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D5.11 Discriminative methods for multi-cues
classification

Idiap Research Institute (Idiap)

Abstract:

Detecting incongruent audio-visual events requires robust models of generic and specific classes.
Furthermore, after detection action should follow. This requires multi cue online learning algorithms.

We propose two classification algorithms that consider multi-cues inputs. Both algorithms are
motivated from the recent development in online learning literatures, thus they shared the simplicity
and speed of the online learning algorithms. The first algorithm tackles the problem of learning under
limited computational resources in a teacher-student scenario, over multiple visual cues. For each
separate cue, we train an online learning algorithm that sacrifices performance in favor of bounded
memory growth and fast update of the solution. We then recover back performance by using multiple
cues in the online setting. As in standard online learning setups, the learning takes place in rounds. On
each round, a new hypothesis is estimated as a function of the previous one.

The second algorithm is a Multi Kernel Learning algorithm that obtains state-of-art performance in a
considerably lower training time. We prove theoretically and experimentally that 1) our algorithm has a
faster convergence rate as the number of kernels grows; 2) the training complexity is linear in the
number of training examples; 3) very few iterations are enough to reach good solutions.



1. Introduction

In order to identify incongruent event (Weinshall, et. al., 2008), we need robust models of the
worlds, which could successfully categorize the known sensory inputs. However,
categorization is still one of the most challenging open problems in artificial perception
research, especially in computer vision today. One the other hand, robust classifiers with high
accuracy is an essential component when we design novelty detection algorithms. They help
us to analyze the performance of new algorithms, where the errors come from, which finally
lead to better algorithms.

Object categories present a wide visual variability. This, coupled with scalability over
hundreds of classes and robustness issues (e.g. changes in illumination, occlusion, clutter),
makes it unclear how to build general models suitable for all categories. Because of this, a
dominant approach is to learn instead what distinguishes them, by using highly discriminative
and robust features combined with sophisticated machine learning techniques (Nilsback and
Caputo, 2004; Lin et. al., 2007; Kumar and Sminchisescu, 2007; Varma and Ray, 2007;
Gehler and Nowozin, 2009; Kembhavi et. al., 2009; Vedldi et. al., 2009). The intuitive notion
that using more features leads to better performance has been recently translated into
discriminative classifiers combined with kernels over multiple cues (Bosch et. al., 2007;
Gehler and Nowozin, 2009; Kumar and Sminchisescu, 2007; Varma and Ray, 2007;
Kembhavi et. al., 2009; Vedldi et. al., 2009). Results obtained by these methods on various
benchmark databases represent the current state-of-the-art in object categorization. However,
most of the emphasis so far has been put on the accuracy of these methods. They are usually
more computational expensive compared to method using single cue, which prevents their
application to large-scale problems. Moreover, these method are batch method, which cannot
be directly applied in problems where the data is sequential. Many related application
scenario of the DIRAC project are intrinsically sequential. In these problems, the system finds
something unknown (Weinshall, et. al., 2008) in the scene, and it cannot wait to collect
enough data before building a model for the new concept, as it is expected to interact
continuously with the environment. Under this setup, the system starts learning from
impoverished data sets and keeps updating its solution as more data is acquired.

Motivated from the aforementioned problems, we have designed two new discriminative
multi-cues classification algorithms. Both algorithms are motivated from the recent
development in online learning literatures, thus they shared the simplicity and speed of that
theoretical framework.

The first algorithm is called OMCL, Online Multi-Cues Learning Algorithm. It is a
wrapper algorithm, which could plug-in most of the multi-class online learning
algorithms in the machine learning literatures. For each separate cue, we train an online
learning algorithm that sacrifices performance in favor of bounded memory growth and
fast update of the solution. We then recover back performance by using multiple cues in
the online setting. As in standard online learning setups, learning takes place in rounds
and the algorithm only sees each data sample once. On each round, a new hypothesis is
estimated as a function of the previous one. The algorithm will preserve most of the
theoretical guarantee of its base classifiers. That is, it will have a mistake and
convergence bound. When we use the Projectron++ (Orabona et. al., 2008) algorithm as
base classifier, we will have a bounded memory complexity. A preliminary version of this
algorithm has been published in the Proceeding of ACCV 2009 (Jie et. al., 2009).

The second algorithm is called OBSCURE, Online-Batch Strongly Convex mUIti keRnel
|Earning algorithm. It is a Multiple Kernel Learning (MKL) algorithm that has a guaranteed
and fast convergence rate to the optimal solution. Our algorithm has a training time that



depends linearly on the number of training examples, with a convergence rate sub-linear in
the number of features/kernels used. At the same time, it achieves state-of-the-art
performance on standard benchmark databases. The algorithm is based on a stochastic sub-
gradient descent algorithm in the primal objective formulation. Minimizing the primal
objective function directly results in a convergence rate that is faster and provable, rather than
optimizing the dual objective. Furthermore, we show that by optimizing the primal objective
function directly, we can stop the algorithm after a few iterations, while still retaining a
performance close to the optimal one. A preliminary version of this work has been
submitted to CVPR 2010.
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Abstract. We propose an online learning algorithm to tackle the prob-
lem of learning under limited computational resources in a teacher-student
scenario, over multiple visual cues. For each separate cue, we train an
online learning algorithm that sacrifices performance in favor of bounded
memory growth and fast update of the solution. We then recover back
performance by using multiple cues in the online setting. To this end,
we use a two-layers structure. In the first layer, we use a budget online
learning algorithm for each single cue. Thus, each classifier provides con-
fidence interpretations for target categories. On top of these classifiers,
a linear online learning algorithm is added to learn the combination of
these cues. As in standard online learning setups, the learning takes place
in rounds. On each round, a new hypothesis is estimated as a function
of the previous one. We test our algorithm on two student-teacher ex-
perimental scenarios and in both cases results show that the algorithm
learns the new concepts in real time and generalizes well.

1 Introduction

There are many computer vision problems that are intrinsically sequential. In
these problems the system starts learning from impoverished data sets and keeps
updating its solution as more data is acquired. Therefore the system must be
able to continuously learn new concepts, as they appear in the incoming data.
This is a very frequent scenario for robots in home settings, where it is very
likely to see something unknown [1] in a familiar scene. In such situations the
robot cannot wait to collect enough data before building a model for the new
concept, as it is expected to interact continuously with the environment. Limited
space and computing power may also constrain the algorithm from being actually
implemented, considering that the stream of training data can be theoretically
infinite. Still, most of the used algorithms for computer vision are intrinsically
batch, that is they produce a solution only after having seen enough training
data. Moreover they are not designed to be updated often, because most of the
time updating the solution is possible only through a complete re-training.

A different approach is the online learning framework [2]. This framework is
motivated by a teacher-student scenario, that is when a new concept is presented
to the machine, the machine (student) can ask the user (teacher) to provide a



label. This scenario would correspond to the case of a user explaining to the
robot a detected source of novelty in a scene. The algorithms developed in the
online learning framework are intrinsically designed to be updated after each
sample is received. Hence the computational complexity per update is extremely
low, but their performance is usually lower than similar batch algorithms.

Ideally, we would like to have an online method with performance as high as
batch based algorithms, with fast learning and bounded memory usage. Existing
online algorithms (see for example [3,4]) fail to satisfy all these conditions. The
mainstream approaches attempt to keep the same performance of batch based
methods while retaining either fast learning or bounded memory growth but not
both. On the other hand, multiple-cues/sources inputs guarantee diverse and
information-rich sensory data. They make it possible to achieve higher and robust
performance in varied, unconstrained settings. However, when using multiple
inputs, the expansion of the input space and memory requirements is linearly
proportional to the number of inputs as well as the computational time, for both
the training and test phase.

