
 

 

 

      

 

  

Insperata accident magis saepe quam quae speres.  

(Things you do not expect happen more often than 

things you do expect)   Plautus (ca 200(B.C.) 

 

 

 

 

Project no: 027787 
 

 

DIRAC 

 

Detection and Identification of Rare Audio-visual Cues 
 

 

 

 

Integrated Project 

IST - Priority 2 

 

 

DELIVERABLE NO: D5.2 

Combination of Nonlinear Classifier 
 

 

Date of deliverable: 31.12.2007 

Actual submission date: 23.01.2007 

 

 

Start date of project: 01.01.2006      Duration: 60 months 

 

 

 

Organization name of lead contractor for this deliverable: ex: IDIAP Research Institute 

 

Revision [1] 

 

 

Project co-funded by the European Commission within the Sixth Framework Program (2002-

2006) 

Dissemination Level 

PU Public X 

PP Restricted to other program participants (including the Commission Services)  

RE Restricted to a group specified by the consortium (including the Commission 

Services) 

 

CO Confidential, only for members of the consortium (including the Commission 

Services) 

 



 

 

 

      

 

  

Insperata accident magis saepe quam quae speres.  

(Things you do not expect happen more often than 

things you do expect)   Plautus (ca 200(B.C.) 

 

 

 

 

D5.2  CO M B IN AT IO N  O F  NON L IN E AR  

CL AS S I F I E R  
: 

IDIAP Research Institute (IDIAP) 

 

 

 

 

 

 

 

Abstract: 
This work explores different methods for combining outputs from nonlinear 

classifiers that estimate posterior probabilities of context independent phonemes and 

are used for data driven feature extraction. The classifier combination techniques are 

evaluated on Automatic Speech Recognition (ASR). Input to the classifiers are spetro-

temporal features that emphasize long term temporal and short term spectral aspects 

of the speech signal. Firs, some classical combination rules are investigated.  Further, 

we investigate combination of neural net based classifiers using Dempster-Shafer 

Theory of Evidence. Under some assumptions, combination rule resembles a product 

of errors rule observed in human speech perception. Different combination are tested 

in ASR experiments both in matched and mismatched conditions and compared with 

more conventional probability combination rules. Proposed classifier combination 

techniques are particularly effective in mismatched conditions. Finally, we study a 

hierarchy of Neural Network classifiers used for data driven feature extraction. Two 

different hierarchical structures based on long and short temporal context are 

considered. Features are tested in a LVCSR task on meetings data and compared 

with classical speech features. 
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1 Introduction 

1.1 Artificial Neural Networks as Posterior Probability Estimators and as 

Generators of Features for the HMM-based ASR 

 

Neural network – based classifiers can be trained in such a way that their output estimate class 

posterior probabilities [12]. Generally, a three-layer network structure is used even though 

other topologies were also investigated. The output from the third layer is processed through a 

softmax static nonlinearity so that the outputs sum to one. In the automatic recognition of 

speech (ASR), basic speech sounds classes are phonemes of the language and the neural 

network can be trained to estimate their posterior probability distributions for any given time 

instant in the input speech signal. In that way, the speech signal can be turned into a two-

dimensional representation that we call a  posteriogram that represents a sequence of  

distributions of posterior probabilities. An example of the posteriogram  is shown in Fig. 1. 

Ideally, a well trained neural network will activate at any given time that element of the 

posterior probability distribution, which corresponds to the phoneme represented by the input 

feature pattern. To use neural network estimated features in a conventional hidden markov 

model based ASR, the vector space of estimated posterior probability distributions can be 

gaussianized (e.g. through the logarithmic static nonlinearity) and subsequently decorrelated 

using a principal component transform, derived from some training data [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 An example of a posteriogram for the digit sentence “one-one-three-five-eight”. 

1.2 Multi-stream approaches to ASR 

 

Multi-stream speech recognition approaches where individual information streams are formed 

by using evidence from different elements of the signal are becoming a norm in the ASR 

community (e.g. multi-band [1, 2], feature combinations [3], classifier combinations [17, 18, 

19]). In this work, we study combinations of posterior probabilities of phonemes derived from 

different input speech representations. The probabilities are estimated by a multi-layer 

perceptron (MLP) trained on phoneme-labeled data.  In literature, many papers have already 

addressed the problem (e.g. [4]) considering combination rules like sum, product, maximum 

and minimum rules. The major factors that influence the performance are the diversity in the 

classifier team and also the method employed for combining [20,21]. The diversity in the 

classifier team depends on the amount of complementary information present in the individual 

classifiers [10, 17, 18, 19, 1, 2, 20]. As evident, feature extraction methods inspired by 

auditory perception capture better relevant information in speech and hence results in 

improved performance [21]. Further, if we have different speech processing methods inspired 
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by different aspects of auditory perception, then features extracted from them may exhibit 

complementary information.  

 

1.3 The outline of the report 

 

The present work is performed in the framework of  automatic recognition of speech (ASR), 

in particular, on digit recognition task, using OGI-Stories and OGI-Numbers95 databases, and 

on a meeting task that contains much larger amounts of data. The databases are described in 

the Section  2.1. below.  Different methods will then be explored for combining estimated 

posterior probabilities o and using them in ASR.  

