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Abstract: 

This deliverable presents work on DIRAC demonstrator D6.2 - Omnidirectional 

Camera Tracking. A web page (http://cmp.felk.cvut.cz/projects/dirac/omni_track) has 

been set up to complement this report with the demonstrator summary and up to 

date videos and VRML models of reconstructed camera trajectories. We describe a 

SW platform developed for calibration of omnidirectional cameras in the DIRAC 

project and we show how it is integrated into an existing 3D reconstruction module. 

We also describe an alternative approach to camera motion recovery using wide 

baseline stereo with omnidirectional images. We discuss integration of 

omnidirectional images into cognitive loops for detection of objects in the scene. 

Technical details and experimental results are given in an appendix. 
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1. Introduction 

 

This deliverable presents technical material for DIRAC demonstrator D6.2—Omnidirectional 

Camera Tracking. A  web page (http://cmp.felk.cvut.cz/projects/dirac/ 

omni_track) has been set up to complement this report with the demonstrator summary 

and up to date videos and VRML models of reconstructed camera trajectories. 
 

The report consists of three parts. The summary of the work on omnidirectional camera 

tracking and its integration into the KUL scene modeling framework is given in Section 2. 

Section 3 presents the relationship to a higher-level scene modeling, object and event 

recognition and cognitive loops. The appendix contains more detailed technical descriptions 

of omnidirectional camera calibration in Appendix A, image matching and epipolar geometry 

estimation in Appendix B, and tracking of a pair of omnidirectional cameras and its 

integration into the KUL scene modeling framework in Appendix C. 

 

2. Omnidirectional Camera Tracking 

We follow on work described in deliverable D1.1 “Omnidirectional Sensors and Features for 

Tracking and 3D reconstruction” which describe prototype omnidirectional sensors and 

discussed several feature descriptors suitable for processing of omnidirectional images. The 

sensors were successfully used in acquisition of several datasets for the DIRAC project. 

Figure 1 depicts contribution of using different feature detectors in images. While MSERs 

(Matas et. al. 2004) are good in urban environment, APTS (Mikolajczyk et. al. 2002) are 

more suitable for natural scenes. 

 

  

Figure 1 Features detected in omnidirectional images. Left, an urban environment results in sufficient 

number of MSERs. Right, a natural scene requires APTS to obtain enough features. 

 

We have integrated support for omnidiretional input images into two different 3D 

reconstruction frameworks; the wide-base line stereo tool at CMP (Matas et. al. 2004) and the 

strusture from motion (SfM) framework at KUL (Cornelis et. al. 2006). The first integration 

required error measures for determining the quality of the estimated epipolar geometry and 

the second one required inclusion of calibrated omnidirectional images and changes in 

interest point detector. We will discuss these modifications in more detail in the next 
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paragraphs and with technical details in the appendix. The error for quality measure of 

epipolar geometry has to be defined by angles 

instead of pixel distances for omnidirectional images. This is because omnidirectional images 

have generally non-uniform image resolution. Figure 2 shows different camera motions 

resulting in varying quality of a standard epipolar geometry computation with image 

reprojection error, while the angular error gives stable results. 

 

 

Figure 2 Four examples of camera motions. Red circle, blue up facing triangle, and green down facing 

triangle represent the true epipole, the epipole computed by maximizing the number of matches, and 

the epipole computed by soft voting for the position of the epipole, respectively. Small dots show the 

matches giving blue up facing triangle. (a) The camera translates forward. Many regions have been 

detected. Finding the camera motion is easy. (b) Camera translates forward and rotates 45◦ to the right. 

Most of the overlapping field of view has been occluded by a moving vehicle in the left image. Regions 

have been detected only in a small part of the view field. Finding the motion by reprojection error 

failed but angular error was successful. (c) The camera translates forward and rotates by 30◦. Many 

regions detected on bushes do not correspond to stable 3D structures and their descriptors are all very 

similar. Finding camera motion is more difficult due to the low fraction of correct matches. The 

Algorithm B.3.3 can find the correct motion. 

 

Calibrated omnidirectional images mean that we can define a light ray for each pixel. In 

contrary for classical pinhole model, the rays are not defined as a vector between the image 

center and the respective pixel in the image plane, we have to consider a spherical “retina” 

and the light rays have to be oriented and rays represented by unit vectors have to be used 

instead of image pixels, and forcing the stereo constraints. Our experiments proved that using 

two cameras bound into a stereo rig improves the stability of the reconstruction and helps to 

keep its overall scale. 

  

Moreover, omnidirectional images have also visible boundary between the (usually circular) 

part with image data and “black pixels” around this part, see Figure 3, left. The feature 

detector in the SfM framework had to be modified to ignore matches at this boundary. These 

are the necessary changes that had to be made for inclusion of support for the omnidirectional 

images into the KUL SfM framework.  
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Figure 3 Left, features detected in omnidirectional images using the KUL SfM framework with proper 

treating of the image boundary. Right, ground plane comcomputed from the camera motion. 

3. Relation to Cognitive loops — Deliverable D3.1, Expected 

Improvements 

In deliverable D3.1 “Framework for Bottom-up 3D Reconstruction” a system was described 

which was able to reconstruct an a-priori unknown environment from a mobile stereo 

platform. At the time this platform was equipped with two normal perspective cameras. This 

framework already succeeded in computing the platforms trajectory for general motions and 

in building up a dense textured reconstruction of the scene.  

 

Among the challenges faced by this first reconstruction system are the handling of fast turns 

in the platform motion, which impedes feature tracking as features disappear quickly out of 

the field of view. In addition, the texture of the final dense 3D model can only be extracted 

from the narrow field-of-view images offered by the perspective cameras. This results in 

typically good texture quality for the lower levels of the scene which are in view the longest, 

whereas higher parts, such as roof tops, etc disappear quickly from the viewing frustum of the 

cameras. This leads to poor texture quality for the aforementioned parts of the scene. 

 

 Omni-directional camera tracking will remedy both problems. The increase in viewing 

volume as seen by the cameras will allow feature tracks to be tracked much longer, even in 

fast turns of the mobile platform. In addition, the near 180 degree field-of-view will allow to 

get a more global view of the objects. Enabling to get textures for these objects from much 

closer viewpoints.  