Some recent works in online learning applied to computer vision include:
Monteleoni and K&éridinen [5] present two active learning algorithms in the
online classification setting and test it on an OCR application; Fink et. al. [6]
who describe a general framework for online learning and present preliminary
results on office images and face recognition. Grangier and Bengio [7] propose a
Passive-Aggressive algorithm [3] for Image Retrieval, which takes advantage of
the efficient online learning algorithms. On the multi-cues literature, a recently
and influential proposed approach to combine cues in the batch setting is to learn
the weights of the weighted sum of kernels [8]. Even if many attempts have been
done to speed up the training process [9, and references therein|, this approach
is still slow and does not scale well to big datasets. Moreover these methods are
intrinsically non-incremental, hence they cannot be used in a sequential learning
setting. A theoretically motivated method for online learning over multiple cues
has been proposed in [10], however they assume that all the cues live in the same
space, meaning that the same kernel must be used on all the cues.

In this work we tackle the problem of learning from data using an online
learning algorithm over multiple visual cues. By combining online learning with
multiple cues, we manage to get the best of both worlds, i.e. high performance,
bounded memory growth and fast learning time. The proposed algorithm is
tested on two experimental scenarios: the first is place recognition which sim-
ulates the student-teacher scenario where the robot is shown an indoor envi-
ronment composed of several rooms (this is the kitchen, this is the corridor,
etc), and later it is supposed to localize and navigate to perform assigned tasks.
The second is object categorization which simulates the student-teacher scenario
where the autonomous agent is presented a collection of new objects. For both
scenarios, results show that the algorithm learns the new concepts in real time
and generalizes well to new concepts.

In the next section we describe the online learning framework and the build-
ing blocks that we will use in our online multi-cues architecture (Section 2-3).



Section 4 describes our experimental findings. Finally, we conclude the paper
with a summary and a discussion on possible future research.

2 Online Learning

Online learning is a process of continuous updating and exploitation of the inter-
nal knowledge. It can also be thought of as learning in a teacher-student scenario.
The teacher shows an instance to the student who predicts its label. Then the
teacher gives feedback to the student. An example of this would be a robot which
navigates in a closed environment, learning to recognize each room from its own
sensory inputs. Moreover, to gain robustness and increase the classification per-
formance, we argue for the need of learning using multiple cues. Hence our goal
is to design an online learning algorithm for learning over multiple features from
the same sensor, or data from multiple sensors, which is able to take advantage of
the diverse and information-rich inputs and to achieve more robust results than
systems using only a single cue. In the following we will introduce the online
learning framework and we will explain how to extend it to multiple cues. Due
to space limitations, this is a very quick account of the online learning framework
— the interested readers are referred to [2] for a comprehensive introduction.

2.1 Starting from Kernel Perceptron

In online setting, the learning takes place in rounds. The online algorithm learns
the mapping f : X — R based on a sequence of examples {x;,y;}._,, with
instance x; € X and label y; € {—1,1}. We denote the hypothesis estimated
after the ¢t-th round by f;. At each round ¢, the algorithm receives a new instance
Xy, then it predicts a label §; by using the current function, g, = sign(fi(x:)),
where we could interpret |f(x)| as the confidence in the prediction. Then, the
correct label y; is revealed. The algorithm changes its internal model everytime
it makes a mistake or the confidence on the prediction is too low. Here, we
denote the set of all attainable hypotheses by H. In this paper we assume that
H is a Reproducing Kernel Hilbert Space (RKHS) with a positive definite kernel
function k£ : X x X — R implementing the inner product which satisfies the
reproducing property, £(x) = (k(x, ), f()).

Perhaps the most well known online learning algorithm is Rosenblatt’s Per-
ceptron algorithm [11]. On the ¢-th round the instance x; is given, and the algo-
rithm makes a prediction g;. Then the true label is revealed: if there is a predic-
tion mistake, i.e. §; # y¢, it updates the hypothesis, f; = fi—1+y:k(x¢, ), namely
it stores x; in the solution. Otherwise the hypothesis is left intact, f; = fi—1.
Given the nature of the update, the hypothesis f; can be written as a kernel
expansion [12], fi(x) = D ;cs, aik(xi,x). The subset of instances used to con-
struct the function is called the support set. Although the Perceptron is a very
simple algorithm, it has been shown to produce very good results. Several other
algorithms (see Passive-Aggressive [3] and the references therein) can be seen as
belonging to the Perceptron algorithm family. However, given that they update



each time there is an error, if the problem is not linearly separable, they will
never stop adding new instances to the support set. This will eventually lead
to a memory explosion. As we aim to use the algorithm in applications where
data must be acquired continuously in time, a Perceptron algorithm cannot be
used as it is. Hence we will use as a basic component of our architecture the
Projectron++ algorithm [13].

2.2 The Projectron++ Algorithm

The Projectron++ [13] algorithm is a Perceptron-like algorithm bounded in
space and time complexity. It has a better mistake bound than Perceptron.
The core idea of the algorithm comes from the work of Downs et. al. [14] on
simplifying Support Vector Machine solutions. Hence, instead of updating the
hypothesis every time a prediction mistake is made, or when the prediction
is correct with low confidence?, the Projectron++ first checks if the update
can be expressed as a linear combination of vectors in the support set, i.e.
k(x,-) = Zf;} dik(x;,+) = Pi_1(k(x¢,-)), where P,_1(:) is the projection oper-
ator. The concept of linear independence can be approximated and tuned by a
parameter n that measures the quality of the approximation. If the instance can
be approximated within an error 7, it is not added to the support set but the
coefficients in the old hypothesis are changed to reflect the addition of the in-
stance. If the instance and the support set are linearly independent, the instance
is added to the set, as Perceptron. We refer the reader to [13] for a detailed
analysis.

3 Online Multi-Cues Learning Algorithm

In this section we describe our algorithm for learning over multiple cues. We
adapt the idea of high-level integration from the information fusion community
(see [15] for a comprehensive survey), and design our algorithm with a two-layers
structure. The first layer is composed of different Projectrons++, one for each
cue. The second layer learns online a weighted combination of the classifiers of
the first layer, hence we interpret the output of the Projetrons++ on the first
layer as confidence measures of the different cues.

A lot of work has been done on how to select the best algorithm from a pool
of prediction algorithms, such as the Weighted Majority algorithm [16]. How-
ever, they usually assume black-box classifiers. Here we want to learn the best
combination of classifiers, not just picking the best one. Therefore we train both
the single cue classifiers and the weighted combination with online algorithms.
In the rest of this section, we will describe our algorithm in the binary setup. For
multi-class problems, the algorithm is extended using the multi-class extension
method presented in [17]; we omit the detailed derivation for lack of space.