 

ASR deals with recognizing spoken message from input speech [22]. Since speech is 

redundant in nature, different speech processing methods have been developed for extracting 

relevant features [22, 23]. Among these, Perceptual Linear Prediction (PLP) and Mel-

Frequency Cepstral Coefficients (MFCC), both based on auditory perception are the most 

commonly used ones [23, 24]. Most recently Multi-RASTA (MRASTA), also based on 

auditory perception, has been proposed and known to perform better compared to PLP [14]. 

PLP extracts features by analyzing speech over short segments of 10-30 ms [24]. 

Alternatively, MRASTA based features are obtained by analyzing speech over segments of 1 

sec [14]. That is, PLP represents speech spectral band energy information over short segments 

of 10-30 ms and MRASTA represents temporal information over long segments of 1 sec. 

Thus MRASTA and PLP seem to exhibit different aspects of speech and hence may contain 

complementary information.  

 

Further, we study a combination rule based on Dempster-Shafer theory of evidence ([5]) 

which can be considered an extension of Bayesian probability. Main advantage of this 

framework is the explicit representation of ignorance. DS theory has already been 

investigated in speech recognition (e.g. [6]) but this is probably the first attempt to use it for 

combination of information coming from different acoustic streams. Furthermore, under some 

assumption, DS combination rule is similar to what is known in the speech recognition 

community as the Fletcher’s “product of errors” (see [7],[8]). 

 

2. Overview of Databases and Relevant Techniques Applied 

in the Current Study 

2.1  Speech Databases 

Two speech corpora were considered for the present work, namely, OGI-Stories and OGI-

Numbers95 [25, 26]. Both contain speech recorded over a telephone channel in similar 

recording conditions. OGI Stories contains spontaneous continuous speech with rather large 

vocabulary, OGI-Numbers95 contains strings of digits and numbers. The task involves 

recognition of digits from zero to nine as well as oh. This vocabulary of 11 words composes 

of 29 phonemes [14]. Three distinct data sets were created from these  corpora: 

 

MLP-Training Set: This set contains 208 files from OGI-Stories (about 2.8 hrs) and 2547 files 

from OGI-Numbers95 containing strings of 11 digits from zero to nine plus oh (about 1.3 hrs) 

transcribed on phoneme level by hand. This set will be used for training Multi Layer 

Perceptron (MLP) for estimating phoneme posterior probabilities, more commonly termed as 

posteriors. 
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HMM-Training Set: This set contains 2547 files from OGI-Numbers95 containing strings of 

11digits (same 2547 files as used earlier). This set will be used for generating posteriors for 

training HMM based ASR. 

 

HMM-Testing Set: This set contains 2169 files from OGI-Number95 (different from those 

used in the earlier two sets). This set will be used for generating posteriors for testing HMM 

based ASR.  

 

Meetings Database is used in some experiments with hierarchical MLP. It consists in around 

100 hours of meetings recorded on different sites (AMI, ICSI, NIST and ISL). Channel used 

is the independent headset microphone. Phoneme set is composed of 46 targets including 

silence. Training data are phonetically labeled using forced alignment by an LVCSR system.  

 

2.2 PLP Features 

The PLP analysis of speech involves the following steps [24]: (i) Convolving short term 

power spectrum of speech with a simulated critical-band masking pattern, (ii) resampling the 

critical-band spectrum at approximately 1-Bark intervals, (iii) pre-emphasis by a simulated 

fixed equal loudness curve, (iv) compression of resampled and preemphasized spectrum 

through the cubic-root non-linearity and (v) approximating the compressed spectrum by the 

all-pole model. In the present work, the all-pole model coefficients are further transformed 

into Cepstral Coefficients (CC). Speech signals are processed in frames of 25 ms with a shift 

of 10 ms. For each frame of 25 ms, 13 PLPCC, 13 _PLPCC and 13 __PLPCC are extracted 

by PLP analysis. Thus effectively for every 10 ms of speech a 39 dimension PLP based 

feature vector is computed. 

2.3 MRASTA Features 

Critical-band auditory spectrum is extracted for every frame of 25 ms with a shift of 10 ms. 

By filtering temporal trajectories of each critical band with a bank of N fixed length low pass 

Finite Impulse Response (FIR) filters representing Gaussian functions of several different 

widths and by subsequent computing of first and second differentials of the smoothed 

trajectories will yield a set of N × 2 modified spectra at every frame (Gaussian Features) [14]. 

The same filter bank is used for all bands. A bank of 16 filters consisting of first and second 

order derivatives of Gaussian functions is applied to all 15 temporal trajectories of critical-

band spectral energies at all frequencies resulting in 240 (16 × 15) features per frame [14]. All 

temporal filters are zero-phase FIR filters that is, they are centered around the frame being 

processed. Length of all filters is fixed at 101 frames, corresponding to 1000 ms of signal and 

each frame for every 10 ms duration. The first frequency derivatives of the stream are derived 

by applying an FIR filter to output of each of the 16 filters, across frequencies [14]. 

Derivatives for the first and last critical bands are not defined and hence gives a feature set of 

size 208 (16×13) features per frame. The feature vector is formed by appending the first order 

frequency derivatives to the main feature stream, resulting in 448 features per frame. 

 

2.4  TANDEM-based ASR 

Phoneme posteriors estimated from MLP have been used in ASR for a number of years [12]. 