 

Now that omni-directional camera tracking is available, the new camera model requires 

changes in both the 3D dense reconstruction module and the object recognition module, 

which are coupled together into a cognitive loop in order to achieve robust dynamic scene 

analysis. This work was presented in “Bastian Leibe, Nico Cornelis, Kurt Cornelis, and Luc 

Van Gool, Dynamic 3D Scene Analysis from a Moving Vehicle” at CVPR 2007. Figure 4 

demonstrates the cognitive loop setup.  
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Figure 4: Overview of our combined system integrating recognition and 3D reconstruction. 

The power of cognitive loops, as explained in more detail the aforementioned publication, 

will become even more apparent when we will start to use omni-directional images and 

tracking results. The use of omni-directional images makes object recognition a much harder 

task because of the image distortion caused by the lens optics. They lead to deformations of 

the objects to be recognized and a quick change in scale of these object in the image as they 

approach the image borders.  

 

The ground plane, as can be computed from the results from the omni-directional camera 

tracking, will therefore be used to constrain the search for pedestrians, cars and other actors 

on the road surface. Using the ground plane and the tracked camera poses, the world sizes of 

detected objects (when assuming that they are on the ground plane) can be computed and 

compared to a size prior. This helps in throwing out many false positives which will 

undoubtedly occur because the object detection thresholds need be lowered to account for the 

image formations caused by the fish-eye lens. Figure 5 shows several representative examples 

of Omni images in which the indicated objects will need to be identified despite their 

deformations. 

 

  

Figure 5: Object recognition is challenged by the image deformations caused by fish-eye optics. 

 

Also the dense reconstruction module as mentioned in D3.1, which is based on fast dense 

stereo matches of vertical lines (see Figure 6 for a summary of dense stereo matching in D3.1) 

will need to undergo a drastic change. This is the result of the fact that vertical lines in the 3D 

world are no longer displayed as straight lines in the image, as was the case for normal 

perspective images. 
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Figure 6: Building up correlation space by calculating the pixel difference when matching each 

vertical line of image 1 with image 2. Dynamic path programming is used to find the optimal path with 

lowest cost throughout this correlation space. 

4. Conclusion 

We have presented work on implementing support for omnidirectional images into two 

existing 3D reconstruction tools, the SfM framework at KUL and the wide-baseline stereo 

tool at CMP. We have also discussed inclusion of omnidirectional inputs into the cognitive 

loop for object detection. Technical details are given in the appendix and a web page 

(http://cmp.felk.cvut.cz/projects/dirac/omni_track) has been set up to present up-to-date 

videos and VRML models of results of omnidirectional camera tracking and 3D 

reconstruction. 
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DIRAC deliverable 6.2: Omnidirectional Camera
Tracking — technical details

Michal Havlena Akihiko Torii Hynek Bakstein
Tomáš Pajdla

A Omnidirectional Camera Calibration

Omnidirectional camera calibration was implemented as a SWmodule in MAT-
LAB with, see Figure 1 and can be distributed among the partners. The calibration
can be both off-line using a known calibration target or autocalibration, using point
correspondences detected in the images. Off-line calibration uses minimization of
the camera model parametersa andb for the model

r =
a −

√
a2 − 4θ2b

2bθ
, (1)

wherer is the distance from the principal point andθ is the angle between the
optical axis and a light ray of the corresponding image point. The model has an
iverse form

θ =
ar

1 + br2
. (2)

To relate the camera center and the origin of the coordinate system of the cali-
bration object, a rigid body transformation has to be included in the minimization
adding additional 6 parameters.

Figure 1: diracOmniCam - an SW platform for sensor calibration.
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The autocalibration uses pairs of images with correspondences established with
some (wide baseline) matching tool to compute epipolar geometry relating the two
images. The epipolar constraint formulation for a fisheye lens leads to a Quadratic
eigenvalue problem (QEP) [10]:

(D1 + aD2 + a2D3)l = 0 ,

whereDi is composed from the image coordinates of the points anda is the model
parameter. The vectorl contains the elements of the essential matrix and the pa-
rameterb. QEP problem can be solved linearly using 15 point correspondences
and can be included in a RANSAC loop. This procedure was implemented into the
software platform under the option ‘AutoCalibrate’.

Both off-line and auto calibration techniques can make a benefit from using
a reliable estimate of the principal point and the maximal distance (radius) of an
image point from the principal point, calledrmax. A simple procedure can be used
to robustly estimate this radius provided with an image of a white wall. This step
is available under option ‘FitCirle’. In fact, a simple equidistant approximation
r = aθ of the projection of the omnidirectional camera can be determined only
from rmax and the maximal viewing angleθmax, provided by the manufacturer
of the lens. This one parameter approximation is useful for outlier rejection in a
matching procedure but cannot be used for 3D reconstructionand epipolar geome-
try estimation, since it deviates from the true projection mainly at the border of the
field of view.

Two approaches to off-line calibration were implemented, the first one uses a
calibration object developed in CMP and the second one employs an object devel-
oped KUL. The next two subsections describe both calibration objects in detail.

A.1 Calibration object PLANETARIUM

Calibration object ’planetarium’ is designed for calibration of lenses with hemi-
spherical field of view. It is composed of LEDs arranged on twohalf-spheres with
different diameters and a common centre. The LEDs are placedon metal ribs and
the target is mounted in a black cylinder with detachable lidso that the camera ob-
serves only the light from the LEDs and no parasite reflections. The target has ad-
ditional single LED for establishing automatic correspondences between detected
points in images and respective LEDs on the target and the calibration process is
fully automatic. The target is available at CMP only. Another object was designed
in KUL and can be easily reproduced by other partners.

A.2 Calibration object BOX

Calibration object ’box’ was designed in KUL to calibrate omnidirectional lenses.
Five square400 × 400mm big plastic boards covered by2.5 × 2.5mm checker-
boards were mounted together to form five sides of a cube. Someof the checker-
board squares are labeled and top-left corners of the squares with labels are used for

10



(a) (b)

Figure 2: Calibration with PLANETARIUM. (a) the calibration object and (b) an
image captured by the camera.

calibration. Known 3D positions of these 160 points together with their known re-
projections into an acquired image give us both the externaland internal parameters
of a camera with an omnidirectional lens as the result of a non-linear optimization.
The shape of the calibration object ensures good coverage ofthe whole view-field
when a camera with an omnidirectional lens is inserted inside the box viewing its
rear side.