Suppose we have N cues of the same data X = {x!,x2,...,xV}. Each cue
is described by a feature vector x* € R™i, where x* could be the feature vector

3 that is when 0 < yefrio1(xe) <1



Algorithm 1 OMCL Algorithm
Input: Projectron++ parameter n > 0; Passive-aggressive parameter C' > 0.
Initialize: fi = 0,S¢ =0, where i =1,2,...,N; wo =0.
fort=1,2,...,T do
Receive new instance x%, where i=1, 2, ..., N
Predict hi = f{_,(x}), where i=1, 2, ..., N
Predict §: = sign(ws - ﬁt)
Receive label gy
fori=1,2,...,N do
Loss: 11i = maz(0,1 — y; - iz%)
if I > 0 then
Compute projection error A
ifyt:ﬁi or A <7 then
Projection update: fi = fi_1 + aiy: Pi_q (k(x%, )
else
Normal update: fi = fi_, 4+ yek(x:,-)
end if
Update hypothesis: hi = f7 (x})
end if
end for
Loss: 12; = max(0,1 — yrwy - flt)

Set: 7 = min(C, Hé}%)

Update: wgr1 = wy + Ttytﬁt
end for

associated with one feature descriptor or one input sensor. Suppose also we are
given a sequence of data {X;,y;}\_,, where y; € {—1,1}. On round ¢, in the first
layer, N Projectrons++ [13] learn the mapping for each views: f} : xi — hi,
where hi € R, fori = 1,2,..., N. On top of the Projectron++ classifiers, a linear
Passive-Aggressive [17] algorithm is used to learn a linear weighted combination
of the confidence outputs of the classifiers: w; : hy — R. The prediction of the
algorithm is g, = sign(w; - hy).

After each update of the first layer, we also update the confidences on the
instances before passing them to the second layer. We denote by isz the confi-
dence of the updated hypotheses and denote by ﬁi the confidence predictions
of the Projection++ classifiers before knowing the true label. Hence, instead of
updating the second layer based on ﬁ%, the linear Passive-Aggressive algorithm
on top considers the new updated confidence lNzi This modified updating rule
prevents the errors propagating from the first layer to the second layer, and in
preliminary experiments it has shown to be less likely prone to over-fitting. We
call this algorithm OMCL (Online Multi-Cue Learning, see Algorithm 1).

3.1 Online to Batch Conversion

Online algorithms are meant to be constantly used in teacher-student scenarios.
Hence the update process will never stop. However it is possible to transform



them to batch algorithms, that is to stop the training and to test the current
hypothesis on a separate test set. It is known that when an online algorithm stops
the last hypothesis found can have an extremely high generalization error. This is
due to the fact that the online algorithms are not converging to a fixed solution,
but they are constantly trying to “track” the best solution. If the samples are
Independent & Identically Distributed (IID), to obtain a good batch solution
one can use the average of all the solutions found, instead of the last one. This
choice gives also theoretical guarantees on the generalization error [18].

Our system produces two different hyperplanes at each round, one for each
layer. In principle we could simply average each hyperplane separately, but this
would break the ITD assumption of the inputs for the second layer. So we propose
an alternative method: given that the entire system is linear, it can be viewed
as producing only one hyperplane at each round, that is the product of the two
hyperplanes. Hence we average this unique hyperplane and in the testing phase

we predict with the formula: sign ( 4 Zthl wg - By ).

Note that, as f; can be written as a kernel expansion [12], the averaging
does not imply any additional computational cost, but just an update of the
coeflicients of the expansion. We use this approach as it guarantees a theoretical
bound and it was also found to perform better in practice.

4 Experiments and Results

In this section, we present an experimental evaluation of our approach on two
different scenarios, corresponding to two publicly available databases. The first
scenario is about place recognition for a mobile robot, and the experiments
were conducted on the IDOL2 dataset [19]. The second scenario is about learn-
ing new object categories, and the experiments were conducted on the ETHS80
dataset [20]. Both experiments can be considered as a teacher-student scenario,
where the system is taught to recognize rooms (or objects) by a human tutor.
Therefore the robot has to learn the concepts in real time, and generalize well
to new instances. For all experiments, we compared the performance and the
memory requirements to the standard Perceptron algorithm by replacing the
Projectron++ algorithm in our framework. We also compared our algorithm
to two different cues combination algorithms: the “flat” data structure and the
majority voting algorithm. The “flat” structure is simply a concatenation of all
the features of different cues into a long feature vector, and we trained a Pro-
jectron—++ classifier for it. The majority voting algorithm predicts the label by
choosing the class which receives the highest number of votes. As for a majority
voting algorithm in multi-class case, the number of experts (number of cues in
our experiments) required by the algorithm which guarantees a unique solution
will grow exponentially with the number of classes. Although it does not happen
very often in practice, we show that sometimes two or more classes receive an
equal number of votes, especially when the number of cues is relatively small
compared to the number of classes. We determined all of our online learning
and kernel parameters via cross-validation. Our implementation of the proposed
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Fig. 1. Average online training error rate and recognition error rate for the test set on
IDOL2 dataset as a function of the number of training samples.

algorithm uses the DOGMA package [21]; the source code is available within the
same package.

4.1 First Scenario: Place Recognition

We performed the first series of experiments on the IDOL2 database [19], which
contains 24 image sequences acquired using a perspective camera mounted on
two mobile robot platforms. These sequences were captured with the two robots
moving in an indoor laboratory environment consisting of five different rooms
(one-person office (00), corridor (CR), two-person office (TO), kitchen (KT) and
Printer Area (PA)); they were acquired under various weather and illumination
conditions (sunny, cloudy, and night) and across a time span of six months. We
considered the scenario where our algorithm has to incrementally update the
model, so to adapt to the variations captured in the dataset.

For experiments, we used the same setup described in the original paper [19]
(Section V, Part B). We considered the 12 sequences acquired by robot Dumbo,
and divided them into training and testing sets, where each training sequence has
a corresponding one in the test sets captured under roughly similar conditions.
Similarly, each sequence was divided into five subsequences. Learning is done in
chronological order, i.e. how the images were captured during acquisition of the
dataset. During testing, all the sequences in the test set were taken into account.
In total, we considered six different permutations of training and testing sets.
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Table I: Place recognition error rate using different cues
after the last training round. Each room is considered P
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separately during testing, and it contributes equally to Number of training samples xa0
the overall results as an average. It shows that the
OLMC algorithm achieves better performance than that

of using each single cue. For the “vote” algorithm, the

percentage of test data which have two or more classes
receive equal number of votes is reported in the bracket
below the error rate. Hence the algorithm can not make
a definite prediction. Therefore we considered that the
algorithm made a prediction error.

Fig. 2. Average size of support set for dif-
ferent algorithms on IDOL2 dataset as a
function of the number of training sam-
ples.
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Fig. 3. Visualization of the average normalized weights for combining the confidence
outputs of the Projectron++ classifiers: a. the weights obtained by our algorithm at
last training round; b. the weights obtained by solving the above optimization problem.
c. the angles between the two vectors Wop: and Wi as function of the number of
training samples.

The images were described using three image descriptors, namely, CRFH [22]
(Gaussian derivative along x & y direction), Bag-of-Words [23] (SIFT, 300 visual
words) and RGB color histogram. In addition, we also used a simple geometric
feature from the Laser Scan sensor [24].

Fig. 1 reports the average online training and recognition error rate on the
test set, where the average online training error rate is the number of prediction
mistakes the algorithm makes on a given input sequence normalized by the length
of the sequence. Fig. 2 shows the size of the support sets as a function of the
number of training samples. Here, the size of the support set of Projectron++
is close to that of Perceptron. This is because the support set of Perceptron is
already very compact. Since the online training error rate is low, both algorithms
do not update very frequently. In Table I we summarize the results using each
cue after finishing the last training round. We see that our algorithm outperforms



both the “flat” data structure and the majority vote algorithm. The majority
vote algorithm could not make a definite prediction on approximately 4% of the
test data, because there are two or more classes which received an equal number
of votes.