Hermansky et. al. [13] proposed a way of converting these posteriors to features appropriate 

for conventional HMM recognizers. This hierarchical classification technique of combining 

various information sources in deriving features for conventional HMM-based recognizers 

came to be known as TANDEM feature extraction. In TANDEM-based ASR, first the speech 

signals are processed using suitable signal processing methods like PLP or MRASTA to 

extract features for training MLP. MLP of suitable structure is then trained using extracted 

features as input vectors and vectors representing corresponding phoneme labels as targets. 
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The phoneme posteriors will then be estimated from the trained MLP. The estimated 

posteriors will be non-Gaussian in nature and to use them in HMM framework for ASR, they 

will be gaussianized by TANDEM operation which involves non-linear (e.g. log or inverse 

softmax function) operation followed by Principal Component Analysis (PCA) on the 

posteriors. The gaussianized and decorrelated posteriors from the training set will be used for 

generating HMM models. The same operation (with PCA basis derived on the training set) is 

done on the test set. The gaussianized and decorrelated posteriors from the test set will then 

be used for evaluating the performance of trained HMM models. 

 

2.5 The Dempster-Shafer Theory of Evidence 

The Dempster-Shafer (DS) Theory of Evidence (see [5]) allows representation and 

combination of different measures of evidence. It can be considered as a generalization of the 

Bayesian framework and permits the characterization of uncertainty and ignorance.  

 

Let Θ = {θ1, ..., θκ} be a finite set of mutually exclusive and exhaustive hypotheses refereed 

as singletons. Θ is referred as frame of discernment. Let 2
Θ
 be the power set of Θ, i.e. the set 

of all subsets of Θ. A basic probability assignment (BPA) is a function m from 2
Θ
  to [0, 1] 

such that 

 

 
m(A) can be interpreted as the amount of belief that is assigned exactly to A and not to any of 

its subsets. In probability theory, a measure is assigned only to atomic hypothesis m(θi) while 

in DS Theory it can be assigned to a set A without any further commitment on the on the 

atomic hypothesis that compose A. The situation of total ignorance is represented by m(θι) = 

1. On the other hand, if we set m(θι  )for all θι  and m(A) = 0 for all  
t

A θ≠  we recover the 

probability theory.  

 

Let A be complementary set of A i.e. the set {Θ − A}. In DS Theory, m(A) + m(A) < 1 

(contrarily to probability theory), which means that we can consider an amount of belief that 

is not attributed to an hypothesis nor to its negation. In other words, “we don’t need to over-

commit when we are ignorant”. 

 

The function that assigns to each subset A, the sum of all basic probability numbers of its 

subset is called belief function or credibility of 

 

Subset A for which m(A) > 0 are called focal elements and their union is called core. A belief 

function is defined as vacuous if it has only Θ as focal element. A belief function is defined as 

simple support function if it has only one focal element in addition to Θ and Bayesian if its 

focal elements are singleton. 

 

In an analogous way, Plausibility of an hypothesis A is defined as: 

 

 
 

and it measures to what extent we fail to doubt in A. Another interesting point in DS Theory 

is how two different belief functions Bel1 and Bel2 over the same frame of discernment are 

combined into a single belief function. Dempster’s rule states that Bel1 and Bel2 must be 
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combinable i.e. their cores must not be disjoint. Given m1 and m2 BPAs associated with Bel1 

and Bel2 this condition can be expressed as 

 

 

. In this case m1 and m2 can be combined as: 

 

 
 

and m(θ) is a BPA. The belief function given by m is called orthogonal sum of Bel1 and Bel2 

denoted as Bel1  Bel2 (m as well is denoted as m1  m2 ). DS orthogonal sum is both 

associative and commutative. Given two belief functions Bel1 and Bel2, if Bel1 is vacuous, 

then Bel1  Bel2 = Bel2; if Bel1 is Bayesian, then Bel1  Bel2 is also Bayesian. Let us 

consider now the case of orthogonal sum between two simple support belief functions Bel1 

and Bel2 with focus  

  
 

Applying DS orthogonal sum (4), we obtain: 

                          

     

In words, in case of simple support belief functions, the total ignorance is the product of 

ignorances of single belief. In next section, we draw a parallel with product of errors. 

 

2.5.1. Product of Errors 

Work of Fletcher ([7]) on human processing of speech suggests that humans process speech in 

different frequency sub-bands independently. Combination of processing from each sub-band 

is done in such a way that total error is equal to product of errors in different sub-bands. In 

other words, to recognize correctly a phoneme it is enough to recognize it correctly in one of 

the available sub-bands.  

 

Those findings suggested as possible combination rule of classifiers based on different 

acoustic evidence, the product of errors (PoE). Let us denote with p1 and p2 the probability of 

correct recognition of a phoneme for two different acoustic streams, according to PoE, the 

combined probability of those classifiers should be p = 1−(1−p1)(1−p2). It is evident the 

analogy in between previous expression and results from expression (5) with the difference 

that in theory of evidence we should talk about “product of ignorance” rather then “product of 

errors”. Anyway, as we will verify in the experimental section, combination according to PoE 

does not provide results comparable to classical classifiers combination rules; on the other 

hand, “product of ignorances” gives good results compared to other rules. 

 

2.5.2 From MLP output to Basic Probability Assignment 

DS theory represents an interesting alternative to classical probability framework for 

combining different classifiers and it has already been largely studied in the machine learning 

community (e.g. see [9]). Main weakness of DS theory is the fact that results are strongly 

sensitive on the choice of the Basic Probability Function. Thus DS combination rule has a 

certain degree of heuristic depending on the type of classifier we aims at combining. 

