

Insperata accident magis saepe quam quae speres.

(Things you do not expect happen more often than

things you do expect) Plautus (ca 200(B.C.)

Project no: 027787

DIRAC

Detection and Identification of Rare Audio-visual Cues

Integrated Project

IST - Priority 2

DELIVERABLE NO: D5.5

Example/Demo of Hierarchical Multimodal Fusion

Date of deliverable: 30.06.2007

Actual submission date: 09.08.2007

Start date of project: 01.01.2006 Duration: 60 months

Organization name of lead contractor for this deliverable: IDIAP Research Institute

Revision [1]

Project co-funded by the European Commission within the Sixth Framework Program (2002-

2006)

Dissemination Level
PU Public X

PP Restricted to other program participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission

Services)

Insperata accident magis saepe quam quae speres.

(Things you do not expect happen more often than

things you do expect) Plautus (ca 200(B.C.)

D5.5 E X A M P L E / D E M O O F H I E R A R C H I C A L

M U L T I M O D A L F U S I O N

IDIAP Research Institute (IDIAP)

The Hebrew University of Jerusalem (HUJI)

Abstract:

In this work we describe three different applications of hierarchical processing for

audio and visual data. The deliverable is divided into three parts. In part 1 an object

hierarchy for combining models form different category levels is presented. In part 2

relational object models for sub-ordinate class recognition are described. Finally in

part 3 hierarchical combination of acoustic features for large vocabulary continuous

speech recognition is presented.

3

Table of Content

Exploiting Object Hierarchy: Combining Models from Different Category Levels

1. Introduction 4

2. Combining Object Models 5

3. Datasets and General experimental Setup 6

4. Object Hierarchy 7

4.1 Results 8

5. Using Hierarchy to transfer Knowledge 8

5.1 Results 8

5.2 Discussion 9

6 Using Hierarchy to Improve Classification via Combination 9

 6.1 Results 10

7. Summary and Discussion 11

References 11

Subordinate Class recognition Using Relational Object Models

1. Introduction 12

2. Algorithms 14

2.1 Efficient Learning of Object Class Models 14

2.2 Subclass recognition 15

3. Experimental results 16

4. Summary and Discussion 19

References 19

Hierarchical Neural Networks Feature Extraction for LVCSR system

1. Introduction 20

2. NN Based Feature Extraction 20

3. Experiments with Single Net 20

4. Hierarchical Neural Network 21

5. Hierarchical NN with Different Temporal Context Input 21

6. LVCSR Experiments 22

6.1 Meeting System 22

6.2 Arabic BN System 22

7. Conclusion 22

8. Acknowledgement 23

References 23

In Proc. 11th IEEE International Conference on Computer Vision, Rio-de-Janeiro Brazil, October 2007.

Exploiting Object Hierarchy: Combining Models from Different Category Levels

Alon Zweig Daphna Weinshall
School of Computer Science and Engineering
Hebrew university of Jerusalem, Israel 91904

{zweiga, daphna}@cs.huji.ac.il

Abstract

We investigated the computational properties of natural
object hierarchy in the context of constellation object class
models, and its utility for object class recognition. We first
observed an interesting computational property of the ob-
ject hierarchy: comparing the recognition rate when using
models of objects at different levels, the higher more inclu-
sive levels (e.g., Closed-Frame Vehicles or Vehicles) exhibit
higher recall but lower precision when compared with the
class specific level (e.g., bus). These inherent differences
suggest that combining object classifiers from different hi-
erarchical levels into a single classifier may improve clas-
sification, as it appears like these models capture different
aspects of the object. We describe a method to combine
these classifiers, and analyze the conditions under which
improvement can be guaranteed. When given a small sam-
ple of a new object class, we describe a method to transfer
knowledge across the tree hierarchy, between related ob-
jects. Finally, we describe extensive experiments using ob-
ject hierarchies obtained from publicly available datasets,
and show that the combined classifiers significantly improve
recognition results.

1. Introduction
Human cognition relies on a hierarchal representation of

objects in the world (see examples in Fig. 1), in the pro-
cess of recognizing and referring to objects. How can we
use such hierarchical structure to improve object recogni-
tion and categorization? This question has been addressed
in a number of recent papers, mostly pursuing different di-
rections to exploit this hierarchy when confronted with new
categories (the small sample problem). The directions un-
der study included the transfer of knowledge from known
to new categories using Bayesian priors [11], sharing parts
between objects at different levels of the hierarchy and im-
proving generalization [13, 3], learning distance functions
using related classes [6, 9], and transferring features [10, 4]
or structure [5] from known classes to new ones. Often,

Figure 1. The four hierarchies used in our experiments. Categories at
different levels of the tree are labeled (and color-coded) as follows: ’L’
denotes the Leaf level, ’P’ denotes the Parent level, ’G’ denotes the Grand-
parent level, and ’R’ the level of all objects. Our largest hierarchy (lowest
diagram above) contains object classes from the CalTech256 database [8].
The facial hierarchy contains objects from [12].

when working on object class recognition, objects are repre-
sented by parts (or features) learned directly from example
images of each object category, where relations between the
parts (geometrical and possibly other) may sometimes be
captured by graphical models trained using the same data.

We address the question posed above from a somewhat
different point of view. We observe that the natural object
hierarchy offers at our disposal a rich family of classifiers,
for each category in each node of the hierarchy tree; the
similarity between these classifiers varies, possibly in some
relation to the distance between them on the object tree,
but they all share some common characteristics. For exam-
ple, if we build these classifiers with a discriminative algo-
rithm that uses the background images of the CalTech256

1

database [8], then all the classifiers are trained to distin-
guish a certain isolated object from a background of clut-
ter. Such commonalities may permit the combination of
different classifiers to improve the recognition of specific
object classes. We expect this improvement to be more pro-
nounced when using related objects, and in particular ob-
jects from higher (inclusive) levels in the hierarchy tree.

The idea of combining classifiers has been extensively
studied in the machine learning community under different
frameworks, including committee machines, ensemble av-
erage, or boosting. In light of the so-called bias/variance
dilemma [7], the ensemble average of a number of classi-
fiers should improve generalization, as long as the classi-
fiers are both accurate and diverse. One common way to
obtain such a collection of classifiers is to train different
classifiers with different samples of the training data. But
note that the object recognition classifiers, trained to recog-
nize different objects at different levels of the object hier-
archy tree, may be viewed as just such - classifiers trained
on different resamples of the training data. Viewed this way,
we may expect to see improvement when combining any set
of classifiers, even those trained to recognize very distinct
objects. At the same time, for obvious reasons, we expect to
see larger improvement when combining classifiers trained
to recognize similar objects (those closer to each other on
the tree), as compared to very different ones.

Thus the main conceptual contribution of this paper is to
identify the object hierarchy as a source of classifier vari-
ability, which is induced by different and inherently mean-
ingful resampling of the training data. We then go ahead
and describe a framework to combine the classifiers lin-
early, using each classifier’s probabilistic output and the
corresponding LRT (Loglikelihood Ratio Test) value. This
approach is somewhat different, and possibly more power-
ful, than the traditional ensemble of classifiers, since each
object classifier builds a different representation of the data
based on the training subset that it sees. The approach dif-
fers from boosting and bagging in that the data resampling
is not based on some bootstrapping procedure, but on super-
vised information given to the system via the object hierar-
chy tree. Clearly our approach could be augmented with
boosting to further improve results.

The rest of this paper is organized as follows. First, we
review in Section 2 the object class constellation model used
to obtain each object classifier, and describe how we com-
bine these classifiers. We also discuss the theory underlying
our approach. In Section 4 we show that a number of in-
tuitive object hierarchies (described in Section 3), provided
by a human teacher, reveal consistent and sensible computa-
tional characteristics. Specifically, classifiers built for more
specific objects (such as ’bus’) - corresponding to the lowest
level in the object tree, are characterized by high precision
(or high specificity) and low recall (low sensitivity), while

classifiers built for more general classes of objects at the
next levels up the tree (such as ’vehicle’) show the opposite
- low specificity and high sensitivity. In general, the speci-
ficity of object classifiers decreases as we ascend the object
tree. Then, In Section 5, we describe how to use the hier-
archy to transfer knowledge between classes, as a way to
address the small sample problem. Finally, we investigate
in Section 6 combined classifiers as a general framework
for the construction of object recognizers. We show empiri-
cally that combined classifiers improve performance signif-
icantly (over all constituent classifiers), and that typically
three-level combinations perform better still than two-level
combinations.

2. Combining Object Models

Our object class model To learn object models, we use
the method described in [2], because its computational ef-
ficiency allows us to consider models (and images) with
many features. The algorithm learns a generative rela-
tional part-based object model, modeling appearance, lo-
cation and scale. Location and scale are relative to the un-
known object location and scale, as captured by a star-like
Bayesian network. The model’s parameters are discrimina-
tively optimized using an extended boosting process. This
model has been shown to achieve competitive recognition
results on standard benchmark datasets, approaching the
state-of-the-art in object class recognition. Thus we be-
lieve that the results and improvements we show are gen-
eral, and can be replicated with other, conceptually similar,
part-based models.

Based on this model and some simplifying assumptions,
the likelihood ratio test function is approximated (using the
MAP interpretation of the model) by

F (x) = max
C

P∑
k=1

max
u∈Q(x)

log p(u|C, θk)− ν (1)

with P parts, threshold ν, C denoting the object’s location
and scale, and Q(x) the set of extracted image features.

Classifier combination rule In our experiments we com-
bined 2, 3 and 4 object classifiers. For each classifier,
we used its LRT value from (1), obtaining a 2-, 3- or 4-
dimensional vector respectively. We then trained a Support
Vector Machine classifier with the same training data repre-
sented in this new vector space, using a linear kernel.