(a) (b)

Figure 3: Calibration with BOX. (a) the calibration object and (b) an image cap-
tured by the camera.

A.3 Results

Figure 4 shows the mapping between the angleθ and the radius in the imager
using the model (1) for the calibration object BOX and PLANETARIUM. The
resulting parameter values are summarized in Table 1. The right part of Figure 4
shows an enlarged part of the graph of the mapping, where the difference between
the parameter sets is the most visible. It should be noted that theb parameter affect
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Method a b
Autocalibration 1.5550 -0.0612
BOX 1.5689 -0.0461
PLANETARIUM 1.6002 -0.0049

Table 1: Summary of values of parametersa andb for different calibration objects
and methods.

the shape of the mapping function. As it was shown in [10], forb → 0, the model
function (2) becomes

θ = ar ,

which is in fact an equidistant projection. We can observe from Figure 4 that the
model parameters extiimated by different methods or objects give slightly different
results, with the difference most aparent at the border of the field of view. The
difference is caused by coverage of the field of view by the calibration objects
and by detected features for autocalibration and also by precision of detection of
features or calibration marks at the edge of the field of view.
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Figure 4: Comparison of calibration using different calibration objects and meth-
ods. Right: enlarged part of the left graph.
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B Omnidirectional Image Matching and Epipolar Geom-
etry Estimation

In this section, we describe a procedure for computing relative motion of one mov-
ing omnidirectional camera. We assume that the camera has been calibrated, e.g.
by the technique described above.

(a) Easy (b) Difficult (c) Very difficult

Figure 5: Four examples of camera motions. Red◦, blue△, and green▽ represent
the true epipole, the epipole computed by maximizing the number of matches, and
the epipole computed by soft voting for the position of the epipole, respectively.
Small dots show the matches giving blue△. (a) The camera translates forward.
Many regions have been detected. Finding the camera motion is easy. (b) Camera
translates forward and rotates45◦ to the right. Most of the overlapping field of
view has been occluded by a moving vehicle in the left image. Regions have been
detected only in a small part of the view field. Finding the motion by reprojection
error failed but angular error was successful. (c) The camera translates forward
and rotates by30◦. Many regions detected on bushes do not correspond to stable
3D structures and their descriptors are all very similar. Finding camera motion is
more difficult due to the low fraction of correct matches. TheAlgorithm B.3.3 can
find the correct motion.

We combine the following four principles and obtain a practical algorithm for
epipolar geometry estimation. First, we show that the correct motion is found much
sooner if the tentative matches are sampled after ordering them by the similarity of
their descriptors. Secondly, we show that the correct camera motion can be better
found by soft voting for the direction of the motion that by selecting the motion
that is supported by the largest set of matches. Third, we show that the residuals
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computed as the angle between a ray and its corresponding epipolar plane work
better than the image reprojection error. Finally, we show that it is useful to filter
out the epipolar geometries which are not generated by points reconstructed in
front of cameras.

B.1 The algorithm

Algorithm B.3.3 presents the pseudocode of the algorithm used to generate results
described in this work. Next we describe the key parts of the algorithm in detail.

B.1.1 Detecting tentative matches and computing their descriptors.

MSER [8] and Harris-Affine and Hessian Affine [12] affine covariant feature re-
gions are detected in images. Parameters of the detectors are chosen to limit the
number of regions to 1-2 thousands per image. The detected regions are assigned
local affine frames (LAF) [15] and transformed into standardpositions w.r.t. their
LAFs. Discrete Cosine Descriptors [16] are computed for each region in the stan-
dard position. Finally, mutual distances of all regions in one image and all regions
in the other image are computed as the Euclidean distances oftheir descriptors and
tentative matches are constructed by selecting the mutually closest pairs.

MSER region detector is approximately 100 times faster thanthe Harris and
Hessian Affine region detector but MSERs alone were not able to solve all image
pairs in our data. MSERs perform great in urban environment with contrast regions,
such as windows, doors and markings. However, they often provide many useless
regions on natural scenes because they tend to extract contrast regions which often
do not correspond to real 3D structures, such as regions formed by tree branches
against the sky or shadows casted by leaves.

B.1.2 Angular error

We compared the image reprojection error with the residualsevaluated as the an-
gle between rays and their corresponding epipolar planes, which we refer as the
angular errorhere. When cameras are calibrated, the angular error can safely be
used instead of the image reprojection error. To be absolutely correct, every ray
should be accompanied by a covariance matrix determining its uncertainty. The
matrix depends on (i) image measurement error model and (ii)on the point posi-
tion in the image. The point position determines how the unitcircle around the
point maps into the cone around the ray. In this paper we neglected the variabil-
ity of the covariance matrix across the field of view and assumed it to be a scaled
identity.

We have observed that the number of epipolar geometries generated by ran-
domized sampling with correct motion directions, i.e. which differ not more than8◦

from the ground truth, was higher when using the angular error, Fig. 8. It is clearly
visible when sampling from matches ordered by their similarity (Sec. B.1.4), rows
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sim-r with sim-a, but it also holds for sampling by the standard RANSAC, rows
rnd-r andrnd-a.

The quality of the angular error also shows after selecting the best motion either
by maximizing the number of matches which support it, rows (a,b)S, or by using
the soft voting (Sec. B.2), rows (a,b)V in Fig. 8.

Fig. 7 shows that motions estimated using angular error lessoften provide
epipolar geometries generated by a 5-tuple of matches whichcannot be recon-
structed in front of both cameras.