 

We will focus on combination of outputs from different Neural Networks. In [10] and [11], 

multiple neural nets outputs are combined using DS orthogonal sum for handwriting 
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recognition applications. The main question is how to choose an effective BPA. Each output 

from the neural net is considered as a source of information (a belief) that induces a frame of 

discernment. If we denote with θι  the i − th output of the MLP, focal elements of the 

corresponding BPA will be mi(θι) i.e. the belief we have in the hypothesis associated with the 

i − th output, mi(Θι) i.e. the belief we have in the complementary of this hypothesis and mi(θ) 

i.e. the ignorance associated with this hypothesis. In [10], BPA are estimated respectively 

according to recognition rate, error rate and rejection rate of each Neural Net output while in 

[11], they are estimated according to different kind of distances between MLP outputs and 

some reference vectors.  

 

We consider the output of a Neural Network trained in order to estimate posterior 

distributions for a target class (i.e. a phoneme posterior) [12]. Let us consider a phoneme set 

Θ = {θ1, ..., θk} and a trained Neural Net that produces target posteriors {p1 = p(θ1|X), ..., pk = 

p(θk|X)} with 

 

 

 

 

where X is an observation vector. First problem we have to deal with is how to transform the 

probabilistic output of the MLP into a BPA. With DS formalism, the probabilistic output can 

be represented by the following BPA 

 

 

  

 

i.e. all belief is attributed to atomic hypotheses (phonemes) and no belief to the ignorance. To 

quantify the degree of ignorance of the MLP output, a natural choice is the use of the entropy 

of the output 

 

 
 

Ignorance is supposed to be total (i.e. m(Θ) = 1) when entropy of the output achieves its 

maximum value 

 

  
 

Under those considerations a possible choice for a BPA is represented by: 

 

 
 

When the entropy H is zero, ignorance mi(Θ) is equal to 1 − pi while when entropy is 

maximum ignorance mi(Θ)  = 1. Choice of function (7) is heuristic; exponent factor γ is 

supposed to better fit ignorance estimation to entropy measure because ignorance should may 

not be a linear function of the entropy. BPAs as defined in (6) are simple support functions 

and we refer to them as BPA1.  

 

Anyway other BPAs can be defined in which we further add information on the 

complementary set  Θι. . For instance we could define a new BPA as 
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In this case each MLP output is supposed to provide information on both phoneme i and set of 

phonemes Θ − i. Contrarily to probability theory, they do not sum to one because a certain 

amount of belief is supposed to be assigned to all phoneme set Θ. We refer to BPAs (8-9) as 

BPA2.  

 

Finally a third set of BPA can be directly derived from orthogonal sum of BPAs (6). In fact 

BPA from each MLP output as defined in (6) are combinable; applying 

orthogonal sum (4) a new set of BPA can be directly obtained 

 

 

 
 

We refer to set of BPAs (10-13) as BPA3. In this section, we described three different ways 

of associating a basic probability assignment on a frame of discernment induced by a MLP 

output. In next section we describe how to combine two different BPAs obtained trough two 

different Neural Networks. 

2.5.3 DS Theory for Classifier Combination 

Let us consider now the case in which we have two different Neural Networks and their 

corresponding BPA obtained in one of the three ways described in previous section. Those 

BPA can now be combined applying orthogonal sum (4). In case of simple support functions 

(i.e. BPA1), we must combine BPA with only one focal element. Given two MLP a and b and 

correspondent BPA ma(θi) = sa,  ma(Θ) = 1 − sa ,mb(θi) = sb,  mb(Θ) = 1 − sb, orthogonal sum  

gives: 

 

 
Similarity of expressions (14 - 15) with product of errors rule are quite obvious with the 

difference that in this case combination rule consider product of “ignorance” instead of errors. 

In case of BPA2 and BPA3, combination rule must handle as well the set mi(Θι); orthogonal 

sum gives: 
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Combination rules (14 - 15) and (16 - 19) show how to combine BPA from two different 

MLP into a single BPA. Those rules can be easily extended to more then two classifiers 

because they are associative. 

 

2.6 Hierarchical Neural Networks 

Neural Network architectures are an active field of study and several hierarchical structures 

have been proposed for applications in ASR [29, 30]. The hierarchy we study is based on the 

work reported in [30] and consists of the architecture where a cascade of MLPs is used and 

the second MLP uses as its input the MLP-derived features (i.e. after a gaussianizing and a 

PCA rotation) from the first (previously trained) MLP together with the original spectro-

temporal pattern that was used for estimating the MLP-derived features.  The basic 

hierarchical architecture is shown in Fig. 1. 

DATA 1 NONLINEAR 
PROCESSING 1

DATA 2

concatenate
NONLINEAR 

PROCESSING 2
FEATURES

 

Fig. 1  Hierarchical classifier combination for extraction of data-driven features for speech recognition.  

Both datasets, the DATA 1 and the DATA 2, come from some (not necessarily the same) vicinity of the 

time instant where the posterior density is derived. The NONLINEAR MAPPING blocks represents 

different MLPs with their associated post-processing. 

The intuition behind such an architecture is that the first net yields a particular output when it 

is activated by a particular input. For some more ambiguous inputs, the output might be in 

error. These errors may be between two or three competing phoneme classes. The second net 

(which is trained on both the output from the first net and on the pattern that activated the first 

net), may be able to correct the errors generated by these ambiguous inputs. 