Moreover, we would like to see what is the difference in performance between
the learned linear weights for combining confidence outputs of the Projectron++
classifiers and the optimal linear weighted solution. In another words, what is
the best performance a linear weighted combination rule can achieve? We ob-
tained an optimal combination weights, denoted as W, by solving a convex
optimization program (see Appendix A) on the confidence outputs of the Pro-
jectron++ classifiers on the test set. We reported the result in Table I, which
shows that our algorithms achieve performance similar to that of the optimal
solution. We also visualized the average normalized weights for both the optimal
solution and the weights obtained by our algorithm at the last learning round
in Fig. 3a&b. From these figures, we can see that the weights on the diagonal
of the matrix, which corresponds to the multi-class classifiers’ confidence inter-
pretations on the same target category, have highest values. Fig. 3c reports the
average angle between the two vectors W, and W g, which is the weights
obtained by our algorithms during the online learning process. We can see that
the angle between these two vectors gradually converges to a low value.

4.2 Second Scenario: Object Categorization

Perceptron Projectron++ Projectron++, sparser
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Fig. 4. Average online recognition error rate for the categorization of never seen objects
on ETH-80 dataset as a function of the number of training samples. We see that all
algorithms achieve roughly similar performance (Projectron++ is slightly better), the
Perceptron converges earlier than the Projectron++ algorithms.

We tested the algorithm on the ETH-80 objects dataset [20]. The ETH-80
dataset consists of 80 objects from eight different categories (apple, tomato, pear,
toy-cows, toy-horses, toy-dogs, toy-cars and cups). Each category contains 10 ob-
jects with 41 views per object, spaced equally over the viewing hemisphere, for
a total of 3280 images. We use four image descriptors: one color feature (RGB
color histogram), two texture descriptors (Composed Receptive Field Histogram
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Table II: Categorization error rate for different objects using 0
different cues after finishing the last training round. We could

see that our algorithm outperforms the “Flat” structure, the q
“Vote” algorithm and the case when using each cue alone.

It also shows that some cues are very descriptive of certain
objects, but not of the others. For example, the color feature
achieves almost perfect performance on tomato, but its perfor- Fig. 5. Average size of support set
mance on other objects is low. It also supports our motivation for different algorithms on ETHS80
on designing multi-cues algorithms. For the “vote” algorithm, dataset as a function of the number
the percentage of test data which have tow or more classes of training samples.

receives equal number of votes is reported in the bracket.

(CRFH) [22] with two different kinds of filters: Gaussian derivative LyL, and
gradient direction (DirC) and a global shape feature (centered masks). We ran-
domly selected 7 out of the 10 objects for each category as training set, and the
rest of them as test set. All the experiments were performed over 20 different
permutations of the training set.

We first show the behavior of the algorithms over time. In Fig. 4, we show
the average recognition error on never seen objects as a function of the num-
ber of learned samples. In the experiments, we used two different setting of 7
parameters, labeled as Projectron++ and Projectron++4, sparser. The growth
of the support set as a function of the number of samples is depicted in Fig. 5.
We see that the Projectron++ algorithm obtain similar performance as the Per-
ceptron algorithm with less than 3/4 (Projectron++) and 1/2 (Projectron++,
sparser) of the size of the support set. Finally, in Table II we summarize the
error rate using different cues for each category after finishing the last training
round (Projectron—+-+).

5 Discussion and Conclusions

We presented an online method for learning from multi-cues/sources inputs.
Through experiments on two image datasets, representative of two student-
teacher scenarios for autonomous systems, we showed that our algorithm is
able to learn a linear weighted combination of the marginal output of classi-
fiers on each sources, and that this method outperforms the case when we use
each cue alone. Moreover, it achieves performance comparable to the batch per-
formance [19,20] with a much lower memory and computational cost. We also
showed that the budget Projectron++ algorithm had the advantage of reducing
the support set without removing or scaling instances in the set. This keeps per-
formance high, while reducing the problem of the expansion of the input space
and memory requirement when using multiple inputs. Thanks to the robustness
gained by using multiple cues, the algorithm could reduce more the support set



(e.g. Projectron++, sparser, see Fig. 4c & Fig. 5) without any significant loss
in performance. This trade-off would be a potentially useful function for ap-
plications working in a highly dynamic environment and with limited memory
resources, particularly for systems equipped with multiple sensors. Thanks to
the efficiency of the learning algorithms, both learning and predicting could be
done in real time with our Matlab implementation on most computer hardwares
which run Matlab software.

In the future, we would like to explore theoretical properties of our algorithm.
It is natural to extend our algorithms to the active learning setup [5] to reduce
the effort of data labeling. Meanwhile, it would be interesting to explore the
properties of co-training the classifier using the messages passed from some other
classifiers with high confidence on predicting certain cues.
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Appendix A

Let {h;,y;}\_, be the confidence outputs of the Projectron++ classifiers on the
test set of [ instances, where each sample h; is drawn from a domain R™ and
each label y; is an integer from the set ) = {1,2, ..., k}. In the multi-class setup,
m = n X k, where n is the number of cues (i.e. number of the Projectron++
classifiers) and k is the number of classes. Therefore, we obtained the optimal
linear solution by solving the following convex optimization problem:

. 1 9
min SIWIF+C > &y
i=1,...,l, jeyC
subject to Wyi hy + &y > Wj - by
Vi, jeyd
&,j; =0

where W is the multi-class linear weighted combination matrix of size k x m,
and W,. is the r-th row of W. We denote the complement set of y; as y& = Y\ y;.
This setting is a generalization of linear binary classifiers. Therefore, the value
W, - h; denotes the confidence for the 7 class and the classifier predicts the label
using the function:

§ = argmax{W, - h}
r=1,...,k

The regularizer ||W]||? is introduced to prevent slack variables ¢; ; producing
solutions close to 0. The cost C value is decided through cross validation.
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Abstract

Several object categorization algorithms use kernel
methods over multiple cues, as they offer a principled ap-
proach to combine multiple cues, and to obtain state-of-the-
art performance. A general drawback of these strategiesis
the high computational cost during training, that prevents
their application to large-scale problems. They also do not
provide theoretical guaranteeson their convergencerate.

Here we present a Multi Kernel Learning algorithm
that obtains state-of-the-art performance in a considerably
lower training time. We generalize the standard Multi Ker-
nel Learning formulation to introduce a parameter that al-
lows usto decidethelevel of sparsity of the solution. Thanks
to this new setting, we can directly solve the problemin the
primal formulation. We prove theoretically and experimen-
tally that 1) our algorithm has a faster convergencerate as
the number of kernels grow; 2) the training complexity is
linear in the number of training examples; 3) very few iter-
ations are enough to reach good solutions. Experiments on
three standard benchmark databases support our claims.

1. Introduction

Categorization is one of the most challenging open prob-
lems in computer vision today. Object categories present
a wide visual variability within each class, especidly for
man-made objects. This, coupled with scalahility over hun-
dreds of classes and robustness issues (e.g. changesin il-
lumination, occlusion, clutter), makes it unclear how to
build general models suitable for all categories. Because
of this, adominant approach isto learn instead what distin-
guishesthem, by using highly discriminative and robust fea-
tures combined with sophisticated machine learning tech-
niques[7, 10, 11, 14, 15, 24, 25].