20 40 60 80 100 120 140 160 180

N

S

V

Image number
(a)

20 40 60 80 100 120 140 160 180

N

S

V

Image number
(b)

Figure 6: Camera motion estimation by soft voting compared for the (a) residuals
evaluated on reprojection into images (reprojection error) vs. (b) residuals evalu-
ated as the angle between rays and their corresponding epipolar planes (angular
error). Ordered sampling with 500 samples has been run 50 times providing 50
camera motions. N: The number of the camera motions with the motion direction
not more than8◦ from the ground truth. Lighter colors represent higher numbers,
white= 50, black= 0. S: The motion direction, which is supported by the largest
number of tentative matches in 50 motions, is not (white) or is (black) more than
8◦ from the true motion direction. V: The estimated motion direction, which is
closest to the global maximum in the accumulator, is not (white) or is (black) more
than8◦ from the true motion direction. Many more motion directionsare within
the8◦ limit when using the angular error compared to using the reprojection error.
The best strategy, (b)V, for estimating the camera motion isto use the ordered sam-
pling with the angular error and to select the motion which isclosest to the global
maximum in the accumulator. limit.
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B.1.3 Orientation constraint

An essential matrix can be decomposed into four different camera and point con-
figuration which differ by the orientation of cameras and points [5]. Without en-
forcing the constraint that all points have to be observed infront of the cameras,
some epipolar geometries may be supported by many matches but it need not be
possible to reconstruct all points in front of both cameras.

For omnidirectional cameras, the meaning of infrontness isa generalization
of the classical infrontness for perspective cameras. Withperspective cameras, a
point X is in front of the camera when it has a positivez coordinate in the camera
coordinate system. For omnidirectional cameras, a pointX is in front of the camera
if its coordinates can be written as a positive multiple of the direction vector which
represents the halfray by whichX has been observed.

In general, it is beneficial to use only those matches which generate points in
front of cameras. However, this takes time to verify it for all matches. On the other
hand, it is easy to verify whether the five points in the minimal sample generating
the epipolar geometry can be reconstructed in front of both cameras and to reject
such epipolar geometries which do not allow it.

Fig. 7 shows that the number of incorrectly estimated motions decreased when
such epipolar geometries were excluded for both selection strategies.

20 40 60 80 100 120 140 160 180

r + 5

r + 0

a + 5

a + 0

Image number

Figure 7: Camera motion directions that are not (white) and are (black) further
than8◦ from the true direction. The four rows show the four combinations of the
two residual errors with using and not using the orientationconstraint. r: resid-
uals evaluated on images (reprojection error),a: residuals evaluated as the angle
between rays and their corresponding epipolar planes (angular error).0: all epipo-
lar geometries contribute to the soft voting,5: only epipolar geometries for which
the 5 points of their generating minimal sample get reconstructed in front of both
cameras (orientation constraint) contribute to the soft voting. Using the angular
error significantly increases the number of correctly estimated directions. Using
the orientation constraint further improves the result.

B.1.4 Ordered randomized sampling

We useordered samplingas suggested in [2] to draw samples from tentative matches
in ascending order by the distance of their descriptors. However, we keep the orig-
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inal RANSAC stopping criterion plus we limit the maximum number of samples
to 500. We have observed that pairs which could not be solved by the ordered
sampling in 500 samples get almost never solved even after many more samples.
Using the stopping criterion from [2] often leads to ending the sampling prema-
turely since the criterion is designed to stop as soon as a large non-random set of
matches is found. Our objective is, however, to find a globally optimal model and
not to stop as soon as a local model with large support is met.

We have observed that there are often several alternative models with the prop-
erty that the right model of the camera motion has a similar oronly slightly larger
support than other models which are not correct. Algorithm B.3.3 would provide
almost identical results even without the RANSAC stopping criterion but the crite-
rion helps to end simple cases sooner than after 500 samples.

Having a calibrated camera, we draw 5-tuples of tentative matches from the
list M = [m]N1 of tentative matches in ascending order by the distance of their
descriptors. From each five-tuple, relative orientation iscomputed by solving the
5-point minimal relative orientation problem for calibrated cameras [13, 17].

Figure 8 shows that many more correct motions have been sampled in 500
samples of PROSAC using ordered matches than by using the same number of
samples on a randomly ordered list of matches.

20 40 60 80 100 120 140 160 180

sim-r

rnd-r

sim-a

rnd-a

Image number

Figure 8: The number of estimated camera motion directions that are not further
than8◦ from the ground truth. The motion direction were computed bysoft voting
from the first 500 5-point samples drawn by the ordered sampling. Lighter col-
ors represent higher numbers. The four rows show the four combinations of the
two orderings of tentative matches with the two residual errors. sim: tentative
matches ordered by feature similarity,rnd: tentative matches ordered randomly,
r: residuals evaluated on reprojections to images (reprojection error),a: residuals
evaluated as the angle between rays and their correspondingepipolar planes (angu-
lar error). Ordering of tentative matches by similarity greatly increases the number
of correctly estimated epipoles. The angular error furtherimproves results, often
on difficult image pairs.

B.2 Soft voting

In this work, we vote in two-dimensional accumulator for theestimated motion
direction. However, unlike in [7], we do not cast votes directly by each sampled
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epipolar geometry but by the best epipolar geometries recovered by ordered sam-
pling of PROSAC. This way the votes come only from the geometries that have
high support. We can afford to compute more, e.g. 50, epipolar geometries since
the ordered sampling is much faster than the standard RANSAC. Altogether, we
need to evaluate maximally500 × 50 = 25000 samples to generate 50 soft votes,
which is comparable to running a standard 5-point RANSAC forexpected con-
tamination by84 % of outliers. The relative camera orientation with the motion
direction which is closest to the maximum in the voting spaceis finally selected.

Figure 6 shows the improvement of using soft voting for finding the relative
motion when casting 50 soft votes. On several difficult imagepairs, such as
Fig. 5(c), the motion supported by the largest number of tentative matches gave
incorrect motion but soft voting provided a motion close to the ground truth.

B.3 Experiment

B.3.1 Image data

Experimental data consist of 189 image pairs obtained by selecting consecutive
images of an image sequence. The distance between two consecutive images was
1-3 meters. Most of the camera motions have rotations up to15◦ but large rota-
tions of45◦ are also present. Images were acquired by Kyocera Finecam M410R
with Nikon FC-E9 fisheye-lens. The field of view is183◦. The image projection is
equiangular and was internally calibrated [11]. Images were digitized in resolution
800 pixels/183◦, i.e. 0.2◦/pixel, which is comparable with240 × 180 pixels for
more standard40◦ field of view. The sequence starts in a narrow street with build-
ings on both sides, then it continues to a wider street with many driving cars, and
finally leads to a park with threes, bushes and walking people.