The bias/variance dilemma Let x ∈ X denote the im-
age, F (x) the LRT output of the classifier from (1), and
D(x) denote the binary random variable assigning 1 to class
images, and -1 to background images. It can be readily

shown that the mean-square error between classifier F and
the desired output D can be decomposed as follows:

E[(F (x)− E[D(x)])2] = B(F (x)) + V (F (x))
B(F (x)) = (E[F (x)]− E[D(x)])2

V (F (x)) = E[(F (x)− E[F (x)])2]

where B(F (x)) denotes the classifier’s bias, and V (F (x))
its variance. It can also be shown that when considering
an ensemble average of such classifiers, the bias of the new
classifier remains the same as the bias of F (x), but its vari-
ance is reduced. As a result, the mean square error of the
new classifier is also reduced.

The sensitivity/specificity tradeoff We now analyze the
case of two classifier combination, where one classifier has
high sensitivity and low specificity and the other has low
sensitivity and high specificity. Recall that this is the com-
putational property that distinguishes object classifiers from
lower levels of the object hierarchy tree and classifiers from
higher levels of the tree (see Section 4), and thus this anal-
ysis is revealing.

Given the function F (x) from (1), define the classifier
F ∗(x) = sign(F (x))1. Let F1(x), F2(x) denote two clas-
sification functions, and G(x) = F1(x)+F2(x)

2 its ensemble
average. Let G∗(x) = sign(G(x)) denote the correspond-
ing classifier, and let G∗∗(x) = F∗

1 (x)+F∗
2 (x)

2 denote an-
other related classifier.

We compute the error probability PE of classifier G∗(x):

4PE(G∗(x)) = E[(G∗(x)−D(x))2] (2)
= E[((G∗(x)−G∗∗(x)) + (G∗∗(x)−D(x)))2]
= E[(G∗ −G∗∗)2] + E[(1

2 (F
∗
1 −D))2]

+E[(1
2 (F

∗
2 −D))2] + 2E[(1

2 (F
∗
1 −D))(1

2 (F
∗
2 −D))]

+2E[(G∗ −G∗∗)]{E[1
2 (F

∗
1 −D)] + E[1

2 (F
∗
2 −D)]}

Note that

E[(1
2 (F

∗
i (x)−D(x)))2] = PE(F ∗

i)

and

E[1
2 (F

∗
i (x)−D(x))] = P [F ∗

i (x) = 1, D(x) = −1]
−P [F ∗

i (x) = −1, D(x) = 1] = ∆S(F ∗
i)

where ∆S(F ∗
i) denotes the classifier’s preference to either

recall (sensitivity) or precision (a measure typically simi-
lar to specificity)2, i.e., its sensitivity minus its specificity.

1For convenience, we define the sign function as sign(F) = 1 if F ≥
0, and sign(F) = −1 if F < 0.

2Notation reminder: recall and sensitivity denote the rate of true pos-
itives, specificity denotes the rate of true negatives, and precision denotes
the fraction of true positives among all examples identified as positive.

Henceforth we shall call ∆S(F ∗
i) the ’recall/precision pri-

macy’. Finally,

E[(G∗ −G∗∗)2] = P (F∗
1 =1,F∗

2 =−1) + P (F∗
1 =−1,F∗

2 =1)
≤ PE(F ∗

1) + PE(F ∗
2)

(with equality only when F ∗
1 , F ∗

2 err on disjoint sets of ex-
amples).

Putting all the above together, we get

4PE(G∗) ≤2PE(F ∗
1) + 2PE(F ∗

2) + 2∆S(F ∗
1)∆S(F ∗

2)]
+2E[(G∗ −G∗∗)](∆S(F ∗

1) + ∆S(F ∗
2))

−2ρ(1
2 (F

∗
1 −D), 1

2 (F
∗
2 −D)) (3)

where ρ(X, Y) = E[XY] − E[X]E[Y] denotes the non-
normalized correlation coefficient of X, Y .

We can now state our main result:

Result: Assume that F ∗
1 , F ∗

2 are two classifiers with op-
posite recall/precision primacy, i.e. and w.l.o.g., ∆S(F ∗

1) ≥
0 and ∆S(F ∗

2) ≤ 0; thus ∆S(F ∗
1) · ∆S(F ∗

2) ≤ 0. As-
sume further that the magnitude of their primacy is similar,
i.e., |∆S(F ∗

1)| ≈ |∆S(F ∗
2)|, and that their correlation with

respect to the data is small, i.e., |ρ(1
2 (F ∗

1 − D), (1
2 (F ∗

2 −
D)))| < |E[1

2 (F ∗
1 − D)]E[1

2 (F ∗
2 − D)]|. Then it follows

from (3) that

PE(G∗) ≤ PE(F ∗
1) + PE(F ∗

2)
2

In other words, the error probability of the combined classi-
fier is smaller (usually significantly so) than the mean error
probability of the constituent classifiers.

In practice, we see that the combined error is typically
smaller than the minimal error of the constituent classifiers
with opposite recall/precision primacy, see Section 6.

3. Datasets and General Experimental Setup
Datasets

In our experiments, we used an extensive data set con-
taining various objects that can be found in natural scenes.
As much as possible, classes were taken from standard
benchmark datasets, with a few exceptions (to be detailed
shortly). We organized these objects into four natural hier-
archies. Examples from the object classes and background
images can be viewed in Fig. 2. A summary of the hierar-
chies is provided in Fig. 1.

In the rest of this paper we use the following notation to
refer to object classes at different levels in the hierarchy (see
Fig. 1): specific object classes, like ’Elk’ and ’Tricycle’, are
labeled ’L’ (for Leaf). More inclusive categories, like ’Ter-
restrial Animals’, are labeled ’P’ (for Parent). Categories at

Bus Tricycle Camel Grand Classic
Paino Guitar

D-Room Coffee KA Clutter Object
Chair Table Background Background

Figure 2. Examples taken from the object classes and background images,
used to train and test our different Category level models, see Fig. 1.

the next level up, like ’Animals’, are labeled ’G’ (for Grand-
parent). Finally, the category of all objects is denoted ’R’
(for Root).

For the discriminative learning procedure (see Section 2)
and in order to evaluate the recognition results, we used two
types of background. When using classes from the Cal-
Tech256 dataset [8] (the lowest hierarchy in Fig. 1), we used
their Clutter Background images as well. With the remain-
ing 3 smaller hierarchies and to achieve greater variability
(and additional challenges) in the conditions of our exper-
iments, we used our own Object Background dataset, con-
taining various images of objects different from the learnt
objects. This background was manually collected using
Google, PicSearch and online catalogues.

CalTech256 Object Hierarchy This hierarchy includes
pictures of various objects from the CalTech256 dataset [8],
see Fig. 1. We chose objects that can be naturally organized
into a sensible hierarchy: ’Animals’ - including ’Terres-
trial Animals’ and ’Winged Animals’, and ’Ground Trans-
portation’ - including ’Open-Frame Vehicles’ and ’Closed-
Frame Vehicles’. Models were learnt for objects from the
’Terrestrial Animals’ and ’Open-Frame Vehicles’ classes;
other objects were used for training ’G’ and ’R’ level mod-
els. The CalTech256 Clutter Background was used with
this dataset. We note that our category affiliations may not
be identical to those used in [8], in an attempt to empha-
size visual similarities over functional (thus ignoring, for
example, the motorized vs. un-motorized distinction); we
also used different names for the inclusive categories. The
images in the Ground-Transportation Category were flipped
to achieve uniform orientation (all vehicles pointing right-
wards).

Closed-frame VehicleII Hierarchy This hierarchy con-
tains 5 classes of common vehicles (more so than those in
the CalTech256 database), contrasted with pictures from the
’Object Background’. Pictures (for the vehicle classes and
background) were chosen manually from Google and Pic-
Search, showing vehicles at similar canonical orientation.

Faces Hierarchy This hierarchy contains pictures of 5 in-
dividuals taken from [12], with varying facial expressions.

Basic-Level Hierarchy This hierarchy was built to match
standard hierarchies favored in the cognitive science liter-
ature, representing canonical categorization levels (basic-
level, sub-ordinate, and super-ordinate). Pictures were ob-
tained from the CalTech101 subset of [8], or collected using
mainly online shopping catalogues.

General experimental setup

In general, we always tested recognition performance for
specific object categories from level ’L’ (leaf) of all the re-
spective hierarchies. Thus, for example, when comparing
three models such as ’Llama’, ’Animal’, and ’Terrestrial
Animal’, they were all tested on the recognition of Llama
pictures.

For each hierarchy, all models were trained with the
same background images but different object images. All
tests were done with the same background and test images,
and the same algorithm parameters. Each experiment was
repeated 60-100 times, with new random samples of train
and test images. Since the Equal Error Rate (denoted EER)
of the ROC is not well suited when the number of posi-
tive examples is much smaller than the number of negative
examples [1], we used the preferred EER of the Recall Pre-
cision Curve (RPC).

To compare performance, we report two measures: (i)
Precision and Recall of each classifier; (ii) EER of the RPC
curve for each classifier, computed by varying the threshold
of the optimal linear SVM classifier.

4. Object Hierarchy
We study the computational properties distinguishing

objects from different levels in the object hierarchy tree, re-
vealing opposite recall/precision primacy - high precision
for the lowest level (specific) models, and high recall for
higher level (inclusive) models. With sufficiently large sam-
ples per object, and given that we always test the recognition
of object classes from level ’L’, not surprisingly object mod-
els from level ’L’ show superior recognition performance.
In accordance, we see a decrease in performance as we use
models ascending the object hierarchy tree.