The intuitive notion that using more features leads
to better performance has been recently transated into
SVM-based classifiers combined with kernels over multi-
ple cues [2, 7, 10, 11, 24, 25]. Results obtained by these
methods on various benchmark databases represent the cur-
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rent state-of-the-art in object categorization. Among them,
Multi Kernel Learning (MKL) approaches have attracted
considerable attention [11, 24]. However most emphasis
has been put so far on their accuracy, and recent findings
seem to indicate that current MKL algorithms do not im-
prove much in performance over the naive baseline of aver-
aging al thekernels[7].

To our knowledge, none of the MKL algorithms[17, 20,
23] providestheoretical guarantees on the convergencerate.
Moreover, the learning processis usually stopped early, be-
fore reaching the optimal solution, based on the common
assumption that it is enough to have an approximate solu-
tion of the optimization function. Considering the fact that
the current MKL algorithms are solved based on their dual
representation, this might mean being stopped far from the
optimal solution [8]. From a practical point of view, this
means that the observed performance of such algorithms
could be low, even if potentially they could perform well.
Another issue is the scalability of these algorithmsto large-
scale problems.

The contribution of this paper is a MKL algorithm that
has a guaranteed and fast convergence rate to the optimal
solution. We also generalize the MKL learning problem,
adding a parameter to tune the level of sparsity in the kernel
domain. We show experimentally that aiming at the max-
imum sparsity, as in the original MKL formulation, is not
always the optimal strategy. Our algorithm has a training
time that depends linearly on the number of training exam-
ples, with a convergence rate sub-linear in the number of
features/kernels used. At the same time, it achieves state-
of-the-art performance on standard benchmark databases.
The agorithm is based on a stochastic sub-gradient descent
algorithm in the primal objective formulation. Minimizing
the primal objective function directly results in a conver-
genceratethat isfaster and provable, rather than optimizing
the dual objective [8]. Furthermore, we show that by opti-
mizing the primal objective function directly, we can stop
the algorithm after few iterations, while still retaining a per-
formance close to the optimal one. We call this algorithm
OBSCURE, Online-Batch Strongly Convex mUlti keRnel



|Earning.

1.1. Multiple Cuesand Kernels

Consider thetask of image classification with M classes,
F different cues and N training instances {z;}¥., drawn
from an unknown fixed probability distribution. We want
to learn ascore function s(+, -) that best predicts the class 4
for any future sample = drawn from the same distribution,
where the predicted classis the one with the highest score

g(x) = argmax s(x,y) . (1)
yeY
This score function should belearned using all the F* differ-
ent cues, to gain robustness and performance.

Some of the methods addressing thistask are based on a
two-layers structure [ 7, 15]. A classifier is trained for each
cue and then their outputs are combined by another classi-
fier. Evenif this strategy has recently received attention in
the computer vision community, thiskind of approachisthe
oldest and dates back to the seminal work of Wolpert [26].
They use Cross-Validation (CV) methodsto create thetrain-
ing set for the second layer [7, 26]. Hence they have a run-
time of about K+1 times the training of a single classifier,
such as support vector machine (SVM), whereK isthe num-
ber of folds of the CV. This method is currently considered
the state-of-art method for image classification tasks [7].

Another interesting strategy uses a one-layer architec-
ture, such asthe MKL [12, 17, 20, 23, 28]. Using the theory
of kernels, one solves a joint optimization problem while
also learning the optimal weightsfor combining the kernels,
with each cue corresponding to a kernel. The optimization
problem is similar in al these approaches. This approach
is theoretically founded, plus it consists of a unique opti-
mi zation problem. However solving it is more complex than
training, e.g., asingle SVM classifier. Another issue is that
current MKL approaches do not scale well to the number
of training examples and number of classes. The SILP al-
gorithm [20, 28] depends polynomially on the number of
training examples and number of classes with an exponent
of ~ 2.4 and ~ 1.7 respectively. For the other algorithms
these dependencies are not clear.

From a theoretical point of view, if we consider a two-
layers architecture with the first layer composed by kernel
classifiers, and alinear classifier in the second stage, thetwo
approaches are very similar. In both cases the final predic-
tion function is written as

F

j(x) = argmax Y B (x,y), (2)

yeY j=1
where ﬁg are the weights learned by the one-layer or two-
layersframework, and s7 is the score function for each ker-
nel. Therefore the two formulations are essentially equiva-

lent, with differencesgiven only by the specific training pro-
cedures used. In both methods a regularizer that favors the
selection of only a subset of the kernelsisused [1, 20, 24].

The main contribution of this paper is showing that the
one-layer formulation, beside being more principled, can
also achieve a better performance and a considerably lower
training time than state-of-the-art two-layers architectures.
We propose a p-norm version of the standard MKL algo-
rithm, and we minimize it with atwo stages algorithm. The
first oneisan onlineinitialization procedurethat determines
quickly the region of the space where the optimal solution
lives. The second stage refines the solution found by the
first stage. Differently from the other methods, our algo-
rithm solves the optimization problem directly in the pri-
mal formulation, in both stages. Using recent approaches
in optimization theory, the algorithm takes advantage of the
abundance of information to reduce the training time [21].
In fact, we show that the presence of alarge number of ker-
nels helps the optimization process instead of hindering it,
obtaining, theoretically and practically, afaster convergence
rate with more kernels.

The rest of the paper presents the theory and the ex-
perimental results supporting our claims, namely that our
OBSCURE algorithm has better performance and training
time than state-of-the-art one-layer and two-layers archi-
tectures. Section 2 revises the basic definitions of Multi
Kernel Learning and generalizes it to p-norm formulation.
Section 3 presents the theory and algorithm of OBSCURE,
while Section 4 reports experiments on categorization tasks.

2. p-norm Multi Kernel Learning

In this section we first introduce formally the MKL
framework and its notation, then its p-norm generalization.

2.1. Definitions

Notations. Let {z;,y;}~Y,, with N € N, z; € X and
yi € Y ={1,---,M},M > 2, bethetraining set. We
indicate matrix and vectors with bold letters. A bar, e.g.
w, denotes the vector formed by the concatenation of the F'
vectorsw’, hencew = [w!, w?, -, wf].

Multi-class Classifier. A common approach to multiclass
classification isto use joint feature maps ¢(x, y) on data X
and labels Y (e.g. [22]). Thefunction s/ will be defined as

s (x,y) = w - ¢ (x,y), 3

where w’ is a hyperplane'. The functions ¢’ (x,y) map
the samples into a high, possibly infinite, dimensional
space. With multiple cues, we will have F functions
& ()i = 1,---,F. This will dso define I kernels

1For simplicity we will not use the bias, it can be easily added modify-
ing the kernel definition.



K((z,y), (&', y) as ¢/ (x,y) - ¢ (',y'). Thisdefinition
includes the case of training M different hyperplanes, one
for each class. Indeed ¢’ (x, y) can be defined as

d)j(wvy) = [07 ,0,¢/‘i($),0,--- 70}3 (4)
——"

Y

where ¢'7(-) is a transformation that depends only on
data.  Similarly w will be composed by M blocks,
[wt, - wM]. Hence, by congtruction, w - ¢/ (z,r) =
w” - ¢ (x). According to the defined notation, ¢(z,y) =

[d)l('ray)v e 7¢F(1‘ay)}'

LossFunction. We define amulti-classlossfunction [22]

where |¢|+ ismax(t, 0). Thisloss function is convex and it
upper bounds the multi-class misclassification loss.