B.3.2 Ground truth motion

For most image pairs, the “true” camera motions were recovered by running the
Algorithm B.3.3 a number of times and checking that (i) the true motion has been
repeatedly generated by correctly matched 5-tuples of matches and that (ii) the mo-
tion direction pointed to the same object in both images. In afew image pairs, for
which we could not get a decisive number of consistent results, the true motion has
been generated from a 5-tuple of correct matches selected manually. We estimate
the precision of our ground truth motion estimation to be higher than4 % of the
view field, which corresponds to8◦ and32 image pixels.

B.3.3 Results

Figure 6(b)V shows the quality of the estimated camera motion by Algorithm B.3.3.
The algorithm looks for the motion with motion direction closest to the global max-
imum in the accumulator after casting soft votes from 50 motions. The 50 motions
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for soft votes are estimated in 500 samples by the ordered sampling based on resid-
uals evaluated as the angle between rays and their corresponding epipolar planes.
All but two motions were estimated with motion directions within 8◦, i.e. 4 % of
the view angle, from the ground truth. The two image pairs, for which the motion
has been estimated incorrectly, are very difficult to solve due to small overlap of
their fields of view and large occlusions, Fig. 5(d).

B.4 Residual errors

In the following, image points are represented by unit vectors, e.g. asx andx′. For
a pair of correspondencesx ↔ x′, the epipolar constraint becomes

x′⊤
Ex = x⊤

E
⊤x′ = 0,

epipoles are normalized

E e = 0, ||e|| = 1 and e′⊤E = 0, ||e′|| = 1,

and normals of epipolar planes yielded byx andx′ are given as

y′ =
E
⊤x′

||E⊤x′|| =
([e′]×R)

⊤x′

||([e′]×R)⊤x′|| =
R
⊤(x′ × e′)

||x′ × e′|| (3)

y =
Ex

||Ex|| =
R [e]× x

||R [e]× x|| =
R (e × x)

||e × x||

assumingE = [e′]×R = R [e]×.

B.4.1 Image reprojection error

The closest pointv on the epipolar plane generated byx′ in the right image to the
point x in the left image is obtained by rotatingx arounde and along the great
circle passing throughx andy′ into v, Fig. 9,

v =
(x− (x⊤y′)y′)

||(x − (x⊤y′)y′)||

and similarly in the right image

v′ =
(x′ − (x′⊤y)y)

||(x′ − (x′⊤y)y)||
.

We compute the “image reprojection error” as

αL = ||f(x) − f(v)| |, αR =
∣

∣|f(x′) − f(v′)
∣

∣ |,
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Algorithm 1 Camera motion estimation by ordered sampling from tentative matches with
geometrical constraints

• Input: Image pairI1 , I2 .

θ := 0.3 ◦ . . . the tolerance for establishing matches

σ := 4 ◦ . . . the standard deviation of Gaussian kernel for soft voting

NV := 50 . . . the number of soft votes

NS := 500 . . . the maximum number of random samples.

η := 0.95 . . . the termination probability of the standard RANSAC [5, p. 119].

• Output: Essential matrixE∗ .

1. Detect tentative matches and compute their descriptors.

1.1 Detect affine covariant feature regions MSER-INT+, MSER-INT-, MSER-SAT+,

MSER-SAT-, APTS-LAP, and APTS-HES in left and right images,Sec. B.1.1.

1.2 Assign local affine frames (LAF) [15] to the regions and transform the regions into a standard position w.r.t. their LAFs.

1.3 Compute Discrete Cosine Descriptors [16] for each region in the standard position.

2. Construct the listM = [m]N1 of tentative matches with mutually closest descriptors. Order the list ascendingly by the distance of the
descriptors.N is the length of the list.

3. Find a camera motion consistent with a large number of tentative matches:

1: SetD to zero. // Initialize the accumulator of camera translation directions.
2: for i := 1, . . . , NV do
3: t := 0 // The counter of samples.n := 5 // Initial segment length.

NT := NS // Initial termination length.

4: while t ≤ NT do

5: if t = ⌈200000
“

n
5

”

/
“

N
5

”

⌉ [2] then

6: n := n + 1 // The maximum number of samples for the current initial segment reached, increase the initial segment
length.

7: end if
8: t := t + 1 // New sample

9: Select the5 tentative matchesM5 of thetth sample by taking4 tentative matches from[m]n−1
1 at random and adding

the5th matchmn .
10: Et := the essential matrix by solving the 5-point minimal problemfor M5 [13, 17].

11: if M5 can be reconstructed in front of cameras [5, p. 260]then
12: St := the number of matches which are consistent withEt , i.e. the number of all matchesm = [u1, u2] for which

max(∡(u1, Etu2), ∡(u2, E⊤t u1)) < θ.

13: else
14: St := 0

15: end if
16: NR := log(η)/ log

“

1 −
“

St
5

”

/
“

N
5

””

//The termination length defined by the maximality constraint [5, p. 119].

17: NT := min(NT , NR) // Update the termination length.

18: end while
19: t̂ = argt=1,...,NS

max St // The index of the sample with the highest support.

20: Êi := E
t̂

, êi := camera motion direction for the essential matrixE
t̂

.

21: Vote in accumulatorD by the Gaussian with sigmaσ and mean at̂ei.

22: end for
23: ê := arg

x∈domain(D) max D(x) // Maximum in the accumulator.

24: i∗ := argi=1,...,50 min ∡(ê, êi) // The motion closest to the maximum.

25: E
∗ := Êi∗ // The “best” camera motion.

4. ReturnE∗ .
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wheref is the mapping from a ray directional vector to the corresponding image
point, Fig. 9.

This is, of course, only an approximation of the true image reprojection error,
since the closest pointsv, v′ are found in space, not in the image, but this approxi-
mation is very close to the true reprojection error, since the image epiplolar curves
are very close to circles, and is much easier to compute.

The main character of the image reprojection error, i.e. that it is evaluated in
the image where the point localization error is happenning,is preserved.

B.4.2 Angular error

The angular error

βL = π/2 − arccos(x⊤y′) = arcsin(x⊤y′)

βR = π/2 − arccos(x′⊤y) = arcsin(x′⊤y)

corresponds to the angles between the ray direction vectorsand the corresponding
epipolar planes, Fig. 9. The angles are in general differentin different cameras.