Experimental setup We tested the recognition of each
specific object from level ’L’ by 5 types of models learnt
using object categories from different levels in the hierar-
chy tree, see Table 1. To assure fair comparison, all models
saw the same train images of the ’L’ object they were tested
on; an illustrative example of this procedure is shown in
Table 1. In different experiments we varied the number of
train images per ’L’ object: 5, 10, 15, 20, 25 and 30. Three

hierarchies were used: CalTech256 Object, Closed-frame
VehicleII, and Faces.

Exp Category training set Example:
L P G R DB Llama

1 1 Llama
2 5 Llama, Camel, Dog, Elk

Elephant
3 5 Llama, Duck, Owl

Swan, Ostrich
4 5 Llama, Soda-can, Sock

Segway, Motorbike
5 5 Llama, Segway, Tricycle

Motorbike, Mountainbike

Table 1. This table shows the 5 different models learnt and evaluated on
the recognition of ’L’ level objects. ’DB’ refers to a ’G’-level category
from a Different Branch of the tree. Examples are shown for the Llama as
’L’ level object. In each different experiment, each ’L’ class provided the
same fixed amount of pictures to the training set (5, 10, 15, 20, 25 or 30.)

With all the 3 hierarchies, we used test data composed
of images of the target object and images of the relevant
background in equal proportion. None of the test images
was used for training. With the CalTech256 Object Hier-
archy, where the models are learnt using the Clutter Back-
ground, we also conducted additional experiments, using
for test data images from the target ’L’ object mixed with
images of a different ’L’ object.

4.1. Results

Recall and Precision are shown in Fig. 3, comparing
recognition when using ’L’ and ’P’ level models (left), and
’L’ and ’G’ level models (right). In the first comparison
(Leaf vs. Parent), only 4 representative examples from the
3 hierarchies are shown; very similar results were obtained
with all other objects. In the second comparison (Leaf
vs. Grandparent), all objects from the CalTech256 Object
Hierarchy are shown. These graphs clearly show the Re-
call/Precision Primacy effect, where ’L’ models show high
precision and low recall in recognition, while ’P’ and ’G’
models show high recall and low precision. This happens
for all objects, regardless of the number of training exam-
ples.

The Recall Precision Curve and its corresponding EER
are shown in Fig. 4 for two representative examples. Not
surprisingly, we see that with sufficient training examples
per ’L’ object (as for the Dog class), the ’L’ model performs
best, and performance deteriorates as we ascend the object
hierarchy. As the sample per class decreases, the advantage
of the ’L’ model over the ’P’ model decreases, eventually
the ’P’ model might outperform the ’L’ model. Once again,
similar phenomenon is observed for all objects.

Looking more closely at these results, we see that the

Figure 3. Recall and Precision of classifiers. Left column: four represen-
tative object classes, recognized with the ’L’, ’P’ and the combined ’L+P’
models. ’SU’ refers to the SUV class, ’Mr’ - Motorbike, ’Ep’ - Elephant,
’KA’- one of the female faces. The numbers indicate the size of the train
set (e.g., ’SU5’ refers to the SUV model trained with 5 SUV examples).
Right column: all learnt object classes from the CalTech256 Object Hier-
archy trained with 30 images per object class, and recognized with the ’L’,
’G’ and the combined ’L+G’ models.

recall/precision primacy difference occurs regardless of the
overall recognition rate. Specifically, for the Elephant with
10 training examples, we see from Fig. 4 that the ’P’ model
performs better than the ’L’ model, and vice versa for the
Elephant with 30 training examples. Still, Fig. 3 shows the
same Recall/Precision primacy in both cases.

5. Using hierarchy to transfer knowledge
We study here how to transfer information between re-

lated objects, located nearby in the object hierarchy tree, to
handle the problem of small sample or the appearance of
new objects.

Experimental setup We tested the recognition of each
specific object from level ’L’ by 7 types of models learnt
using object categories from different (more inclusive) lev-
els in the hierarchy tree, see Table 2, which also shows an
illustrative example of this procedure. The test background
set consisted of 75 background images, while the test object
set consisted of 30 images. Only the Basic-Level Hierarchy
was used.

5.1. Results

Fig. 5 shows the results. Clearly the ’P’ class model
transfers information most effectively (seen in the superi-

Figure 4. Performance of the different category level models. Top & mid-
dle: left column - the EER of the RPC, right column - full RPC curve where
the point of the original classifier is highlighted . Once again, ’L’ denotes
the Leaf category, ’P’ - Parent, ’G’ - GrandParent, ’R’ - Root, and ’DB’
- Different Branch. Top: performance of all models tested on the ’Dog’
class from the Caltech256 hierarchy. Middle: same for the ’Mountain-
Bike’ class from the Caltech256 hierarchy. Bottom: performance of the
’L’ and ’P models on the ’SUV’ class from the ’Closed-Frame VehiclesII’
hierarchy and on the Elephant class from the ’Terrestrial Animals’. EER
scores are shown as a function of the size of the training set - increasing
from 5 up to 25 for the SUV, sizes 10 and 30 for the Elephant. Note the
decrease in the performance superiority of the SUV ’P’ model over the ’L’
model till it is insignificant, as the train size increases. Note the opposite
superiority of ’L’ vs. ’P’ models when comparing the two Elephant class
models.

ority of Exp. 3 over Exp. 5-7), and improves performance
over the small sample case (seen in the superiority of Exp. 4
over Exp. 2).

5.2. Discussion

The results above show a clear hierarchy structure, where
models which are learnt from nearby objects (brothers)
in the object hierarchy tree can substantially improve the
recognition results of each other. It shows the possibility for
the success of a learning-to-learn scheme - where fewer ex-
amples of the goal object class are used in the learning pro-
cess, augmented by examples from different related classes.

Ex Object training set Example:
L P G DB BG Classic Guitar

1 35 Classic Guitar
2 1 Classic Guitar
3 30 Electric Guitar
4 1 30 Classic, Electric Guitar
5 30 Grand Piano
6 30 Living Room Chair
7 30 Background

Table 2. The models learnt in the different experiments on the transfer of
information between classes. ’L’ refers to the Leaf level, ’P’ to the Parent,
’G’ to the Grandparent, ’DB’ to a Different Branch of the tree, and ’BG’
to the background.

Figure 5. Transfer of knowledge between related classes. Description of
the different experiments is given in Table 2.

6. Using hierarchy to improve classification via
combination

We now ask whether the combination of two or more ob-
ject model classifiers, which are based on different category
levels, can improve the performance of the original classi-
fiers.

Experimental setup We used the same setup, same data,
and same learnt models as used in Section 4. We tested
different combinations by combining two or more models
from different category levels as described in Section 2. The
different combinations that we studied are summarized in
Table 3.

For comparison, we used a naı̈ve alternative method,
which learned directly an object model using the same set
of images as used by the combined model. Each image in
this set was initially weighted to reflect its true weight on
the combined model. For example, when combining two
models such as ’Llama’ and ’Terrestrial Animals’, we note
that the Llama images provided all the training set for the
Llama model, and only 20% of the training set for the ’Ter-

Exp Example:
Llama as Leaf Level

L+P ’Llama’ + ’Terrestrial Animals’
L+G ’Llama’ + ’Animals’
L+R ’Llama’ + ’Tree Root’
L+DB ’Llama’ + ’Open-Frame Vehicles’
P+G ’Terrestrial Animals’ + ’Animals’
L+P+G ’Llama’ + ’Terrestrial Animals’ + ’Animals’
L+P+G+R ’Llama’ + ’Terrestrial Animals’ + ’Animals’

+ ’Tree Root’

Table 3. The different combinations we studied: ’+’ denotes a combina-
tion of two models. ’L’ refers to the Leaf level, ’P’ - Parent, ’G’ - Grand-
parent, ’R’ - Root, and ’DB’ - Different Branch.

Figure 6. Comparison of combined and original classifiers. ’L’ denotes a
leaf model, ’P’ - parent model, ’G’ - grandparent model, ’L+P’ leaf/parent
combined model and ’L+G’ leaf/grandparent combined model. Top: ob-
ject models recognized with the ’L’, ’P’ and the combined ’L+P’ mod-
els. Bottom: object models recognized with the ’L’, ’G’ and the combined
’L+G’ models. Top-Left: CalTech256 Object Hierarchy, ’Open-frame Ve-
hicle’ and ’Terrestrial Animal’, with 30 training images per object class.
Specifically, ’Mr’ denotes the Motorbike class, ’Mn’ - Mountain-Bike ,
’Sg’ - Segway, ’To’ - Touring-Bike, ’Tri’ - Tricycle, ’Ca’ - Camel, ’Do’ -
Dog, ’Ep’ - Elephant, ’Ek’ - Elk, ’Lm’ - Llama. Top-Right: ’Closed-Frame
VehicleII’ Hierarchy with 15 training images per object class, and ’Faces’
Hierarchy with 5 training images per object class. Bottom: CalTech256
Object Hierarchies, with 30 training images per object class

restrial Animals’ model; thus in the training of the com-
bined model, the Llama training set received total weight of
0.6, while the remaining 4 classes received total weight of
0.4. The background train set remained unchanged.

6.1. Results

Fig. 6 shows the EER recognition results for all 20 ob-
jects, from the ’P’ classes of ’Terrestrial Animals’, ’Open-

Figure 7. All different combinations of classifiers. Left: the EER of the
RPC. Right: full RPC (Recall Precision Curves). Top: results when recog-
nizing the ’Dogs’ class. Bottom: results with the ’Mountain Bike’ class.

Frame Vehicles’, ’Closed-Frame VehiclesII’, and ’Faces’.
We show recognition results with 3 models - ’L’, ’P’, and
the combined ’L+P’, fixing the number of training examples
to 30, 30, 15, and 5 for each object in the 4 ’P’ classes re-
spectively. We also show recognition results with 3 models
- ’L’, ’G’, and the combined ’L+P’, with 30 training exam-
ples and two classes of the CalTech256 Object Hierarchy.