Normsand dual norms. A generic norm of avector w is
indicated by ||w||, its dual normisindicated by ||w||.. For
w € R%and p > 1, we denote by ||w||, the p-norm of w,
ie, |[wl, = (X, [w[?)!/?. The dual norm of || - |, is
Il-1l4, wherep and ¢ satisfy 1/p+1/¢q = 1. Inthefollowing
p and ¢ will always satisfy thisrelation.

Group Norm.
H“_’”%,p onw as

It ispossibleto definea (2, p) group norm

(6)

that isthe p-norm of the vector of F' elements, formed by 2-
normsof the vectorsw?. Thedual normof || - ||z, iS || -[|2,4-
These kind of norms have been used as block regularization
inthe LASSO literature [27].

2.2. Multi Kernel Learning

@3, := [|[llwll2, [w?[|2, -, [l 2],

The MKL optimization problemwasfirst proposedin[1]
and extended to multiclassin [28]. It can be written as

A& S
in 2 J _ .
2 ]_Zzl lwllz |+ 57 Zi:l S

st. @ - (¢(xs,yi) — o(xi,y) > 1 =&, Vi, y #vi . (7)

This same formulation is used in [1, 20], while in [17]
the proposed formulation is dightly different, athough it
is proved to be equivalent. Note that we chose to weight
the regularization term by A and divide the loss term by NV,
instead of the more common formulation with only the loss
term weighted by a parameter C'. Our choice greatly sim-
plifies the math of our algorithm. However the two formu-
lations are fully equivalent when setting A = --. Hencea

CN
big value of C will correspond to asmall value of A.

We will now generalizethisformulation to group-norms.
Using the notation defined above, we can rewrite (7) as

A 1
min §||‘I’||§,1+Nzg(w7wi7yi)’ (©)

w i=1
where w = [wi, w2, - ,wr|. The(2,1) group normis
used to induce sparsity in the domain of the kernels. This
means that the solution of the optimization problem will se-
lect asubset of the F' kernels. However, even if sparsity can
be desirable for specific applications, it could bring to a de-
crease in performance. Moreover the problem in (8) is not
strongly convex [9], so its optimization algorithm is rather
complex and its rate of convergenceis usually slow [1, 20].
We propose to generalize the optimization problem, us-

ing ageneric group norm

A 1
. _ 12 _
H,}Il)n §||w||2,p+ Nzg(w7wny’b)> (9)

i=1

where 1 < p < 2. We define f(w) = 3|3, +
LS 0(®,2i,y;) and @* equals to the optimal solu-
tion of (9), w* = argming f(w). The added parameter p
will allow us to decide the level of sparsity of the solution.
Infact it is known that the 1-norm favors sparsity, and here
the 1-norm favors a solution in which only few hyperplanes
have a norm different from zero. Moreover this new formu-
lation has the advantage of being \/g-strongly convex [9].
Strongly convexity is a key property to design fast batch
and online algorithms: the more a problem is strongly con-
vex theeasier itisto optimizeit [18, 9]. Many optimization
problems are strongly convex, as the SVM objective func-
tion. When p tendsto 1, the solution gets close to the sparse
solution obtained solving the problemin (7), but the strong
convexity decreases. In the following we will show how
to take advantage of the strong convexity to design a fast
algorithmto solve (9).

3. The OBSCURE Algorithm

Our basic optimization toal is the framework developed
in[18, 19]. It isageneral framework to design and analyze
stochastic sub-gradient descent algorithms for any strongly
convex function. At each step the algorithm takes a ran-
dom sample of thetraining set and cal culates a sub-gradient
of the objective function evaluated on the sample. Then it
performs a sub-gradient descent step with decreasing learn-
ing rate, followed by a projection of the solution inside
the space where the solution lives. The agorithm Pegasos,
based on this framework, is the current state-of-art solver
for linear SYM [19, 21].

Given that the (2, p) group norm is strongly convex, we
could use this framework to design an efficient MKL algo-
rithm. 1t would inherit all the propertiesof Pegasos[19, 21].



In particular the convergence rate, and hence the training
time, would be proportional to {. Although in general this
convergence rate can be quite good, it becomes slow when
A isbig. Moreover it is common knowledge that in many
real-world problems, particularly in visual learning tasks,
the best setting for A is very small, or equivalently C' is
very big (the order of 102 — 103). Notice that thisis a gen-
eral problem. The same problem also exists in the other
SVM optimization agorithms such as SMO and similar ap-
proaches[8], astheir training time also dependson the value
of the parameter C'.

Do et al. [5] proposed a variation of the Pegasos algo-
rithm called proximal projected sub-gradient descent. This
formulation has a better convergence rate for small values
of A\, whileretaining the fast convergencerate for big values
of \. A drawback isthat the algorithm needsto know in ad-
vance an upper bound on the norm of the optimal solution.
In [5] the authors proposed an algorithm that estimates this
bound while training, but it gives a speed-up only when the
norm of the optimal solution @* is small. Thisis not the
casein most of the MKL problemsfor categorization tasks.

Our OBSCURE al gorithm takes the best of the two so-
lutions. We first extend the framework of [5] to the generic
non-Euclidean norms. Then we solve the problem of the
upper bound of the norm of the optimal solution using an
new online algorithm. This takes advantage of the charac-
teristic of the MKL task and quickly convergesto a solution
close to the optimal one. Hence OBSCURE is composed
by two steps: the first step is a fast online algorithm (Al-
gorithm 1), used to quickly estimate the region of the space
where the optimal solution lives. The second step (Algo-
rithm 2) starts from the approximate solution found by the
first stage, and exploiting the information on the estimated
region, it uses a stochastic proximal projected sub-gradient
descent algorithm.

We have proved the following theorem that gives a the-
oretical guarantee on the convergencerate of OBSCURE to
the optimal solution of (9).

Theorem 1. Suppose that ||¢7 (x4, yi)ll2 < 1,V5 =
1,---,F, t=1,---,N.Let1 <p<2,§€(0,1),Rthe
value returned by the first stage, and ¢ = v/2F/9 + \R.
Then with probability at least 1 — § over the choices of the
random samples we have that after 7" iterations of the 2nd
stage of the OBSCURE algorithm, the difference between
f(w7) and the optimal solution of (9), f(w™), islessthan

/a1 +logl . [c\/qv/1+logT 4R
5 min T 7))

Moreover if the problem is linearly separable by a hyper-
plane @ and the first stage is run until convergence, R is
lessthan v/6F 7 || |-

Proof. Seethe supplementary material.

Algorithm 1 OBSCURE stage 1 (online)
1 Input: ¢
2: Initialize: 6, = 0,%; =0
3 fort=1,2,...,7do
4 Sample at random (¢, y:)
5§ = argmax 0, - ¢(x,y)
_YFYt B
6. Zt = d(xe,yr) — d(xe, Je)
7: if (¢, x¢,y¢) > 0thenn, = min (1— %,1)
8: eISET]t =0
9 041 =0+ Mzt

. q—2
. i _ 1 HB{+1H2 J L
10: th*E(m 01+17V]71,'~-,F
11: end for
12: return Op41, Wri1

13 return R = \/@r |, + 52 S0 € (@ri1, 0, 0:)

The theorem first shows that a good estimate of R can
speed-up the convergence of the algorithm. In particu-
lar if the first term is dominant, the convergence rate is
O(42eL). If the second term is predominant, the conver-
gencerateis O(R\/"%), S0 it becomesindependent from
A (i.e. independent from C'). The algorithm will always op-
timally interpolate between these two different rates of con-
vergence. As said before, the rate of convergence depends
on p, through ¢q. A p closeto 1 will result in a sparse so-
lution, with a worst rate. However in the experiment sec-
tion we show that the best performanceis not always given
by the sparsest solution. Moreover Theorem 1 also shows
that the convergencerate has a sublinear dependency on the
number of kernels, F', and if the problem islinearly separa-
bleit can have afaster convergencerate using morekernels.
We will explain thisformally in Section 3.2.