 

3 Experiments 

3.1  ASR using PLP Features 

3.1.1. ASR using Single Frame PLP (1F-PLP) Features 

PLP features are extracted from MLP-Training Set. These features are used for training an 

MLP with 39 units in input layer, 10600 units in hidden layer and 29 units in output layer. 

The number of units in the input layer corresponds to the dimensionality of input feature 
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vectors and the number of units in the output layer corresponds to the number of phonemes. 

The number of units in the hidden layer is mainly driven by the amount of information that 

need to be captured from the input features, and the computational resources available for 

training. With performance on a cross-validation set as a stopping criterion for training, more 

the number of units (up to a certain value, to be determined experimentally), better may be the 

performance, but more will be the need for computational resources. The PLP features from 

HMM-Training Set are applied to the trained MLP to estimate corresponding phoneme 

posteriors. The estimated posteriors are gaussianized as explained earlier and then used as 

features for HMM based ASR. One HMM model is trained for each of the phonemes. The 

HMM models were tri-phone models trained in context independent mode. Also, each model 

was represented by 32 Gaussian mixture components [14]. The gaussianized phoneme 

posteriors from HMM-Testing Set obtained in a similar fashion as that of HMM-Training Set 

are then applied to the trained HMM models to evaluate the performance. FER was defined 

on MLP posteriors as a ratio of frames with maximum posterior matching the underlying class 

label over the overall number of frames, considering MLP cross-validation set. In the MLP-

Training Set approximately 10% of data were used for cross-validation. The FER obtained is 

given in Table 1. WER is defined as WER = (S+I+D)/N, where, I, S, D, N are counts of 

substitutions, insertions, deletions and all recognized words, respectively. The WER obtained 

for the HMM-Testing Set is given Table 1. 

 

Table 1: Recognition performance of ASR using single frame PLP features. 

 

3.1.2. ASR using Nine Frames of PLP (9F-PLP) Features 

Instead of single frame PLP features, contiguous nine frames of PLP features have also been 

used as feature vectors for ASR. This leads to feature vectors of dimension 9 × 39 = 351 [12]. 

Such a combination has been shown to give better performance compared to single frame PLP 

features. An MLP is trained with 351 units in input layer, 1800 units in hidden layer and 29 

units in output layer. The PLP features from HMM-Training Set are then applied to the 

trained MLP to estimate the corresponding phoneme posteriors. The estimated posteriors are 

gaussianized and then applied as features for HMM based ASR. The gaussianized phoneme 

posteriors from HMM-Testing Set are applied to the trained HMM models to evaluate the 

performance. The FER obtained for the cross validation data is given in Table 2. The WER 

obtained for HMM-Testing Set is also given in Table 2. Using contiguous nine frames of PLP 

features, the performance improves about 21% relative in case of FER and 13% in case of 

WER over the ASR using single frame PLP features.  

 

Table 2: Recognition performance of ASR using nine frames of PLP features. 
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3.2 ASR using MRASTA Features 

3.2.1. ASR using MRASTA Features 

MRASTA feature vectors are extracted from MLP-Training Set. These features are used for 

training an MLP with 448 units in input layer, 1800 units in hidden layer and 29 units in 

output layer. The MRASTA features from HMM-Training Set are applied to the trained MLP 

to estimate the corresponding phoneme posteriors. The estimated posteriors are gaussianized 

and then used as features for HMM based ASR system. The gaussianized phoneme posteriors 

from HMM-Testing Set are then applied to trained HMM models. The FER obtained for the 

cross validation data is given in Table 3. The WER obtained for the HMM-Testing Set is also 

given in Table 3. The performance is significantly better compared to single frame PLP 

features (please compare Tables 3 and 1). The performance is even better compared to nine 

frames of PLP features (please compare Tables 3 and 2). The ASR using MRASTA provides 

a relative improvement of about 32% in case of FER and 22% in case of WER compared to 

ASR using single frame PLP features. 

Table 3: Recognition performance of ASR using MRASTA features. 

 

 

Combining Posteriors from MRASTA and PLP  

 

As discussed earlier, MRASTA and PLP features are different representations of speech and 

hence makes sense to combine the two. Some of the combination methods like product, sum, 

minimum and maximum are the obvious choice due to their simplicity [3p, 17p, 18p]. 

Therefore we explore the significance of each of these combination methods for combining 

posteriors from MRASTA and PLP. 

 

3.2.2. Product of Posteriors 

For a given frame of speech we have 29 phoneme posteriors derived using PLP and 29 

phoneme posteriors derived using MRASTA. In product case, for each of the 29 phonemes, 

corresponding posteriors from MRASTA and PLP are multiplied and are normalized with 

respect to the total sum of multiplied posterior values. 

 

Let PMi, PPi and P
prod

Ci , where i = 1, 2, . . . , 29 represent phoneme posteriors for MRASTA, 

PLP and product cases, respectively. The product of MRASTA and PLP posteriors is 

implemented as 
 

 

 
We are calling the resulting values as product posteriors. Since the product posteriors are also 

non-Gaussian in nature, they are processed by TANDEM feature extraction to make them 

Gaussian. The gaussianized product posteriors from HMM-Training Set are used for training 

the HMM models. The trained HMM models are tested using the gaussianized product 

posteriors from HMM-Testing Set. The FER and WER obtained for product posteriors in 

different combinations of MRASTA and PLP are given in Table 4. 