Clearly, almost always, the combined model performed
better than both constituent models. This happened for all
objects and all training conditions, regardless of which of
the constituent models was initially superior. The only ex-
ception occurred in the experiments with only 5 training
images per object class (small sample). Moreover, in all ex-
periments the combined model improved significantly the
weak measure (either Recall or Precision) of each of the
constituent models, as demonstrated in Fig. 3.

Fig. 7 shows results with the 7 different classifier combi-
nations, listed in Table 3, for two object classes. These are
representative results - similar results were obtained with all
other classes. Note that the two-level combinations that ob-
tain the highest performance are either the ’L+P’ or ’L+G’.
Not surprisingly, therefore, the best results are obtained
with the three- and four-level combinations (’L+P+G’ and
’L+P+G+R’ respectively).

Fig. 8 shows the EER of the RPC in the second test
condition, when test examples included an equal number
of images from the target object and another unrelated dis-
tractor object (instead of the standard background images).
Not surprisingly, when the ’L’ model was combined with
a model whose training set included pictures of the dis-
tractor object, the performance of the combined model was
reduced. However, interestingly enough, this reduction is
rather slight (see Fig. 8). This decrease remains slight even
when the ’L’ model is combined with a very poor classifier
(under these conditions), like the ’R’ or ’DB’ ones. Thus

Figure 8. The EER of the RPC when the test examples included images
of the target object - the ’Mountain Bikes’ - and another object (instead
of the standard background images). Top: models tested against ’Camel’.
Bottom: models tested against ’Tricycle’.

these results seem to suggest that the improvement obtained
by the combined classifier against the standard background
is not accomplished at the high cost of reducing the discrim-
inability of the new classifier against other, possibly related,
objects.

Finally, we note that in most cases, the comparison
against the naı̈ve model showed superior results for the
combined model, while in the other cases the advantage of
the naı̈ve model was not significant. On the other hand, the
training time of the naı̈ve model was substantially longer.
Moreover, this training procedure is not modular, while the
combination scheme we described is rather flexible.

7. Summary and Discussion

We analyzed the computational properties of constella-
tion object class models, built to describe object categories
at different levels of the object hierarchy tree. An interesting
observation emerged, when comparing specific object mod-
els, trained using images of objects corresponding to the
leaves of the hierarchy tree, with models built to describe
categories at higher levels of the object hierarchy tree. The
first (specific) models exhibit higher precision, while the
second (inclusive) models exhibit higher recall. We pro-
vided the theoretical analysis showing why this situation
should be favorable for the success of a classifier combined
from two such constituents (one with higher precision, the
other with higher recall), and demonstrated experimentally

that significant improvement is indeed achieved in all cases.
In our experiments the combined model performed better
than all constituents models in almost all cases. The im-
provement magnitude was larger when the constituent clas-
sifiers corresponded to nearby objects in the hierarchy tree,
showing that this improvement is not due simply to the
larger training set.

In all our experiments, we used a specific part-based
model that can be learned rather efficiently, and can there-
fore handle a relatively large number of parts (or features).
Although we did not perform experiments to this effect, we
believe that this improvement can be obtained with any ob-
ject class model, and that the phenomena we have observed
do not depend on the specific model we used.

References
[1] S. Agarwal and D. Roth. Learning a sparse representation

for object detection. In Proc. ECCV, 2002. 4
[2] A. Bar-Hillel, T. Hertz, and D. Weinshall. Efficient learning

of relational object class models. Proc. ICCV, 2005. 2
[3] A. Bar-Hillel and D. Weinshall. Subordinate class recogni-

tion using relational object models. Proc. NIPS, 19, 2006.
1

[4] E. Bart and S. Ullman. Cross-generalization: learning novel
classes from a single example by feature replacement. Proc.
CVPR, pages 672–679, 2005. 1

[5] A. Ferencz, E. Learned-Miller, and J. Malik. Building a clas-
sification cascade for visual identification from one example.
Proc. ICCV, pages 286–293, 2005. 1

[6] M. Fink. Object classification from a single example utiliz-
ing class relevance metrics. Proc. NIPS, 17, 2004. 1

[7] S. Geman, E. Bienenstock, and R. Doursat. Neural networks
and the bias/variance dilemma. Neural Comput., 4(1):1–58,
1992. 2

[8] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cate-
gory dataset. Technical Report UCB/CSD-04-1366, Califor-
nia Institute of Technology, 2007. 1, 2, 4

[9] T. Hertz, A. Bar-Hillel, and D. Weinshall. Learning distance
functions for image retrieval. Proc. CVPR, 2, 2004. 1

[10] K. Levi, M. Fink, and Y. Weiss. Learning From a Small
Number of Training Examples by Exploiting Object Cate-
gories. LCVPR04 workshop on Learning in Computer Vi-
sion, 2004. 1

[11] F. Li, R. Fergus, and P. Perona. One-shot learning of object
categories. IEEE PAMI, 28(4):594–611, 2006. 1

[12] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Cod-
ing facial expressions with gabor wavelets. Proc. ICAFGR,
pages 200–205, 1998. 1, 4

[13] E. Sudderth, A. Torralba, W. Freeman, and A. Willsky.
Learning hierarchical models of scenes, objects, and parts.
Proc. ICCV, 2005. 1

Subordinate class recognition using relational object
models∗

Aharon Bar Hillel
Department of Computer Science

The Hebrew university of Jerusalem
aharonbh@cs.huji.ac.il

Daphna Weinshall
Department of Computer Science

The Hebrew university of Jerusalem
daphna@cs.huji.ac.il

Abstract

We address the problem of sub-ordinate class recognition, like the distinction be-
tween different types of motorcycles. Our approach is motivated by observations
from cognitive psychology, which identify parts as the defining component of
basic level categories (like motorcycles), while sub-ordinate categories are more
often defined by part properties (like ’jagged wheels’). Accordingly, we suggest
a two-stage algorithm: First, a relational part based object model is learnt using
unsegmented object images from the inclusive class (e.g., motorcycles in general).
The model is then used to build a class-specific vector representation for images,
where each entry corresponds to a model’s part. In the second stage we train a
standard discriminative classifier to classify subclass instances (e.g., cross motor-
cycles) based on the class-specific vector representation. We describe extensive
experimental results with several subclasses. The proposed algorithm typically
gives better results than a competing one-step algorithm, or a two stage algorithm
where classification is based on a model of the sub-ordinate class.

1 Introduction

Human categorization is fundamentally hierarchical, where categories are organized in tree-like
hierarchies. In this organization, higher nodes close to the root describe inclusive classes (like
vehicles), intermediate nodes describe more specific categories (like motorcycles), and lower nodes
close to the leaves capture fine distinctions between objects (e.g., cross vs. sport motorcycles).
Intuitively one could expect such hierarchy to be learnt either bottom-up or top-down (or both), but
surprisingly, this is not the case. In fact, there is a well defined intermediate level in the hierarchy,
called basic level, which is learnt first [11]. In addition to learning, this level is more primary than
both more specific and more inclusive levels, in terms of many other psychological, anthropological
and linguistic measures.

The primary role of basic level categories seems related to the structure of objects in the world. In
[13], Tversky & Hemenway promote the hypothesis that the explanation lies in the notion of parts.
Their experiments show that basic level categories (like cars and flowers) are often described as a
combination of distinctive parts (e.g., stem and petals), which are mostly unique. Higher (super-
ordinate and more inclusive) levels are more often described by their function (e.g., ’used for trans-
portation’), while lower (sub-ordinate and more specific) levels are often described by part properties
(e.g., red petals) and other fine details. These points are illustrated in Fig. 1.

This computational characterization of human categorization finds parallels in computer vision and
machine learning. Specifically, traditional work in pattern recognition focused on discriminating
vectors of features, where the features are shared by all objects, with different values. If we make the
analogy between features and parts, this level of analysis is appropriate for sub-ordinate categories.

∗Appeared in Advances in Neural Information Processing Systems (NIPS), MIT Press, Dec 2006.

Figure 1: Left Examples of sub-ordinate and basic level classification. Top row: Two motorcycle subordinate
classes, sport (right) and cross (left). As members of the same basic level category, they share the same part
structure. Bottom row: Objects from different basic level categories, like a chair and a face, lack such natural
part correspondence. Right. Several parts from a learnt motorcycle model as detected in cross and sport
motorcycle images. Based on the part correspondence we can build ordered vectors of part descriptions, and
conduct the classification in this shared feature space. (Better seen in color)

In this level different objects share parts but differ in the parts’ values (e.g., red petals vs. yellow
petals); this is called ’modified parts’ in [13].

This discrimination paradigm cannot easily generalize to the classification of basic level objects,
mostly because these objects do not share common informative parts, and therefore cannot be ef-
ficiently compared using an ordered vector of fixed parts. This problem is partially addressed in a
more recent line of work (e.g., [5, 6, 2, 7, 9]), where part-based generative models of objects are
learned directly from images. In this paradigm objects are modeled as a set of parts with spatial
relations between them. The models are learnt and applied to images, which are represented as un-
ordered feature sets (usually image patches). Learning algorithms developed within this paradigm
are typically more complex and less efficient than traditional classifiers learnt in some fixed vector
space. However, given the characteristics of human categorization discussed above, this seems to be
the correct paradigm to address the classification of basic level categories.

These considerations suggest that sub-ordinate classification should be solved using a two stage
method: First we should learn a generative model for the basic category. Using such a model, the
object parts should be identified in each image, and their descriptions can be concatenated into an
ordered vector. In a second stage, the distinction between subordinate classes can be done by apply-
ing standard machine learning tools, like SVM, to the resulting ordered vectors. In this framework,
the model learnt in stage 1 is used to solve the correspondence problem: features in the same entry
in two different image vectors correspond since they implement the same part. Using this relatively
high level representation, the distinction between subordinate categories may be expected to get
easier.