The training time of OBSCURE is proportiona to the
number of steps given by Theorem 1 multiplied by the com-
plexity of each step. Thisin turn is dominated by the pre-
diction (line 5 in Algorithms 1 and 2), that has complexity
O(NFM). Note that this complexity is common to any
other similar algorithm, and it can be reduced using meth-
odslike kernel caching [4].

In the following we introduce the necessary mathemati-
cal tools to be able to derive OBSCURE and its theorem.

3.1. Batch p-norm MKL

We first state a Lemmathat is a generalization of Theo-
rem 1in [5] to general norms, using the framework in [18].
We need two additional definitions. Given a convex func-
tion f : S — R, its Fenchel conjugate f* : S — R is
defined as f*(u) = sup,cg(vTu — f(v)). A vector z isa
sub-gradient of a function f at v, indicated with 9 f (v), if
Vu € S, f(u) — f(v) > (u—v)T.

Lemmal. Leth(-) = | - ||* bea 1-strongly convex func-



Algorithm 2 OBSCURE stage 2 (batch)

1 Input: ¢, 81, @1, R, \
2. Initialize: so =0
3 fort=1,2,...,Tdo
4:  Sampleat random (x+, yt)
5 g = argmax Wy - ¢(x¢,y)
Y#Yt _ _
6:  if (e, @, ye) > 0then 2y = d(xe, yi) — P, Git)
7. elsezt =0
8: d{; =X+ St—1

Alg z 2
o s st 05 (\/d?+q(q|et2;+2| ll2,q) —dt>

10: 7zt = /\tisg
11: (7] t+d = (1 -

ﬂ)e_z + Nt Ze
122 G141 = min (1 qR/H0t+1H2q> 1

q—2
j 1167, 1112 .
. J . t+1 J —
B win = (Hmlnz q> O, Vi= 1o F
14: end for

Algorithm 3 Proximal projected sub-gradient descent
L Input: R, o, w, € S
2. Initialize: so =0
3 fort=1,2,...,Tdo
4. Recelve g,
5: Zt = 8gt(wt)
V(ottse )2+ Eh—ot—s;, 1
6 S¢ = S¢—1 + 3
7 = (ot+s) "
8: W41 = Vh*(Vh
9: end for

(we) — neze)

tion wr.t. anorm || - || over S, Assume that for all ¢, ¢:(-)
isa o-strongly convex function wir.t. A(-), and || z¢ . < L.
Additionally, let &,., be defined as Zf:a &;. Then for any
u : |lu — w|| < 2R, Algorithm 3 achieves the following
bound for all 7" > 1,

T T

L2
wi) — < min 46, R? 4 —
;M 1) — i )),&,._@t:l Rt e
Proof. Seethe supplementary material.

With this Lemma we can now design stochastic sub-

gradient algorithms. In particular, setting || - |2, asnorm,
h() = 8]|®|3,,, and g, (@) = 2h(®) + (@, 1, 1), W

obtain Algorithm 2 that solves the p-norm MKL problem
in (9). In particular lines 6-7 correspond to the calculation
of the sub-gradient of the multiclass loss function (5). The
updates are done on the dual variables 6, in lines 11-12.
They are transformed into w; in line 13, through a simple
scaling.

Note aso that Algorithm 2 can start from any vector,
while this is not possible in the Pegasos algorithm where
at the very first iteration the starting vector is multiplied by

0 [19]. The parameter R is basically an upper bound on
the norm of the optimal solution, i.e. R > ||@*||2,,. Inthe
next Section we show how to initialize thisa gorithm and to
calculate R in an efficient way.

3.2. Initialization through an online algorithm

In Theorem 1 we saw that if we have a good estimate of
R, the convergencerate of the algorithm can be much faster.
Moreover starting from a good solution could speed-up the
algorithm even more.

We propose to initialize Algorithm 2 with an online al-
gorithm. Algorithm 1 is the online version of problem (9)
and it is derived using Corollary 7 in [9]. It is similar to
the 2p-norm matrix Perceptron of [3], but it overcomesthe
disadvantage of being used with the same kernel on each
feature. Asin [3], for Algorithm 1 it is possible to prove
a relative mistake bound. We omit the details for lack of
space, but they are available in the supplementary material.

We canrun it just for few iterations and then evaluate its
norm and itsloss. In Algorithm 1 R is then defined as

N
B 2 _
R:= \l lorill3, + 5 ZH E(Br41, i, i)

N
T¥ 2 73 % TR
> (18713, + 5 D0 L0 @) = [0 2, - (10)
=1

So at any moment we can stop the algorithm and obtain an
upper bound on || @*||2,p.

If Fisbigenough, itisvery likely that the classification
problemislinearly separable. When thisisthe case, we can
provethat Algorithm 1 will convergeto asolution which has
null loss on each training sample, in afinite number of steps.
More specifically we can state the following Theorem.

Theorem 2. Suppose that ||¢7(xs, y:)lla < 1,¥5 =

JE, t=1,---  N,and1 < p < 2. If the problem (9)
islinearly separable by a hyperplane @, then the Algorithm
1 will converge to a solution in a finite number of steps, of

the order of O(¢2F's @3 ,,). Moreover the returned value

of R will belessthan v/6F 7 ||i|.p.
Proof. See the supplementary material.

The dependency on the number of kernelsin this theo-
rem is strongly sublinear, moreover if the problem (9) will
be linearly separable with F' kernels, increasing the number
of kernelsto F’ > F, we have that ||@l|5 , will decrease.
This means that we expect Algorithm 1 to converge, under
the separability assumption, in a number of steps that is al-
most independent on F' and in some cases even decreasing
in . The same consideration holds for the value of R re-
turned by the algorithm, that can decrease when we increase
the number of kernels. A smaller value of R will mean a



faster convergence of the second stage. We will confirm
this statement experimentally in Section 4.

4. Experiments

In this section we test OBSCURE on the Oxford flow-
ers [16], Caltech-101 [6] and MNIST [13] datasets. Al-
though our MATLAB implementation of the agorithm?
is not optimized for speed, it is already possible to ob-
serve the advantage of the low runtime complexity. This
is particularly evident when training on datasets contain-
ing large numbers of categories and lots of training sam-
ples. In al our experiments, the parameter p is chosen
from the set {1.01,1.05,1.10, 1.25,1.50,1.75,2}. When
p tends to 1, the solution tends to be sparse. The regu-
larization parameter \ is set through CV, as ﬁ where
C € {1,10,100,1000}.

4.1. Oxford flowers

The Oxford flowers dataset [16] contains 17 different
categories of flowers. Each class has 80 images with
three predefined splits (train, validation and test). The au-
thors also provide seven precomputed distance matrices®.
These distance matrices are transformed into kernel using
exp(—y~! - d), where v is the mean of the pairwise dis-
tances and d is the distance between two examples.