B.4.3 Longitudal error

The longitudal error, Fig. 9,

γ = arccos

(

(x× e)⊤

||x × e||
E
⊤x′

||E⊤x′||

)

= arccos
(

y⊤
Ry′

)

= arccos
(

y′⊤
R
⊤ y

)

= arccos

(

(x′ × e′)⊤

||x′ × e′||
Ex

||Ex||

)

.

is same in both cameras and equals the angle between the epipolar planes.

B.5 Error sensitivity of 5-point algorithm

Figure 10 shows sensitivities of the 5-point algorithm [13]to the errors in point
localization. The errors are evaluated and the sensitivities tested by the following
algorithm.

1. Generate five pointsX in the space.

2. ProjectX into unit ray direction vectorsx andx′ in the left and right camera.

3. for n = 1 : 5

Repeat the following steps 1000 times
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Figure 9: Residual errors. Vectorsx, x′ represent a pair of corresponding image
points represented by unit vectors. Vectorsy, y′ represent normals of epipolar
planes yielded byx andx′. Vectorsv, v′: The closest pointv on the epipolar
plane generated byx′ to the pointx in the left image obtained by rotatingx around
e and along the great circle passing throughx andy′ into v. AnglesαL, αR are
the image reprojection errors. AnglesβL, βR are the angular errors. Angleγ: is
the longitudal error.

• Add uniformly distributed noise in the ranges to x′n
i=1.

• EstimateE by the 5-points algorithm.

• Extract the epipoles fromE and evaluate the angular errors to the
ground truth (GT).

4. end
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Figure 10:Sensitivity to errors of five points. x-axis: the size of the range of the uniformly
ditributed noise. y-axis: the angle between the epipole estimated by the 5-point algorithm
and the ground truth (GT). For each noise range, epipoles areestimated for 1000 nise
realizations . Noise is added either to only one point (T4F1)or to all five points (T0F5).
(a) and (b): the median of the angular error w.r.t the ground truth. (c) and (d): the angular
errors of ’T4F1’ and ’T0F5’, respectively.
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C Omnidirectional Camera Motion Estimation, Tracking
and 3D Scene Modeling

In this section we describe a technique for tracking a pair ofrigidly connected
oimnidirectional cameras from a realatively dense video sequence of images. The
main difference to the approach described in the previous section is in the density
of the sequence which allows to use simpler and faster image feature detecton and
extraction. The second difference that here we reconstructthe scene 3D structure
to relate all camera positions to the original camera location.

A SfM framework [3] using a single perspective camera and a GPS/INS has
been extended for using a stereo rig of omnidirectional cameras acquiring an om-
nidirectional stereo video sequence. The following paragraphs describe how the
modified framework works in detail.

C.1 Features

Detection, description, and tracking of corner-like imagefeatures is a crucial part
of the SfM framework. The green image channel is divided intosquare sections
containing 8×8 pixels and at most one feature per section is found to achieve fast
processing.

The feature strength is computed from the values of the pixels inside a square,
which is divided into four subsquares and an average pixel value inside each of
these subsquares is computed. The feature strengthF is then evaluated as

F = |(MUL + MDR) − (MUR + MDL)|, (4)

whereMUL, MUR, MDL, andMDR are average pixel values inside the up-left,
up-right, down-left, and down-right subsquares respectively.

These features were primarily intended to detect corners ofbuildings and their
windows and they reliably detect corners where horizontal and vertical lines meet.
The detection becomes worse for rotated corners. Furthermore, objects captured in
an omnidirectional image are radially distorted as they come closer and closer to
the border of the circular view field and the feature strengthcan differ dramatically
if computed on an object located in the center of the view fieldor on the same
object few frames later when it moves closer to the border. However, when high
video framerate is used and only strengths of features from consecutive frames are
compared, this does not cause any problems.

Another problem arises from the shape of the image itself. Only a circular area
near the center of the frame is covered with the view field, therest of the frame is
black. An additional position test had to be implemented in order not to allow the
detection of the corners in the area out of the view field or on its border.
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Figure 11: The output of the feature detector without an additional test for its
position can be seen on the left image, the right image shows the corners that
passed this test.

C.2 Omnidirectional Camera Calibration

Omnidirectional cameras are calibrated off-line using thetechnique describe above
which builds on [1] and Mičušı́k’s two-parameter model [9], which links the radius
of the image pointr to the angleθ of its corresponding rays w.r.t. the optical axis,
see Figure 12, as

θ =
ar

1 + br2
. (5)

Projecting via this model provides good results even when a low quality fish-
eye lens is used because the second parameter can compensatefor improper lens
manufacturing.

All operations in the SfM framework that compute a projection of a world 3D
point into the image or a ray casted through a pixel are using this lens model. Con-
version from pixel positions to rays is precomputed into a table to save computation
time when performing the conversion.

C.3 Initialization of a Euclidean Reconstruction

The structure from motion computation starts by initialization. Known internal
camera calibrations, which are then held constant for the whole video sequence,
and a few initial camera poses are needed. Corners are tracked over 5-10 images
and those, which are not lost, are then triangulated into world 3D points using
known camera poses. The whole initialization is done independently for the left
and for the right cameras, so two sets of world 3D points are computed.

Tracking is accomplished by connecting corners with small relative distances
and small differences in the feature strengths for each section of the previously
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θ

r

(a) (b)

Figure 12: Diagram (a) shows the equi-angular projection performed by a fisheye
lens. Angleθ measured between the casted ray and the optical axis determines the
radiusr of a circle in the image circular view field where the pixel representing the
value of the projected 3D point will lie. The Nikon FC-E9 lensconvertor can be
seen in (b).

processed image. Correlation is computed to accept or to refuse matches and only
the best 1-to-1 matches pass through the final test. As the images come from a
high framerate video sequence, corners do not change their positions much, which
is used to search only in small neighbourhoods.

C.4 Expansion of the Euclidean Reconstruction

Once the Euclidean reconstruction is initialized, the nextimage pair in the stereo
sequence is taken and the reconstruction is expanded using it. The expansion con-
sists of several steps described below in detail.

