be quick enoughguthe CPU,
GPU programming techniques should be used via OpenGL.

On the other hand, it showed out that 3fps provided by our direttional
cameras are enough for the reconstruction from a movinglehecause corners
do not get lost from the image as quickly as when perspectineecas are used.
That is why it is not necessary to achieve 25fps computatipedormance, 3fps
are enough for realtime processing.
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