We have implemented an extended version of the orig-
inal Pegasos agorithm [19, 21] for the MKL problem of
(9). We first compare the running time performance be-
tween OBSCURE and Pegasos. Their generalization per-
formance on the testing data (Figure 1(Left)) as well as the
value of the objective function (Figure 1(Right)) are shown
in Figure 1. In the same Figure, we also present the results
obtained using other combination methods: SILP[20], Sim-
pleMKL [17] and LP-$3 [7]. The cost parameter is selected
from the range C' € {1, 10, 100, 1000} for MKL methods.
We see that OBSCURE converges much faster compared
to Pegasos. This proves that, as stated in Theorem 1, OB-
SCURE has a better convergencerate than Pegasos. All the
feature combination methods achieve similar results on this
dataset. It seems that both SILP and SimpleMKL obtain
an optimal solution on datasets of this size. LP-g is order
of magnitudes faster as it uses an efficient standard SVM
solver [4].

4.2. Caltech-101 datasets

The Caltech-101 [6] dataset is a standard benchmark
dataset for object categorization. Here we followed the ex-
perimental setup originally proposed and widely used in the
literature. In our experiments, we used the pre-computed

2Code attached with the supplementary materials.
3www.robots.ox.ac.uk/Nvgg/research/flowers/
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Figure 1. Comparison of performance on Oxford flowers dataset.

featuresand kernels of [ 7] which the authorsmade available
on their website?, with the same training and test split. This
allows us to compare against them directly. Following that,
we report results using all 102 classes of the Caltech-101
dataset using three splits. There are five different image de-
scriptors, using different setup of parameters and computed
at different scales. It results in atotal of 39 kernels. Note
that, asthey are derived from 5 features only, some of them
might be redundant. For brevity, we omit the details of the
features and kernels and refer to [7].

Figure 2 shows the behavior of our algorithm using dif-
ferent values of the parameter p (Figure 2(Left)), different
number of kernels (Figure 2(middle)) and the running time
under different size of training examples (Figure 2(right)).
The dashed line in Figure 2(left & middie) correspondsto the
results obtained by the first online stage of the OBSCURE
algorithm. It can be observed from the figures that:

a). [Figure2(Left)] Theonline step of OBSCURE achieves
a performance close to the optimal solution in atrain-
ing time order of magnitudesfaster (10 to 10%). When
p islarge (i.e. ¢ is small) the online stage converges
even faster. Thisis consistent with Theorem 2.

b). [Figure2(Left)] By changing p, itispossibletoimprove
performance. As stated before, when p tendsto 1, the
solution tends to be sparse. On the other hand, when
p equals 2, the algorithm gets a similar solution as av-
eraging kernels. Although some of the kernels may
contain redundant information, all of them may be in-
formative for classification. Thusimposing sparsity on
them does not help increasing performance. Hence the
optimal p hereis1.10 — 1.25.

¢). [Figure 2(middie)] OBSCURE has a better converges
rate when there are more kernels, as stated in Theorem
2. In other words, the algorithm achieves a given ac-
curacy in less iterations when more kernels are given.

d). [Figure 2(Right)] We can see that the algorithm con-
verges quite fast to the optimal solution. Using 15 ex-
amples per class, the run timeissimilar to the runtime
of LP-3 (about 36m). When the number of training ex-
amplesincreasesto 30, the advantage of our algorithm

4www.vision.ee.ethz.ch/Npgehler/projects/icchS/
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kernels computed at different spatial pyramid level, as similar experiment performed in [7]; (Middle) the effect of different number of
kernels randomly sampled from the 39 kernels; (Right) running time for different number of training examples using al the 39 kernels.

becomes clear, while a single run of LP- takes about
146m.
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Figure 3. Performance of OBSCURE on Caltech-101 datasets:
(Top) comparison with other combination methods on Caltech-
101; (Down) comparison with other published methods.

In Figure 3(Top) we report the results obtained using
different combination methods. The best results for OB-
SCURE were obtained when p is at the smallest value
(1.01). This is probably because among these 39 kernels
many were redundant or not discriminative enough. For ex-
ample, the worst single kernel achieves only an accuracy of

13.5% + 0.6 when trained using 30 images per category,
while the best single kernel achieves 69.4% =4 0.4. Thus,
sparser solutions are to be favored. We see aso that our
method achieves performance comparableto the state-of -art
(LP-3, [7]), and outperforms the other MKL (SILP) meth-
ods. One possible explanation is that the MKL (SILP) fails
to converge to an optimal solution. However, note that al-
though our algorithm obtains a solution close to the sparse
one, it will never reach a completely sparse solution. This
may be one of the reasons for the gap in performance be-
tween OBSCURE and LP-3 [7], since severa kernelswere
not informative. However, this may not be critical, since
usualy in practice al used featureskernels are informa-
tive. We did a simple test by selecting five kernels from
the five different families of features[7] which achieve best
performance. They were selected using a ssimple K-folds
CV on the 30 training examples per class. The results as
well as the performance of the averaging of these five ker-
nels are also shown in Figure 3. We see that the ago-
rithm improves dlightly over the previous one. This sug-
gests that OBSCURE, when provided with discriminative
features, could increase performance even further. In Fig-
ure 3(Down) we compare OBSCURE with other methodsin
the literatures®.

4.3. MNIST

For the last set of experiment we use the MNIST [13]
dataset of handwritten digits. The dataset has a training set
of 60,000 gray-scale 28x28 pixel digit images for training
and 10,000 images for testing. We cut the original digit
image into four square blocks (14 x 14) and obtained an
input vector from each block. We used three kernels on
each block: alinear kernel, a polynomial kernel and a rbf
kernel, resulting in 12 kernels. Figure 4 shows the general-
ization performance on the test set achieved by OBSCURE

SWe did not include the results of [2, 24] since they are erroneous. See
eg. the authors' websites.
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over time, for varioustraining size. We see that OBSCURE
quickly converges to the best performance, moreover the
convergenceis faster when more training samples are used,
asin [21]. It also shows that the time to reach the optimum
is approximately linear in the number of training samples.
The SVM performance using averaging kernel and the best
kernel isalso plotted. Noticethat in the figure we only show
the results of up to 20,000 training samples for the sake of
comparison, otherwise we could not cacheall the 12 kernels
in memory. However, by computing the kernel “on the fly”
we are ableto solvethe MKL problem using the full 60,000
examples very efficiently.

5. Conclusions and Discussion

This paper presents OBSCURE, a novel and efficient
algorithm for solving p-norm MKL. It uses a hybrid
two-stages online-batch approach, optimizing the objective
function directly in the primal with a stochastic subgradi-
ent descent method. Experiments show that OBSCURE
achieves state-of-art performance on multiclass classifica-
tion problems. Furthermore, the solution found by the on-
line stage is closeto the optimal one for varioustasks, while
being computed several orders of magnitude faster. Our ap-
proach is general, hence it can be applied to any other algo-
rithm with a strongly convex regularizer [9]. For example
the framework can be very easily extended to solve other
problems such as structure output prediction[22], to have
an MKL agorithm for structured output.

OBSCURE has a faster convergence rate as the number
of cuegkernels grows. Thus we expect to achieve better
performance with more discriminative features. A simple
feature selection technique such as cross-validation could
aready be beneficial. On the other hand, our results show
that non-sparse models might get better performance (in the
sense of accuracy and speed). Thisis somehow in contrast
with recent work that prefers sparse models [1, 7, 20]. As
alast remark, we notice that the disadvantageous results of
MKL methods, reported in [ 7], may be because those algo-
rithmsfail to convergeto the optimal solution. By using our
method, MKL can still be a popular machine learning tool
for cue combination tasks.
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