First, the camera poses of the new stereo pair must be established. 3D points
reconstructed in previous frames are projected into the newimages using the last
established camera poses. The corners that could prolong the tracks connected
with the projected 3D points are found in small neighbourhoods of the projections
using the same tests as during the initialization. As can be seen in Figure 13, every
reconstructed 3D point e.g.XR

i,i+j triangulated from corner positionsxR
i andxR

i+j

(if this point has not been refined yet) orxR
i andyL

i+j (if it has been refined already)
is projected into the left and right images. We get matches(XR

i,i+j , x
R
i+j+1

) and
(XR

i,i+j , y
L
i+j+1

) wherexR
i+j+1

is the position of a similar corner near the projection
to the image acquired by the camera where the reconstructed 3D point originated
from andyL

i+j+1
is the position of a similar corner near the projection to image

acquired by the other camera. Corners in images from both theleft and the right
cameras must be found to form a match(XR

i,i+j , x
R
i+j+1

, yL
i+j+1

).
Matches like(XR

i,i+j , y
L
i+j+1

) (not conventional matches like(XR
i,i+j , x

R
i+j+1

))
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Figure 13: On the left you can see a 3D pointXR
i,i+j triangulated fromxR

i and
xR

i+j or xR
i andyL

i+j projected into new images acquired by camerasCL
i+j+1

and
CR

i+j+1
. Positions of the most similar corners are denoted byyL

i+j+1
andxR

i+j+1
.

The diagram on the right shows the refinement of the 3D pointXR
i,i+j into XR

i,i+j+1

using triangulation fromxR
i andyL

i+j+1
.

are used as the input to a hypothesis-and-test loop to force the pre-calibrated rigid
stereo constraint which binds the left and right cameras into a stereo rig. We com-
pute the rotation and the translation from three 3D-to-rayscorrespondences by Nis-
ter’s algorithm [14]. The main advantage connected with this algorithm designed
for non-central cameras lies in the fact that the rays do not need to be concurrent
and thus rays going through both the left and the right cameras can be combined
together in one sample.

Nister’s algorithm leads to an 8-degree polynomial. As there is no analytical
way how to solve it, a numerical approach has to be used. The method described
in Appendix A of [13] uses Sturm sequences and bisection witha fixed number of
iterations and gives accurate results in reasonable time.

The RANSAC [4] stopping condition ensures stopping dependent on the prob-
ability of finding a better sample. Not to exceed the maximal processing time
available, an upper threshold for the number of iterations is used. Having the size
of the sample needed for setting up a hypothesis as small as 3 has a huge influ-
ence on early stopping of the RANSAC loop. To save even more time, the test
for inliers is performed gradually on partitions of the matches and is stopped as
soon as it is clear that the new hypothesis cannot be better then the best known at
the time. A match(XR

i,i+j , x
R
i+j+1

, yL
i+j+1

) is an inlier if and only if both matches
(XR

i,i+j , x
R
i+j+1) and(XR

i,i+j, y
L
i+j+1) are inliers.

Two refinements using the Levenberg-Marquardt non-linear optimization are
used to process all the inliers. The first refinement uses reprojection error as the
cost function. As one cannot be sure that the set of inliers iscorrect and an outlier
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might have a big influence on the optimization, a fixed cost value is used when the
reprojection error is bigger than a threshold during the second refinement. Again,
reprojection errors in both the left and right images are measured.

The tracks of the resulting inliers are prolonged and 3D points connected with
these tracks are refined by re-triangulation. The rigid stereo constraint is enforced
in here again as corner positionsxR

i andyL
i+j+1

are used to triangulate the 3D point
XR

i,i+j+1. The rest of the tracks, i.e. the tracks of the outliers and the tracks that
did not have a corresponding match, are ended. If the same corner is detected later
again, a new track with a new connected 3D point is created with no binding to the
old one.

There are also tracks that do not have a 3D point connected with them because
either they are too short or the angle between the two rays used for triangulation is
not yet large enough. Even these tracks are prolonged but additional geometry con-
straints derived from the established camera poses are alsoused to restrict the set of
possible locations of the corners that could prolong the tracks. First, a homography
through a non-existent plane in a fixed distance in front of the camera is used to get
an estimate of the position of the corner and a circular neighbourhood around this
location is searched. This distance should be set to the expected average distance
of the features. An additional condition is the proximity tothe matching epipolar
line. When having omnidirectional cameras, the residual distance is computed as
the distance between the corner position and the perpendicular projection of the ray
going through the position of the corner into the matching epipolar plane, projected
to the image.

C.5 Bundle Adjustment

The data computed from the image sequences during the expansion are divided into
blocks, each of them holding information from 60 images. Thebundle adjustment
routine running in parallel with the SfM framework refines the camera poses and
the positions of world 3D points iteratively using the already finished data blocks.
First the positions of 3D points are refined with fixed camera poses and then the
camera poses are refined with fixed positions of 3D points. Left and right eyes are
treated completely independently.

During this procedure, only the tracks visible in 4 frames ormore are used
because they are considered to be more reliable than those which disappear very
quickly. No global geometrical constraints are being used,that is why large errors
in camera poses cannot be repaired by this simple bundle adjustment.

C.6 Experiments

Several experiments were performed to prove the functionality of the modified SfM
framework. First, some hardware suitable for acquiring omnidirectional stereo data
had to be chosen. The acquired image sequences were then usedas the input for
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Figure 14: Kyocera Finecam M410R cameras with Nikon FC-E9 fisheye lens con-
vertors and two conventional perspective cameras mounted on a survey vehicle.
Perspective cameras are not used in our experiments.

the SfM framework in two setups: using the rigid stereo constraint described in
Section C and without using it.

C.6.1 Hardware

Finding an appropriate hardware is not an easy task. First, one has to choose
whether to use a small or a high quality fisheye lens. Small lenses like Sunex DSL
125 can be mounted on industrial cameras like Unibrain Fire-I providing 30fps
framerate. Unfortunatelly, not the whole circular field of view is captured when
using this camera, the resulting view field is only 120×90 degrees. Other cameras
like Pixeling are able to capture the whole view field (185 degrees) but the image
quality is poor for desired feature detection because the radius of the resulting view
field is only about 280 pixels and the image is blurred due to a low quality optics.
There are also problems with synchronizing two cameras as they are capturing a
video sequence and not single images.