Similar notions, of constructing discriminative classifiers on top of generative models, have been
recently proposed in the context of object localization [10] and class recognition [7]. The main
motivation in these papers was to provide discriminative power to a generative model, optimized
by maximum likelihood. Thus the discriminative classifier for a class in [7, 10] uses a generative
model of the same class as a representation scheme.1 In contrast, in this work we use a recent
learning algorithm, which already learns a generative relational model of basic categories using a
discriminative boosting technique [2]. The new element in our approach is in the learning of a model
of one class (the more general basic level category) to allow the efficient discrimination of another
class (the more specific sub-ordinates).

Thus our main contribution lies the use of objcet hierarchy, where we represent sub-ordinate classes
using models of the more general, basic level class. The approach relies on a specific form of
knowledge transfer between classes, and as such it is an instance of the ’learning-to-learn’ paradigm.
There are several potential benefits to this approach. First and most important is improved accuracy,
especially when training data is scarce. For an under-sampled sub-ordinate class, the basic level
model can be learnt from a larger sample, leading to a more stable representation for the second stage

1An exception to this rule is the Caltech 101 experiment of [7], but there the discriminative classifiers for
all 101 classes relies on the same two arbitrary class models.

SVM and lower error rate. A second advantage becomes apparent when scalability is considered: A
system which needs to discriminate between many subordinate classes will have to learn and keep
considerably less models (only one for each basic level class) if built according to our proposed
approach. Such a system can better cope with new subordinate classes, since learning to identify a
new class may rely on existing basic class models.

Typically the learning of generative models from unsegmented images is exponential in the number
of parts and features [5, 6]. This significantly limits the richness of the generative model, to a point
where it may not contain enough detail to distinguish between subclass instances. Alternatively,
rich models can be learnt from images with part segmentations [4, 9], but obtaining such training
data requires a lot of human labor. The algorithm we use in this work, presented in [2], learns from
unsegmented images, and its complexity is linear in the number of model parts and image features.
We can hence learn models with many parts, providing a rich object description. In section 3 we
discuss the importance of this property.

We briefly describe the model learning algorithm in Section 2.1. The details of the two-stage method
are then described in Section 2.2. In Section 3 we describe experiments with sub-classes from six
basic level categories. We compare our proposed approach, called BLP (Basic Level Primacy), to
a one-stage approach. We also compare to another two-stage approach, called SLP (Subordinate
Level Primacy), in which discrimination is done based on a model of the subordinate class. In most
cases, the results support our claim and demonstrate the superiority of the BLP method.

2 Algorithms

To learn class models, we use an efficient learning method briefly reviewed in Section 2.1. Sec-
tion 2.2 describes the techniques we use for subclass recognition.

2.1 Efficient learning of object class models

The learning method from [2] learns a generative relational object model, but the model parameters
are discriminatively optimized using an extended boosting process. The class model is learnt from
a set of object images and a set of background images. Image I is represented using an unordered
feature set F (I) with Nf features extracted by the Kadir & Brady feature detector [8]. The feature
set usually contains several hundred features in various scales, with considerable overlap. Features
are normalized to uniform size, zero mean and unit variance. They are then represented using their
first 15 DCT coefficients, augmented by the image location of the feature and its scale.

The object model is a generative part-based model with P parts (see example in Fig. 2b), where
each part is implemented by a single image feature. For each part, its appearance, location and scale
are modeled. The appearance of parts is assumed to be independent, while their location and scale
are relative to the unknown object location and scale. This dependence is captured by a Bayesian
network model, shown in Fig. 2a. It is a star-like model, where the center node is a 3-dimensional
hidden node C = (~Cl, Cs), with the vector ~Cl denoting the unknown object location and the scalar
Cs denoting its unknown scale. All the components of the part model, including appearance, relative
location and relative log-scale, are modeled using Gaussian distributions with a (scaled) identity
covariance matrix.

Based on this model and some simplifying assumptions, the likelihood ratio test classifier is approx-
imated by

f(I) = max
C

P∑

k=1

max
x∈F (I)

log p(x|C, θk) − ν (1)

This classifier compares the first term, which represents the approximated image likelihood, to a
threshold ν. The likelihood term approximates the image likelihood using the MAP interpretation
of the model in the image, i.e., it is determined by the single best implementation of model parts
by image features. This MAP solution can be efficiently found using standard message passing in
time linear in the number of parts P and the number of image features Nf . However, Maximum
Likelihood (ML) parameter optimization cannot be used, since the approximation permits part rep-

−100 −50 0 50

−150

−100

−50

0

50

100

Figure 2: Left A Bayesian network specifying the dependencies between the hidden variables Cl, Cs and the
parts scale and location Xk

l , Xk
s for k = 1, .., P . The part appearance variables Xk

a are independent, and so
they do not appear in this network. Middle The spatial relations between 5 parts from a learnt chair model.
The cyan cross indicates the position of the hidden object center cl. Right The implementations of the 5 parts
in a chair image. (Better seen in color)

etition, and as a result the ML solution is vulnerable to repetitive choices of the same part. Instead,
the model is optimized to minimize a discriminative loss function.

Specifically, labeling object images by +1 and background images by −1, the learning algorithm
tries to minimize the exp loss of the margin, L(f) =

∑N

i=1 exp(−yif(Ii)), which is the loss min-
imized by the Adaboost algorithm [12]. The optimization is done using an extended ’relational’
boosting scheme, which generalizes the boosting technique to classifiers of the form (1).

In the relational boosting algorithm, the weak hypotheses (summands in Eq. (1)) are not merely
functions of the image I , but depend also on the hidden variable C, which captures the unknown
location and scale of the object. In order to find good part hypotheses, the weak learner is given
the best current estimate of C, and uses it to guide the search for a discriminative part hypothesis.
After the new part hypothesis is added to the model, C is re-inferred and the new estimate is used
in the next boosting round. Additional tweaks are added to improve class recognition results, in-
cluding a gradient descent weak learner and a feedback loop between the optimization of the a weak
hypothesis and its weight.

2.2 Subclass recognition

As stated in the introduction, we approach subclass recognition using a two-stage algorithm. In the
first stage a model of the basic level class is applied to the image, and descriptors of the identified
parts are concatenated into an ordered vector. In the second stage the subclass label is determined
by feeding this vector into a classifier trained to identify the subclass. We next present the imple-
mentation details of these two stages.

Class model learning Subclass recognition in the proposed framework depends on part consis-
tency across images, and it is more sensitive to part identification failures than the original class
recognition task. Producing an informative feature vector is only possible using a rich model with
many stable parts. We therefore use a large number of features (Nf = 400) per image, and a rel-
atively fine grid of C values, with 10 × 10 locations over the entire image and 3 scales (a total of
Nc = 300 possible values for the hidden variable C). We also learn large models with P = 60
parts.2 Note that such large values for Nf and P are not possible in a purely generative framework
such as [5, 6] due to the prohibitive computational learning complexity of O(N P

f).

In [2], model parts are learnt using a gradient based weak learner, which tends to produce exag-
gerated part location models to enhance its discriminative power. In such cases parts are modeled
as being unrealistically far from the object center. Here we restrict the dynamics of the location
model in order to produce more realistic and stable parts. In addition, we found out experimen-
tally that when the data contains object images with rich backgrounds, performance of subclass
recognition and localization is improved when using models with increased relative location weight.
Specifically, a part hypothesis in the model includes appearance, location and scale components with
relative weights λi/(λ1 +λ2 +λ3), i = 1, 2, 3, learnt automatically by the algorithm. We multiply

2In comparison, class recognition in [2] was done with Nf = 200, Nc = 108 and P = 50.

λ2 of all the parts in the learnt model by a constant factor of 10 when learning from images with
rich background. Probabilistically, such increase of λ2 amounts to smaller location covariance, and
hence to stricter demands on the accuracy of the relative locations of parts.

Subclass discrimination Given a learnt object model and a new image, we match for each model
part the corresponding image feature which implements it in the MAP solution. We then build
the feature vector, which represents the new image, by concatenating all the feature descriptors
implementing parts 1, ..P . Each feature is described using a 21-dimensional descriptor including:

• The 15 DCT coefficients describing the feature.

• The relative (x,y) location and log-scale of the feature (relative to the computed MAP value
of C).

• A normalized mean of the feature (m − m̂)/std(m) where m is the feature’s mean (over
feature pixels), and m̂, std(m) are the empirical mean and std of m over the P parts in the
image.

• A normalized logarithm of feature variance (v − v̂)/std(v) with v the logarithm of the
feature’s variance (over feature pixels) and v̂, std(v) the empirical mean and std of v over
image parts.

• The log-likelihood of the feature (according to the part’s model).

In the end, each image is represented by a vector of length 21×P . The training set is then normalized
to have unit variance in all the dimensions, and the standard deviations are stored in order to allow
for identical scaling of the test data. Vector representations are prepared in this manner for a training
sample including objects from the sub-ordinate class, objects from other sub-ordinate classes of the
same basic category, and background images. Finally, a linear SVM [3] is trained to discriminate
the target subordinate class images from all other images.

3 Experimental results

Methods: In our experiments, we regard subclass recognition as a binary classification problem
in a retrieval scenario. Specifically, The learning algorithm is given a sample of background images,
and a sample of unsegmented class images. Images are labeled by the subclass they represent, or as
background if they do not contain any object from the inclusive class. The algorithm is trained to
identify a specific subclass. In the test phase, the algorithm is given another sample from the same
distribution of images, and is asked to identify images from the specific subclass.