Table 4: Recognition performance of ASR using product posteriors. 
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As it can be observed from Table 4, the performance of combined system using product 

posteriors is significantly better in terms of WER than MRASTA alone. Over MRASTA, the 

combined system using MRASTA and single frame PLP features shows a relative 

improvement of 18% in terms of WER. Even though the classifier using single frame PLP 

features gives poor performance on its own (Table 1), it combines well with MRASTA to 

significantly improve the performance. The near equal performance obtained by combining 

MRASTA with either single frame PLP or nine frames PLP infers that, both single frame and 

nine frames PLP features have same amount of complementary information. When single 

frame and nine frames PLP features are combined, it hardly gives any improvement. This fact 

emphasizes the need for careful selection of feature sets, which have complementary 

information, before combining them. 

3.2.3. Sum of Posteriors 

In sum case, for each of the 29 phonemes, corresponding posteriors from MRASTA and PLP 

are added and are normalized with respect to the total sum of added posterior values 

 

Let PMi, PPi and Psum
Ci

 , where i = 1, 2, . . . , 29 represent phoneme posteriors for MRASTA, 

PLP and sum cases, respectively. The sum of MRASTA and PLP features is implemented as 

 

 
We call the resulting posteriors the sum posteriors. The sum posteriors are processed in a 

similar way as explained in the case of product posteriors. The ASR study is conducted using 

the gaussianized sum posteriors. FER obtained for the cross-validation data and WER 

obtained for HMM-Testing Set are given in Table 5.  

Table 5: Recognition performance of ASR using sum posteriors. 

 

 

 

 

 

In this case also, same trend as in the case of product posteriors is observed. However, the 

improvement is less than that using product posteriors. This fact emphasizes the 

complementary information present in MRASTA and PLP and is being best exploited by 

taking product [7p]. 

3.2.4. Minimum of Posteriors 

In minimum case, for each of the 29 phonemes, minimum of corresponding posteriors from 

MRASTA and PLP is taken and are normalized with respect to the total sum of minimum 

posterior values. Let PMi, PPi and Pmin
Ci

 , where i = 1, 2, . . . , 29 represent phoneme posteriors 

for MRASTA, PLP and min cases, respectively.  

 

The minimum of MRASTA and PLP features is implemented as 

 

 
 

We call these posteriors the min posteriors. The performance of ASR system using min 

posteriors processed in a similar fashion as that of product and sum posteriors is given in 

Table 6 
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Table 6: Recognition performance of ASR using min posteriors. 

 

 

 

 

Same trend as in the earlier cases of product and sum posteriors is observed in this case also. 

However, the improvement is less than that obtained using product posteriors. 

3.2.5. Maximum of Posteriors 

In the maximum case, for each of the 29 phonemes, the maximum of corresponding posteriors 

from MRASTA and PLP is taken and are normalized with respect to the total sum of 

maximum posterior values.  

 

 Let PMi, PPi and Pmax
Ci

 , where i = 1, 2, . . . , 29 represent phoneme posteriors for MRASTA, 

PLP and max cases, respectively. The maximum of MRASTA and PLP features is 

implemented as 

 

 
 

We call these posteriors from eqn.(4)  max posteriors. The performance of ASR system using 

max posteriors processed in a similar fashion as that of other posteriors is given in Table 7. 

Table 7. Recognition performance of ASR system using max posteriors. 

 

 

Same trend as in the earlier cases of product, sum and min posteriors is observed in this case 

also. However, the performance of combined system is less than that obtained using product 

posteriors. 

3.3  ASR On Noisy Channel  

To emulate a stationary channel mismatch between training and testing data, we applied first 

order preemphasis filter with α = 0.97 to HMM-Testing Set [14]. Such distorted test data 

were passed through existing systems and word error rates were evaluated. The performance 

of different systems is tabulated in Table 8. 

Table 8: Recognition performance of ASR for preemphasized data from HMM-Testing Set. 
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Both single frame and nine frames PLP features based systems are very sensitive to these 

distortions, where as the system based on MRASTA features is quite resistant. The 

performance for the best performing combination scheme, that is, MRASTA and single frame 

PLP are also shown in the table. The product combination is relatively more resistant to 

degradation compared to others. That is, the effect of degradation is felt minimum in the 

combined system using product. 

 

3.3.1. Combining MRASTA and PLP Features 

 

Instead of combining posteriors from different classifiers trained using MRASTA and PLP, as 

discussed earlier, we also experimented combining MRASTA and PLP features and training 

one classifier for the combined features. For each frame of speech we have 39 PLP and 448 

MRASTA features and padding them will give a feature vector of dimension 487. Initially an 

MLP with 487 units in input layer, 900 units in hidden layer and 29 units in output layer was 

trained using the combined features and the performance is given in Table 9. The 

performance is poor compared to that using combining posteriors. Later we tried with 

different number of hidden units and the performance for each case is given in Table 9. Even 

by increasing the number of units in hidden layer to a large value (12400), equivalent to sum 

of the units used in MLP trained using MRASTA and MLP trained using PLP, the 

performance is poor. This infers that instead of combining features and training a single 

classifier, it may be better to train separate classifiers for each of the features and combine 

their posteriors. 

Table 9: Recognition performance of ASR for single MLP classifier trained using combined features. 