When looking for a high quality fisheye lens, Nikon FC-E9 offering 183 de-
grees field of view seems like a good choice. This lens is rather big and heavy
but it can be mounted on nearly any consumer camera. We have chosen Kyocera
Finecam M410R because it was the only camera providing 3fps of high resolution
images with the radius of the captured view field approximately 800 pixels and a
very good image quality. We disassembled two cameras and connected them to an
external trigger. The resulting compound device mounted ona survey vehicle can
be seen in Figure 14.

C.6.2 Parameter Values

The SfM framework contains many parameter values which haveto be set before
running it. The first group of parameters concerns the detection and tracking of
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Parameter name value

feature halfwindow size 8×8 pixels
gradient threshold 16
minimum feature strength 16
search radius 64 pixels
maximum feature strength difference 4 per pixel
correlation window size 16×16 pixels
maximum correlation value difference 16 per pixel

Table 2: Parameters affecting the detection and the tracking of the corners.

the corners. The size of the feature window, the minimum gradient of the pixel
intensity function, the minimum feature strength, the maximum allowed difference
between the feature strengths of the two consecutive corners along a track, and the
search radius constraining the area which is searched for the continuation of a track
are some of them.

Experiments showed that while working with fisheye images shrinked to half
size having the radius of the view field slightly smaller than400 pixels, a 16×16
feature square gives best results. It is big enough to be welldiscriminative and
severe radial distortion caused by the fisheye lens does not destroy the shape of
the corners completely. Other parameters should be set carefully according to a
concrete video sequence. Search radius should not be set smaller than the biggest
expected movement in consecutive images, otherwise some good tracks would be
lost. On the other hand, setting the thresholds too loose cancause a lot of false
features and false tracks to appear and to make the reconstruction more difficult
or even incorrect. Parameter values used with our test sequence can be found in
Table 2.

The second group of parameters contains various thresholdsused for world 3D
points reconstruction. These thresholds should be independent on the input video
sequence and their main significance lies in setting the ratio between the number of
tracks that survive for a long time and the number of recentlyreconstructed tracks.
Proposed parameter values are mentioned in Table 3.

C.6.3 Structure from Motion with the Rigid Stereo Constraint

There are several ways how to get the camera poses needed for the initialization.
If the cameras are mounted on a vehicle riding at a constant known velocity with
no changes in the direction of the movement during one second, starting camera
poses for the left camera can be computed easily. As we have the pre-calibrated
rigid stereo constraint, starting camera poses for the right camera can be obtained
by a simple transformation.

Another approach does not rely on the pre-calibrated rigid stereo constraint but
computes the starting camera poses together with this constraint. An omnidirec-

30



Parameter name value

max triangulation angle cosine 0.9995
min track length 2 frames
max initialization 3D point reprojection error 6 pixels
max inlier rep. error before refinement 6 pixels
max inlier rep. error after refinement 6 pixels
max distance from epipolar line 6 pixels
max new 3D point reprojection error 6 pixels

Table 3: Parameters affecting the reconstruction of the 3D points.

tional WBS software can be used to get epipolar geometries between the first left
and first right, first left and sixth left, and first right and sixth left cameras. These
geometries can be then combined together to get a consistentrigid stereo constraint
and movement estimation.

Both approaches were tested and both work good. The main advantage of the
first approach lies in the fact that one needs no additional WBS software to start
the reconstruction so it is easier to use it in the final non-experimental setup. That
is why the first approach was used in our experiments.

Our test sequence is 870 frames long and the first and the sixthimage were
used for the initialization with more than 200 correct tracks for each eye recon-
structed into world 3D points. Straight street segments arequite easy, the support
of the RANSAC winner is usually more than 70% and only few tensof runs of the
RANSAC loop are needed to find it. Segments with sharp turns are much more
difficult, the support of the RANSAC winner and also the number of active tracks
drop dramatically. This is caused mostly by imprecise camera and/or stereo rig
calibration because the world 3D points come closer to cameras and start rotating,
which causes the errors in the estimations of their depths tobecome much more
important than when these 3D points are distant and the movement is rotation-free.

C.6.4 Structure from Motion without the Rigid Stereo Constraint

During the adaptation of the original SfM into an omnidirectional one, we first
adapted the geometry and RANSAC without forcing the rigid stereo constraint [6].
Stereo information was used only in the RANSAC loop where theleft camera pose
was estimated from 3D-to-2D matches from both cameras and the right camera
pose was computed from the estimated left camera pose afterwards.

The framework worked fine when using additional GPS/INS databut failed
when these data were not used. The reconstruction fails in the first sharp turn
because the positions of world 3D points are not estimated well as the scale is
being gradually lost.

A comparision with the original framework using perspective cameras was not
performed but the result would be even worse because not onlythe missing rigid
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stereo constraint but also the lack of features caused by a very small field of view
would play a role.

C.6.5 Performance

The original SfM framework is able to work in realtime and it would be exciting
to achieve the same speed even with fisheye cameras. Until now, we were inter-
ested more in functionality than in performance and the actual speed on a standard
2GHz Intel Pentium 4 computer is about 1.3fps. This is primarily caused by the
size of the input images which is 800×800 compared to 360×288 used with per-
spective cameras. Working with smaller images makes it moredifficult to detect
and to correctly describe enough corners and making the images much smaller will
be possible only if a fisheye-oriented extension to feature extraction would be pro-
posed and implemented. This extension would describe the features on a locally
unwarped image. As this unwarping would not be quick enough using the CPU,
GPU programming techniques should be used via OpenGL.

On the other hand, it showed out that 3fps provided by our omnidirectional
cameras are enough for the reconstruction from a moving vehicle because corners
do not get lost from the image as quickly as when perspective cameras are used.
That is why it is not necessary to achieve 25fps computational performance, 3fps
are enough for realtime processing.
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Figure 15: The resulting 3D model from the top view. The trajectory consists of
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[9] B. Mičušı́k and T. Pajdla. Structure from motion with wide circular field of
view cameras.IEEE Trans. PAMI, 28(7):1135–1149, July 2006.

[10] Branislav Micusik and Tomas Pajdla. Structure from motion with wide
circular field of view cameras.IEEE Trans. Pattern Anal. Mach. Intell.,
28(7):1135–1149, 2006.
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