Several methodological problems arise in this scenario. First, subclasses are often not mutually
exclusive [13], and in many cases there are borderline instances which are inherently ambiguous.
This may lead to an ill-defined classification problem. We avoid this problem in the current study by
filtering the data sets, leaving only instances with clear-cut subclass affiliation. The second problem
concerns performance measurements. The common measure used in related work is the equal error
rate of the ROC curve (denoted here EER), i.e., the error obtained when the rate of false positives
and the rate of false negatives are equal. However, as discussed in [1], this measure is not well suited
for a detection scenario, where the number of positive examples is much smaller than the number of
negative examples. A better measure appears to be the equal error rate of the recall-precision curve
(denoted here RPC). Subclass recognition has the same characteristics, and we therefore prefer the
RPC measure; for completeness, and since the measures do not give qualitatively different results,
the EER score is also provided.

The algorithms compared: We compare the performance of the following three algorithms:

• Basic Level Primacy (BLP) - The two-stage method for subclass recognition described
above, in which a model of the basic level category is used to form the vector representation.

• Subordinate level primacy (SLP) - A two-stage method for subclass recognition, in which
a model of the sub-ordinate level category is used to form the vector representation.

• One stage method - The classification is based on the likelihood obtained by a model of the
sub-ordinate class.

Motorcycles Faces Guitars
Cross (106) Sport (156)

Male (272) Female (173) Classical (60) Electric (60)

Tables Chairs Pianos
Dining (60) Coffee (60) Dining (60) Living room (60)

Grand (60) Upright (60)

Figure 3: Object images from the subclasses learnt in our experiments. We used 12 subclasses of 6 basic
classes. The number of images in each subclass is indicated in the parenthesis next to the subclass name.
Individual faces were also considered as subclasses, and the males and females subclasses above include a
single example from 4 such individuals.

The three algorithms use the same training sample in all the experiments. The class models in all
the methods were implemented using the algorithm described in Section 2.1, with exactly the same
parameters (reported in section 2.2). This algorithm is competitive with current state-of-the-art
methods in object class recognition [2].

The third and the second method learn a different model for each subordinate category, and use
images from the other sub-ordinate classes as part of the background class during model learning.
The difference is that in the third method, classification is done based on the model score (as in [2]),
and in the second the model is only used to build a representation, while classification is done with an
SVM (as in [7]). The first and second method both employ the distinction between a representation
and classification, but the first uses a model of the basic category, and so tries to take advantage of
the structural similarity between different subordinate classes of the same basic category.

Datasets We have considered 12 subordinate classes from 6 basic categories. The images were
obtained from several sources. Specifically, we have re-labeled subsets of the Caltech Motorcycle
and Faces database3, to obtain the subordinates of sport and cross motorcycles, and male and female
faces. For these data sets we have increased the weight of the location model, as mentioned in
section 2.2. We took the subordinate classes of grand piano and electric guitar from the Caltech 101
dataset 4 and supplemented them with classes of upright piano and classical guitar collected using
google images. Finally, we used subsets of the chairs and furniture background used in [2]5 to define
classes of dining and living room chairs, dining and coffee tables. Example images from the data
sets can be seen in Fig. 3. In all the experiments, the Caltech office background data was used as the
background class. In each experiment half of the data was used for training and the other half for
test.

In addition, we have experimented with individual faces from the Caltech faces data set. In this
experiment each individual is treated as a sub-ordinate class of the Faces basic class. We filtered the

3Available at http://www.robots.ox.ac.uk/ vgg/data.html.
4Available at http://www.vision.caltech.edu/feifeili/Datasets.htm
5Available at http://www.cs.huji.ac.il/ aharonbh/#Data.

10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of parts

E
rr

o
r

ra
te

Performance and parts number

10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of parts

E
rr

o
r

ra
te

Performance and parts number

Figure 4: Left: RPC error rates as a function of the number of model parts P in the two-stage BLP method,
for 5 ≤ P ≤ 60. The curves are presented for 6 representative subclasses, one from each basic level cate-
gory presented in Fig. 3 Right: classification error of the first stage classifier as a function of P . This graph
reports errors for the 6 basic level models used in the experiments reported on the left graph. In general, while
adding only a minor improvement to inclusive class recognition, adding parts beyond 30 significantly improves
subclass recognition performance.

faces data to include only people which have at least 20 images. There were 19 such individuals,
and we report the results of these experiments using the mean error.

Classification results Table 1 summarizes the classification results. We can see that both two-
stage methods perform better than the one-stage method. This shows the advantage of the distinc-
tion between representation and classification, which allows the two-stage methods to use the more
powerful SVM classifier. When comparing the two two-stage methods, BLP is a clear winner in 7 of
the 13 experiments, while SLP has a clear advantage only in a single case. The representation based
on the basic level model is hence usually preferable for the fine discriminations required. Overall,
the BLP method is clearly superior to the other two methods in most of the experiments, achieving
results comparable or superior to the others in 11 of the 13 problems. It is interesting to note that
the SLP and BLP show comparable performance when given the individual face subclasses. Notice
however, that in this case BLP is far more economical, learning and storing a single face model
instead of the 19 individual models used by SLP.

Subclass One stage method Subordinate level primacy Basic level primacy
Cross motor. 14.5 (12.7) 9.9 (3.5) 5.5 (1.7)
Sport motor. 10.5 (5.7) 6.6 (5.0) 4.6 (2.6)
Males 20.6 (12.4) 24.7 (19.4) 21.9 (16.7)
Females 10.6 (7.1) 10.6 (7.9) 8.2 (5.9)
Dining chair 6.7 (3.6) 0 (0) 0 (0)
Living room chair 6.7 (6.7) 0 (0) 0 (0)
Coffee table 13.3 (6.2) 8.4 (6.7) 3.3 (3.6)
Dining table 6.7 (3.6) 4.9 (3.6) 0 (0)
Classic guitar 4.9 (3.1) 3.3 (0.5) 6.7 (3.1)
Electric guitar 6.7 (3.6) 3.3 (3.6) 3.3 (2.6)
Grand piano 10.0 (3.6) 10.0 (3.6) 6.7 (4.0)
Upright piano 3.3 (3.6) 10.0 (6.7) 3.3 (0.5)
Individuals 27.5∗ (24.8)∗ 17.9∗ (7.3)∗ 19.2∗ (6.5)∗

Table 1: Error rates (in percents), when separating subclass images from non-subclass and background images.
The main numbers indicate equal error rate of the recall precision curve (RPC). Equal error rate of the ROC
(EER) are reported in parentheses. The best result in each row is shown in bold. For the individuals subclasses,
the mean over 19 people is reported (marked by ∗). Overall, the BLP method shows a clear advantage.

Performance as a function of number of parts Fig. 4 presents errors as a function of P , the
number of class model parts. The graph on the left plots RPC errors of the two stage BLP method
on 6 representative data sets. The graph on the right describes the errors of the first stage class models
in the task of discriminating the basic level classes background images. While the performance of
inclusive class recognition stabilizes after ∼ 30 parts, the error rates in subclass recognition continue
to drop significantly for most subclasses well beyond 30 parts. It seems that while later boosting
rounds have minor contribution to class recognition in the first stage of the algorithm, the added
parts enrich the class representation and allow better subclass recognition in the second stage.

4 Summary and Discussion

We have addressed in this paper the challenging problem of distinguishing between subordinate
classes of the same basic level category. We showed that two augmentations contribute to per-
formance when solving such problems: First, using a two-stage method where representation and
classification are solved separately. Second, using a larger sample from the more general basic level
category to build a richer representation. We described a specific two stage method, and experimen-
tally showed its advantage over two alternative variants.

The idea of separating representation from classification in such a way was already discussed in
[7]. However, our method is different both in motivation and in some important technical details.
Technically speaking, we use an efficient algorithm to learn the generative model, and are therefore
able to use a rich representation with dozens of parts (in [7] the representation typically includes 3
parts). Our experiments show that the large number of model parts i a critical for the success of the
two stage method.

The more important difference is that we use the hierarchy of natural objects, and learn the repre-
sentation model for a more general class of objects - the basic level class (BLP). We show experi-
mentally that this is preferable to using a model of the target subordinate (SLP). This distinction and
its experimental support is our main contribution. Compared with the more traditional SLP method,
the BLP method suggested here enjoys two significant advantages. First and most importantly, its
accuracy is usually superior, as demonstrated by our experiments. Second, the computational effi-
ciency of learning is much lower, as multiple SVM training sessions are typically much shorter than
multiple applications of relational model learning. In our experiments, learning a generative rela-
tional model per class (or subclass) required 12-24 hours, while SVM training was typically done
in a few seconds. This advantage is more pronounced as the number of subclasses of the same class
increases. As scalability becomes an issue, this advantage becomes more important.

References

[1] S. Agarwal and D. Roth. Learning a sparse representation for object detection. In ECCV, 2002.

[2] A. Bar-Hillel, T. Hertz, and D. Weinshall. Efficient learning of relational object class models. In ICCV,
2005.

[3] G.C. Cawley. MATLAB Support Vector Machine Toolbox [http://theoval.sys.uea.ac.uk/˜gcc/svm/toolbox].

[4] P. Feltzenswalb and D. Hutenlocher. Pictorial structures for object recognition. IJCV, 61:55–79, 2005.

[5] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale invariant learning.
In CVPR, 2003.

[6] R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient learning and exhaus-
tive recognition. In CVPR, 2005.

[7] AD. Holub, M. Welling, and P. Perona. Combining generative models and fisher kernels for object class
recognition. In International Conference on Computer Vision (ICCV), 2005.

[8] T. Kadir and M. Brady. Scale, saliency and image description. IJCV, 45(2):83–105, November 2001.

[9] B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and segmentation with an implicit
shape model. In ECCV workshop on statistical learning in computer vision, 2004.

[10] Fritz M., Leibe B., Caputo B., and Schiele B. Integrating representative and discriminative models for
object category detection. In ICCV, pages 1363–1370, 2005.