 

 

 

 

3.4  ASR Experiments with Combinations Based on DS Theory of 

Evidence 

It the following experiments, a slightly different techniques for feature extraction were used 

so the absolute numbers do not exactly correspond to the numerical results in the previous 

section. However, the experiments with the individual TANDEM and MRASTA techniques, 

as well as the experiments with product and sum of posteriors are repeated and the new 

numbers are give so that he reader can directly compare the improvements obtained using the 

Theory of Evidence. 

 

We investigate the use of DS theory of evidence for combining output of Neural Networks in 

data- driven feature extractions for ASR. Results are compared with classical combination 

rules like product and sum. 

 

Data driven feature extraction methods aims at estimating directly from data, features that are 

used in the recognition process. An effective and well established technique consists in 

estimating phoneme posteriors using a Neural Network (see [13]). Phoneme posteriors are 

further processed trough a logarithmic function and a Principal Component Analysis 

Transform (PCA) before using them as features in the classical HMM/ GMM framework. 

 

Database we used for recognition experiments is the OGI-Numbers 95 while MLP is trained 

using 3 hours of hand-labeled speech from the OGI-Stories database. Phoneme set is 
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constituted by 29 English phonemes. Two different posterior streams are considered: 

TANDEM-PLP posterior ([13]) and Multi-RASTA posterior ([14] ). 

 

In case of TANDEM-PLP posteriors, MLP input is a vector of 9 consecutive frames of PLP 

features. In case of Multi-RASTA posteriors, MLP input is a segment of one second critical 

band energies filtered through a set of multi resolution filters. Those two streams are 

supposed to capture short and long term dependencies in two different features set. We will 

consider combination of those different streams according to DS theory.  

 

Multi-RASTA features are inherently robust to linear distortion of the signal [14]. On the 

other side, Tandem-PLP features are seriously affected by this distortion. To verify the 

effectiveness of the combination techniques, we study performances of combination when a 

first order preemphasis filter with α = 0.95 is applied to the test data set.  

 

Table 10 reports TANDEM-PLP and Multi-RASTA performances in terms of WER in case of 

matched and mismatched conditions. While Multi-RASTA features hold the performance 

even in mismatched conditions, TANDEM-PLP are seriously affected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Performance of combination rule BPA2 function of the factor γ in matched conditions. 

Table 10: WER for TANDEM-PLP and Multi-RASTA features in matched and mismatched 

conditions. 

 

 

 

 

In the following, we study different combination rules for the two posterior stream. Combined 

posterior are converted into features using a logarithmic transform and then a KLT transform. 

Classical way of combining posterior are the sum rule and the product rule (e.g. [4],[15]). We 

also consider the product of errors rule, directly applied on posterior estimation and inverse 

entropy weighting (IEW)[16]. In addition to those, we consider combination trough DS 

theory. When DS theory of evidence is applied, posterior distributions are first transformed 

into BPA using rules BPA1, BPA2 and BPA3 as described in section 4. BPA from different 

posterior streams are then combined together using rules described in section 5: BPA1 is 

combined using rules (14 - 15) (for simple support functions) while BPA2 and BPA3 are 

combined using rules (16 - 19). 
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Table 11: WER for different combination rules in matched and mismatched conditions. Sum, Prod 

(product),PoE (product of errors), IEW (inverse entropy weighting). 

 

 

 

 

Table 11 shows Word Error Rates for different combination techniques in matched and 

mismatched conditions. In clean conditions combination of posteriors gives always better 

results than each posterior stream independently. 

 

Out of the combination rules based on traditional probability theory, product holds the best 

performance, while product of errors gives the higher error rate. In mismatched conditions, 

product rule gives same performance of the best feature stream, while sum and product of 

errors give inferior results. 

 

Let us now consider results from DS combination rules. Out of the three proposed 

combination framework, the best performing BPA2 is giving 7% improvement in matched 

conditions and 9% improvement in mismatched conditions w.r.t. product rule.  

 

BPA1 and BPA3 performances are similar to those obtained using product rule. Combination 

rules BPA1 and BPA3 give very similar results indicating that merging evidence from 

different outputs of the same MLP does not give any improvement in our experiments.  

 

Many other approaches for combining MLP outputs according to entropy measures have been 

considered in the past (e.g. [16],[15]). Combination rules still are product rule or sum rule but 

they are weighted according to some functions of the entropy. In our approach entropy is used 

to determine the amount of belief from a given MLP output that must be discarded i.e. 

assigned to the ignorance hypothesis. DS orthogonal sum 4 in the general case cannot be re-

conducted into any of those rules. 

 

The most questionable part is the way we transform the output of a probabilistic classifier (i.e. 

a MLP) into Basic Probability Assignment. Our choices are somehow heuristic and must be 

further investigated. The use of the entropy is a natural way of representing ignorance but 

there is no reason for supposing that ignorance should be a linear function of the entropy. As 

solution to this problem, we choose the function (7) with a correction factor γ. This factor has 

actually an impact on the final performance of the combination. Figure 1 plots WER in 

matched conditions as a function of γ for BPA2. WER are sensitive to the value of γ and there 

are some intervals in which DS combination performs consistently better than sum or product 

rules. 

 

3.5 ASR Experiments With Hierarchical Neural Nets 

For hierarchical neural nets, we felt that the experiments on relatively small OGI digit data 

(which contains together only about three hours of speech)  may not be appropriate since the 

number of free parameters in the net hierarchies is larger than in the single nets investigated 

earlier. Therefore we have switched to larger (about 100 hours of speech) database of speech 

from meetings, also described earlier in the report. 

 

We trained hierarchical NN up to a level of hierarchy of 3. Table 12  report Frame Error Rate 

for single NN, two NN and three NN  models. Input is 9 frames  PLP features augmented with 

delta and delta-delta. 

 



 

19 

 

Table 12 Frame error rates computed considering all the speech and the silence frames, and only the 

speech frames while considering the classification correct if the output indicating the correct phoneme 

was the highest, among two highest and among top three highest outputs 

 With 

silence 

Without 

silence 

2 best without 

silence 

3 best without 

silence 

Single MLP 34.6 % 43.0 % 32.3 % 26.3 % 

Two stage 

hierarchy 

29.2 % 35.9 % 27.5 % 22.7 % 

Three stage 

hierarchy 

27.9 % 33.0 % 25.5 % 21.1 % 

 

In Table 12, we report frame error rates for the single MLP, and for hierarchy of two and tree 

MLPs. The overall frame error rate is reduced by 5.5 % absolute when the cascade of two 

MLP is used and by additional 2\% absolute for the cascade of three MLPs. It is also 

interesting to notice that the difference between the frame error rate of a single output and of 

three best outputs is progressively reduced. Detailed analysis of results(not shown here)shows 

that there is no frame error increase for any phoneme. 

 

An interesting effect of such a hierarchy is that at each layer the acoustic context is 

progressively increased: if the first MLP has a temporal context of 9 frames, the second MLP 

will in effect use a temporal context of 9+8 frames and the third one a temporal context of 

9+8+8. In next section we investigate the use of a hierarchy of NN directly using directly an 

acoustic context of one second. 

 

Finally, Table 13 shows word error rates on large vocabulary continuous speech experiments 

obtained using PLP, Tandem, MRASTA and hierarchical features. Single net TANDEM and 

MRASTA features do not outperforms classical PLP front-end. There is a consistent drop in 

performance in VT data which are particularly noisy when NN features are used. When a 

second NN is used with TANDEM features an average improvement of 2.2 % absolute is 

obtained; this improvement is verified on all type of data. On the other hand, when a third NN 

is added, overall performance deteriorates by 0.6 %. This may be an effect due to the over-

fitting of the net on a finite size training data.  

 

Table 13 Word error rates in percent for several feature sets, including the hierarchical nonlinear 

classifier based features 

 average AMI CMU ICSI NIST VT 

PLP 42.4 42.8 40.5 31.9 51.1 46.8 

TANDEM 46.6 41.4 43.7 31.3 54.5 64.9 

Two stage hierarchy 44.4 39.6 42.3 28.9 51.5 62.9 

Three stage hierarchy 45.0 40.5 44.4 29.4 51.1 61.9 

MRASTA 45.9 48.0 41.9 37.1 54.4 48.8 

2 stage hierarchy with MRASTA 39.4 38.1 36.9 28.2 48.0 46.9 

 

 

MRASTA features are designed to remove mean value in the modulation spectrum through 

the use of a multi-resolution band-pass filters on the modulation spectrum and are thus more 

robust to noise and distortions. Furthermore they use an acoustic context of one second. 

Overall performance of MRASTA is slightly better than Tandem features. It is interesting to 

notice the performance on VT data, where contrarily to Tandem they hold performance 

comparable to PLP. On the other hand Hierarchical MRASTA show an average improvement 

of 6 % over the single net MRASTA and 3 % improvement over PLP features. 
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4 Summary and Conclusions  

The combination system using MRASTA and PLP gives a significant improvement over 

MRASTA alone. This infers that MRASTA and PLP carry complementary information. 

Among different combination methods examined, product of posteriors seems to give 

maximum benefit. If there is any degradation due to channel, then also the combined system 

using product offers more immunity compared to others. Finally, the poor performance of the 

single classifier trained using combined MRASTA and PLP features infers that it is better to 

train independent classifers on MRASTA and PLP and combine their posteriors. 

 

In this work we have demonstrated by conducting different ASR experiments that MRASTA 

and PLP have complementary information and hence combine well to give improved 

performance. Several improvements are possible over this work. We can further subdivide 

MRASTA and PLP feature sets depending on some criterion, train classifiers for each of the 

subsets and then try to combine them. 

 

Further, we attempted combining output from different neural networks based on Dempster-

Shafer Theory of Evidence. Main appeal of this theory is the possibility of representing 

ignorance. Under certain assumptions, DS combination rule show analogies with what was 

found by Fletcher in his speech perception experiments. 

 

Three different rules for transforming MLP outputs into belief are presented. DS combination 

rule is tested in recognition experiments and compared with classical combination rules (sum, 

product and product of errors) both in matched and mismatched conditions. In matched 

conditions, all combination rules outperforms individual feature streams. Best combination 

rule is BPA2 while PoE is the worst one. On the other side, product of “ignorance” (i.e. 

BPA1) shows similar results as the product rule. In mismatched conditions, we would like to 

have at least a performance equal to the performance of the best feature stream. In case of 

product rule and BPA1 this is achieved. BPA2 is still achieving error rate lower than the one 

provided by the best feature stream meaning that it is able to extract useful information from 

both streams. Sum and PoE rules are giving error rate higher than those achieved by the best 

feature stream. 
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