[11] E. Rosch, C.B. Mervis, W.D. Gray, D.M. Johnson, and P. Boyes-Braem. Basic objects in natural cate-
gories. Cognitive Psychology, 8:382–439, 1976.

[12] R.E. Schapire and Y. Singer. Improved boosting using confidence-rated predictions. Machine Learning,
37(3):297–336, 1999.

[13] B. Tversky and K. Hemenway. Objects, parts, and categories. Journal of Experimental Psychology:
General, 113(2):169–197, 1984.

Hierarchical Neural Networks Feature Extraction for LVCSR system

Fabio Valente1, Jithendra Vepa1, Christian Plahl2, Christian Gollan2, Hynek Hermansky1,Ralf Schl̈uter2

1IDIAP Research Institute, CH-1920 Martigny, Switzerland
Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

2Lehrstuhl für Informatik 6, Computer Science Department
RWTH Aachen University, Aachen, Germany

{fabio.valente,jithendra.vepa,hynek.hermansky}@idiap.ch
{plahl,gollan,schlueter}@cs.rwth-aachen.de

Abstract
This paper investigates the use of a hierarchy of Neural Net-
works for performing data driven feature extraction. Two dif-
ferent hierarchical structures based on long and short tempo-
ral context are considered. Features are tested on two different
LVCSR systems for Meetings data (RT05 evaluation data) and
for Arabic Broadcast News (BNAT05 evaluation data). The hi-
erarchical NNs outperforms the single NN features consistently
on different type of data and tasks and provides significant im-
provements w.r.t. respective baselines systems. Best results are
obtained when different time resolutions are used at different
level of the hierarchy.
Index Terms: Neural Network, feature extraction, LVCSR

1. Introduction
Data driven feature extraction aims at producing features for
ASR using a statistical front-end. An efficient method of gener-
ating discriminative features is based on the use of Neural Net-
works (NNs) trained to classify phonetic targets [1]. Inputto
the NN is generally a section of the time-frequency plane. Dif-
ferent kinds of input have been investigated in the past: short
temporal context input (9 frames PLP, see [1]), long temporal
context input (HATS see [2]) and multiple time resolution input
(MRASTA see [3]).

Data driven features provide complementary information to
classical spectral features (PLP, MFCC) obtained from a tempo-
ral window of 30ms and considerable improvements in LVCSR
tasks ([4]). Neural Network structure has been an active re-
search topic as well: three-layers ([1]) and four-layers NN([2])
has been studied and several hierarchical structures have been
considered [5], [6].

In this paper we study two kinds of hierarchical neural net-
work structures: the first structure based only on short time-
frequency input and the second structure that combines longand
short time-frequency input. We show that in the hierarchy, the
second NN performs error correction on the most probable er-
rors of the first one. Features are tested in two LVCSR systems
trained on Meetings data and Arabic Broadcast News transcrip-
tion, showing consistent improvement over single NN features
and classical spectral features (PLP, MFCC).

The paper is organized as follows: section 2 describes the
general idea of NNs based feature extraction, section 3 reports
some preliminary experiments with a single NN, sections 4 and
5 describe experiments with hierarchal neural networks with
short and long temporal context, sections 6.1 and 6.2 report
results of hierarchical NNs feature extraction in two different

LVCSR tasks: transcription of meetings data (RT05 evalua-
tion data) and transcription of Arabic Broadcast News (BNAT05
evaluation data).

2. NN based feature extraction
In a multi-class problem, NN can be trained so that the output
approximates class posterior probabilities (see [8]). Generally, a
three-layer NN structure is used but other topologies have been
investigated as well. Output from third layer are then normal-
ized using a softmax function so that the sum of outputs is one.

In speech recognition, targets are represented by pho-
netic units, thus NN estimates posterior distribution of a given
phoneme. A speech segment can be turned into aposteriogram
i.e. a representation of the posterior probability of phonemes
for each time frame (e.g. figure 4). Ideally a well trained NN
will activate an output unit when a given spectro-temporal pat-
tern is presented as input. For instance, in [13] input consists of
9 consecutive PLP frames while in [3] it consists of one second
long segment obtained from the time-frequency plane. In order
to use NN features in the classical HMM system, they are first
gaussianized using log transform and then transformed using a
KLT transform: this technique is referred as TANDEM [1]. In
LVCSR systems they are typically appended to spectral features
[4].

3. Experiments with single net
In this section we briefly describe experiments with a single
NN on meetings data. Database consists of about 100 hours of
meetings recorded at different sites. The independent headset
microphone channel is used. Phoneme set consists of 46 targets
including silence. Training data are phonetically labeledusing
forced alignment through the AMI LVCSR system (see section
6.1 and [10]).

We trained a Neural Net on those data with a temporal con-
text of 9 frames. Almost 25% of total frames are labeled as
silence thus it is interesting to report frame error rate without
silence. In Table 1, Frame Error Rate (FER) with silence and
without silence are reported together with FER obtained con-
sidering the two and three-best output list.

w silence w/o sil 2 best w/o sil 3 best w/o sil
FER 34.6 % 43.0% 32.3 % 26.3%

Table 1: FER computed with silence, without silence and using
the two highest output and the three highest output.

Figure 1: Hierarchical Neural Net processing

We notice that around 40% of the errors are generated by
confusion in between two or three phonemes. For instance fig-
ure 2 plots confusion patterns for phonemes /g/. Several in-
stances of phoneme /g/ are classified as phoneme /k/. Very sim-
ilar error patterns are seen for all other phonemes in which the
largest part of confusion is found in between two or three best
competitors.

In literature, different approaches have been proposed for
correcting confusion pattern in NN based phoneme classifiers.
For instance, in [7] the use of error correction code is investi-
gated. We show here that the use of a hierarchy of NNs provides
an effective tool for correcting those kinds of errors.

4. Hierarchical Neural Network
We consider a hierarchical processing based on a cascade of
NNs in which the second net has as input, posterior features
(i.e. posteriors after Log/KLT transform) from the first netto-
gether with spectral features. Intuitively, the first net will ac-
tivate a given output when a certain spectro-temporal pattern
is seen as input. As described before, this will lead to a certain
amount of errors, most of them in between two of three compet-
ing phonemes. The second net ideally will correct those kindof
errors, using the spectro-temporal patterns that disambiguates
in between different phonemes.

Figure 1 plots the general scheme for hierarchical NNs used
for experiments. An initial set of spectral features is usedfor
training a first net. Output is processed using a Log/KLT trans-
form. New features are used for training a second neural net
together with a second set of spectral features.

We investigate two different schemes; in the first one, al-
ready investigated in [6], we build the hierarchy using only
short-context time-frequency input i.e. a block of 9 framesPLP
features augmented with dynamic features. We refer to this
as Hierarchical TANDEM. In the second scheme, we consider
both long temporal context features (one second) and short-
context features. We refer to this as Hierarchical MRASTA.

w silence w/o sil 2 best w/o sil 3 best w/o sil
NN 34.6 % 43.0% 32.3 % 26.3%

HNN 1 29.2 % 35.9 % 27.5 % 22.7 %
HNN 2 27.0 % 33.0 % 25.5 % 21.1 %

Table 2: FER computed with silence, without silence and using
the two highest output and the three best outputs for single NN,
and hierarchy of two and three NNs with 9-frame PLP input.

In Table 2, we reports FER for the single NN, and for hierar-
chical TANDEM with two and three NNs. Input is 9 frames PLP
features. 5.5% absolute FER reduction is obtained by the sec-
ond NN and further 2% is obtained by the third. It is also inter-
esting to notice that the difference between the FER of the best

output and of three highest outputs is progressively reduced.
Figure 3 plots confusion patterns for phonemes /g/ across dif-
ferent level of the hierarchy: the largest gain in performance is
obtained against most confusing phonemes from the previous
NN. This behavior is observed forall the phonemes i.e. there is
a reduction in frame error rate for every phoneme in the set.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Phone index

Pe
rce

nt

Confusion pattern for phoneme g

Figure 2: Confusion pattern for phoneme /g/; several instances
of /g/ are classified as /k/

/g/ /h/ sil other
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fra
me

 Ac
cu

rac
y

Single Net

Hier−1

Hier 2

Figure 3: Confusion pattern for phonemes /g/ for the three dif-
ferent level of hierarchy.

An interesting effect of such a hierarchy (already described
in [6]) is that at each layer the acoustic context is progressively
increased: if the first NN has a temporal context of 9 frames,
the second NN will use a temporal context of 9+8 frames. In
next section, we investigate the use of a hierarchy of NN using
directly different temporal context inputs at different layers.

5. Hierarchical NN with different temporal
context input

MRASTA features are obtained giving as input to a NN a
spectro-temporal cut of one second processed according to a
zero mean multi-resolution filter ([3]). Thus MRASTA features
are very robust to channel distortions.

Hierarchy of Neural Network can be used to incorporate
different time resolution input at different level. In thissec-
tion we investigate this framework. Considering schema of fig-
ure 1 the first set of spectral features has a temporal context

of one second while the second set of spectral features uses
only 9-frames context. We refer to this method as Hierarchical
MRASTA. Table 3 shows FER for single MRASTA and Hierar-
chical MRASTA.

w silence w/o sil 2 best w/o sil 3 best w/o sil
NN 36.3 % 45.9% 34.9 % 28.4 %

HNN 1 28.9 % 35.6 % 27.7 % 23 %

Table 3: FER computed with silence, without silence and using
the two highest output and the three best outputs for MRASTA
and hierarchical MRASTA.

Results in terms of FER are close to those obtained in Table
2. Hierarchy with three levels doesn’t further improve FER.The
same behavior previously described can be noticed i.e. confu-
sion between phonemes is drastically reduced. It is possible
to visualize the difference between the two methods using a
posteriogram. Figure 4 plot posteriograms for MRASTA (left)
and hierarchical MRASTA (right). Posteriogram on the rightis
much smoother than the one on the left, achieving at the same
time a lower FER.

6. LVCSR experiments
6.1. Meeting system

For investigation purposes, we run experiments on RT05 [9]
data without concatenation with other features and compare
with PLP features. The training data for this system comprises
of individual headset microphone (IHM) data of four meeting
corpora; the NIST (13 hours), ISL (10 hours), ICSI (73 hours)
and a preliminary part of the AMI corpus (16 hours). Acoustic
models are phonetically state tied triphone models trainedusing
standard HTK maximum likelihood training procedures. The
recognition experiments are conducted on the NIST RT05s [9]
evaluation data. We use the reference speech segments provided
by NIST for decoding. The pronunciation dictionary is same as
the one used in AMI NIST RT05s system [10]. Juicer large
vocabulary decoder [11] is used for recognition with a pruned
trigram language model.

Table 4 reports results obtained using PLP (baseline sys-
tem), TANDEM, MRASTA, hierarchical TANDEM and hierar-
chical MRASTA.

Out of the proposed feature set, hierarchical MRASTA is
providing the best performance and reduces WER of 3% abso-
lute compared to PLP features. As general remark the use of the
hierarchy always improves w.r.t. the single net. Let us consider
results in more details.

TANDEM features slightly outperforms PLP features on
AMI and ICSI data. On the other hand, there is a consistent
drop in performance in VT data which are particularly noisy .
Let us consider now the effect of the hierarchy. When a sec-
ond NN is used an average improvement of 2.2% absolute is
obtained; this improvement is verified on all type of data. Thus
second NN is improving recognition at both phoneme and word
level when used for generating features. On the other hand,
when a third NN is added, overall performance deteriorates of
0.6% probably because of over fitting to the data.

MRASTA features are designed to remove mean value in
the modulation spectrum trough the use of a multi-resolution fil-
ter thus more robust to noise and distortions. Furthermore they
use an acoustic context of one second. Overall performance of
MRASTA is better than TANDEM features. Contrarily to TAN-
DEM, on VT data, they hold performance comparable to PLP.

Most interesting results we obtained is based on using hier-
archical MRASTA with different temporal context as described
in section 5: an average improvement of 6% absolute is verified
w.r.t single net MRASTA. Improvements are seen on all data
sets in the RT05; 2% improvement is also observed on VT data
where results for TANDEM are very poor. Furthermore this set
of features outperforms by 3% classical PLP front-end.

6.2. Arabic BN system

In this section we investigate the use of hierarchical features
in concatenation with spectral features in a LVCSR system
for transcription of Arabic Broadcast News. As described in
[14], the acoustic front end uses MFCC features with cepstral
mean normalization. The MFCC features are augmented with
a voicedness feature[12] and includes Vocal Tract Length Nor-
malisation (VTLN). Features from nine consecutive frames are
concatenated and a linear discriminative analysis (LDA) isused
to reduce the feature dimensions. The Neural Network features
were concatenated with the LDA-transformed MFCC baseline
system. Acoustic models were triphone based Viterbi trained
Gaussian mixture models (GMMs) with a global pooled co-
variance matrix. The triphones are top down clustered using
CART, rendering 4501 generalized triphone states with cross-
word context.

The training corpus consists 120 hours of speech, derived
from the FBIS (30h) and the Arabic TDT4 (60h) corpus. 30h
of additional data is taken from the first two quarter releases of
the first year (Y1Q1, Y1Q2) of the GALE project. All data
consists of Arabic Broadcast News. Most available training
material for the Arabic speech recognition don’t inlcude dia-
critics. Ignoring theses diacritics increase the error rate ([16]).
For this purpose the Buckwalter Arabic Morphological Anal-
yser 1 is used to vowelise the transcriped data. Because not
all words are mapped to a diacritic form we used a data-driven
approach known as Grapheme-to-Phoneme conversion [15]. In
the training process for the Grapheme-to-Phoneme conversion
a mapping beetween the orthographic form of a word and its
phonetic transcription is build. These models are used to create
the transcription of unknown words.

The language model used for the experiments is derived
from the Gigaword Arabic, the Arabic TDT4 and from the FBIS
corpus. Additional data is taken from the Y1Q1 and Y1Q2 cor-
pora of the GALE project. The language model is a bigram with
a vocabulary of 256k words.

The BNAT05 evaluation corpus has been used for evalu-
ation purpose Table 5 summarizes the improvement produced
by using the concatenated Neural Network features. As shown
in Table 5, the single net features improves the recognition
rate by 0.3% absolute for TANDEM and by 0.6% absolute for
MRASTA. Using the hierarchical features there is an additional
improvement by 0.6% absolute towards the single MRASTA
and TANDEM approach. Overall, the best results are archieved
using the hierarchical MRASTA feature approach and results
are consistent with what is observed on meeting data.

7. Conclusion
In this paper we investigate the use of a hierarchy of Neural
Networks for performing data driven feature extraction. Two
different framework are proposed: one with the same tempo-
ral context at both level of the hierarchy (Hierarchical TAN-
DEM) and one with changing context (Hierarchical MRASTA).

1http://www.qamus.org/morphology.htm

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

45

Time frame

Ph
on

e I
nd

ex

MRasta posterior

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

45

Hierarchical Mrasta posterior

Time frame

Ph
on

e i
nd

ex

Figure 4: Posteriograms for MRASTA (left) and HierarchicalMRASTA (right)

Features TOT AMI CMU ICSI NIST VT
PLP+D+A 42.4 42.8 40.5 31.9 51.1 46.8

TANDEM 46.6 41.4 43.7 31.3 54.5 64.9
Hier TANDEM 1 44.4 39.6 42.3 28.9 51.5 62.0
Hier TANDEM 2 45.0 40.5 44.4 29.4 51.1 61.9

MRASTA 45.9 48.0 41.9 37.1 54.4 48.8
Hier MRASTA 1 39.4 38.1 36.9 28.2 48.0 46.9

Table 4: WER for Meeting data.

Features WER
MFCC 23.6

MFCC + TANDEM 23.3
MFCC + MRASTA 23.0

MFCC + Hier TANDEM 22.7
MFCC + Hier MRASTA 22.4

Table 5: WER for Arabic BN task.

Consistent reduction in Frame Error Rate are observed for both
framework. The second net has the property of correcting the
most confusable patterns of the first one. NN based features are
investigated in two LVCSR systems for transcription of meet-
ings and Arabic BN. Hierarchical MRASTA method is showing
the best performance in both systems providing consistent im-
provements w.r.t. respective baseline systems. Changing time
resolution across different level of the hierarchy seems tobe
very effective and must be further addressed in future works.

8. Acknowledgments
This material is based upon work supported by the EU under thegrant
DIRAC IST 027787 and by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-06-C-0023 . Any opin-
ions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency (DARPA).
We thank SRI International for the help to build up the Arabicrecog-
nition system, especially Dimitra Vergyri and Andreas Stolke for the
closed collaboration. We thank Thomas Hain and the AMI ASR team
for their help with the meeting system.

9. References
[1] Hermansky H., Ellis D.P.W. and Sharma S. , “Tandem connection-

ist feature extraction for conventional HMM systems”, Proceed-
ings of ICASSP 2000.

[2] Chen B., Zhu Q., and Morgan N., “ Learning Long-Term Tempo-
ral Features in LVCSR Using Neural Networks”, Proceedings of
ICSLP 2004.

[3] Hermansky H. and Fousek P., ”Multi-resolution RASTA filtering
for TANDEM-based ASR.”, Proceedings of Interspeech 2005.

[4] Zhu Q., Chen B., Morgan N., and Stolcke A., “On using MLP
features in LVCSR”, Proceedings of ICSLP 2004.

[5] Sivadas S. and Hermansky H., ”Hierarchical Tandem Feature Ex-
traction”, Proceedings of ICASSP-2002.

[6] Schwarz P., Matejka P., Cernock J.,”Hierarchical structures
of neural networks for phoneme recognition”, Proceedings of
ICASSP 2006.

[7] Hagen H. and Bourlard H., “Error Correcting Posterior Combina-
tion for Robust Multi-Band Speech Recognition”, in Proceedings
of EUROSPEECH, 2001

[8] Bourlard, H. and Wellekens, C.J. (1989), “Speech Pattern Dis-
crimination and Multilayer Perceptrons” Computer, Speechand
Language (Academic Press), vol. 3, pp. 1-19.

[9] http://www.nist.gov/speech/tests/rt/rt2005/spring/

[10] Hain, T. et al, “The 2005 AMI System for the Transcription of
Speech in Meetings” NIST RT05 Workshop, 2005, Edinburgh,
UK.

[11] Moore, D et al. “Juicer: A weighted finite state transducer speech
coder” Proc. MLMI 2006 Washington DC.

[12] Zolnay A., Schlter R., Ney H. “Robust Speech Recognition using
a Voiced-Unvoiced Feature”, Proc. of ICSLP, Denver, CO, Vol. 2,
pp. 1065–1068, Sept. 2002.

[13] Bourlard H. and Morgan N.,”Connectionist Speech Recognition -
A Hybrid Approach”,Kluwer Academic Publishers, 1994.

[14] Lööf J. et al. “The 2006 RWTH Parliamentary Speeches Tran-
scription System”, In Proceedings of ICSLP 2006.

[15] Bisani M., Ney H. “Multigram-based grapheme-to-phoneme con-
version for LVCSR”, Proc. Eurospeech, 2003.

[16] Vergyri D., Kirchhoff K. “Automatic Diacritization ofArabic for
Acoustic Modeling in Speech Recognition”, COLING Workshop
on Arabic-script Based Languages , 2004.

