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Abstract:

Learning from sensorial patterns associated with different kinds of sensors
is paramount for biological systems, as it permits them to cope with
complex environments where events rarely appear twice in the same way.
In this report we want to investigate how perceptual categories formed in
one modality can be transferred to another modality in biological and
artificial systems. We first present a study on Mongolian gerbils that show
clear evidence of transfer of knowledge for a perceptual category from the
auditory modality to the visual modality. We then introduce an algorithm
that mimics the behavior of the rodents within an online learning
framework. Experiments on simulated data produced promising results,
showing the pertinence of our approach.
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1 Introduction

One of the magnificent abilities of higher animals and humans is to cope
with a highly complex environment in which events rarely appear twice in
the same way. The ability to extract abstract categories from specific sensory
experiences can be considered as basic for dealing with the variety of things.
Once formed, categories can also be transferred to newly encountered, rare
stimuli, leading to their quick identification.

Research on artificial cognitive systems has the ambitious goal to build
autonomous agents exhibiting similar capabilities. Significant progress has
been achieved in the last years in the fields of visual categorization [1, 2]
and detection of incongruent events [3]. Still, artificial systems are far from
achieving performance even remotely comparable to those of biological sys-
tems, particularly in terms of dealing with unexpected stimuli. A crucial
aspect is that biological systems build categorical models using multi sen-
sory information. A widely acknowledged advantage of multimodal category
models for artificial systems is their robustness. A less explored, but equally
fundamental property, is that information on one single modality can be
exploited to boost learning in another modality. Specifically, in this paper
we want to investigate how perceptual categories formed in one modality
(audio) can be transferred to another modality (vision). We first looked at
biological systems: our previous work in the auditory system has shown that
even rodents (Mongolian gerbils) are capable of abstracting from learned ex-
periences by forming categories [4]. We demonstrated that the formation of
auditory categories is accompanied by the emergence of spatiotemporal ac-
tivity patterns in auditory cortex: during training the electrocorticogramm
was recorded from multielectrode arrays implanted onto the primary audi-
tory cortex of the Mongolian gerbils. All electrodes in the array shared the
same waveform and the amplitude of the common waveform was modulated
in the two spatial dimensions forming Amplitude Modulated patterns (AM-
patterns). The moment the animals were able to sort new events into the
correct categories coincided with the evolvement of category- specific AM-
patterns. These AM-patterns only correlated with the stimulus category
but not with the specific physical features of the stimulus [5]. Here we move
forward, and we address the transfer of formed categories from one sensory
modality to another sensory modality. We trained Mongolian gerbils to as-
sociate two different presentation rates (’slow’ versus ’fast’) of stimuli with
Go- versus No-Go- responses using an active avoidance paradigm (section
2). Animals were trained first in the auditory modality; when they produced
correct responses reliably, the modality was switched to vision. The observed



behavioral results indicate that the animals could use the rate-response as-
sociation learned during auditory training for their visual discrimination.

Armed with this knowledge, we designed a theoretical framework for
transfer of knowledge across modalities that mimics the behavioral response
of Mongolian gerbils. Our algorithm uses the online learning framework,
where the learner receives one input at a time, and takes action based on
its current knowledge. Then, the environment gives feedback to the learner
on the validity of the selected action. The goal of the learner is to minimize
the number of mistakes on the input sequences. Within this framework, we
assume that the two modalities are connected via a mapping function, i.e.
that it is possible to predict one modality, given the other one. This results
in an algorithm for transfer of knowledge across modalities. Experiments
show both the effectiveness of the presented framework and its consistency
with the biological findings.

To the best of our knowledge, our model represents the first attempt
to implement a biologically motivated algorithm for transfer of knowledge
across modalities.

The rest of the paper is organized as follows: section 2 describes the
experiments showing how Mongolian gerbils have the capacity to transfer
categorical knowledge formed in the auditory modality to the visual one.
Section 3 presents the algorithm that performs transfer of knowledge across
modalities exhibiting a behavior similar to that of Mongolian gerbils. We
first describe qualitatively the proposed architecture (section 3.1), then we
discuss its theoretical properties 3.2 and presents simulation experiments
proving the effectiveness of our approach 3.3. The paper concludes with a
summary.

2 Transfer of Knowledge Across Modalities in Bi-
ological Systems

In this section we describe our study on the transfer of formed categories
from one sensor modality to another. We trained Mongolian Gerbils (Meri-
ones unguiculatus) to associate two different presentation rates (”slow” ver-
sus "fast”) of stimuli with Go- versus No-Go-responses using an active avoid-
ance paradigm. Animals were trained in a shuttle box: to one of the stimulus
rates (the Go-stimulus) the animals had to jump across a hurdle to avoid
electrical foot shock (the Go-response). To the other stimulus rate (the
No-Go-stimulus) animals should stay in their shuttle box compartment (the
No-Go-response), if they jumped nevertheless they would receive a mild foot



shock. Animals were trained first in the auditory modality: here they had
to discriminate the rates of tones. When they produced correct responses
reliably the modality was switched. Now the animals had to discriminate
the same stimulus rates in visual flash stimuli. For one group of animals
(the congruent group) the stimulus- response association stayed the same
from auditory to visual training (i.e. both during the auditory and the
visual training the animals had to respond to the "fast” stimuli with the
Go-Response and to the "slow” Hz stimuli with the No-Go-Response). For
a second group of animals (the incongruent group) the association between
the stimulus rate and the response was reversed from auditory training to
visual training (i.e. if they had to associate the Go-response with the ”fast”
stimuli during auditory training, then during visual training they had to
associate the ”"slow” stimuli with the Go-response).

Expectedly, the auditory discrimination was easily learned by all ani-
mals: within a few training sessions they showed the appropriate discrimi-
native behavior. After the modality switch animals of the congruent group
learned the visual discrimination faster than animals of the incongruent
group. Moreover, they acquired a higher overall rate of correct responses. So
the behavioral results indicate that the animals could use the rate-response
association learned during auditory training for their visual discrimination.
Figure 1 (a) shows as an example the performance of one animal in terms
of the rate of correct responses to the Go-response and the rate of incorrect
responses to the No-Go- response. We see that the Go- response curve is
higher when switching modality (after 14 trials), which indicates the knowl-
edge transfer.

For the analysis of the neurophysiological basis of audiovisual category
transfer, the electrocorticogram was recorded from two 32-multielectrode
arrays, chronically implanted onto primary auditory cortex and primary
visual cortex, respectively. The dynamics of crossmodal interactions were
investigated by analysis of spatiotemporal activity patterns in the ongoing
electrocorticogram (ECoG) using a multivariate pattern classification pro-
cedure [6, 7]. Cortical activity patterns associated with the Go- and the
No-Go stimuli were determined in the spatial distribution of signal power:
in the §- and ~-band (15 Hz to 80 Hz) of the ECoG the root mean squared
amplitude was calculated in single time windows of 180 ms for every record-
ing channel of the auditory and visual cortex. Data windows were stepped
in 20 ms intervals through each trial. The temporal development of the
amplitude patterns across electrodes can be described by the trajectory of
a vector in a space with one dimension for each channel. To compare tra-
jectories from Go- and No-Go- trials the trajectories were averaged across
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Figure 1: Performance of an animal with transferring of information (a)
and one without transferring (b). Rate of correct responses to the Go-
response (CS+) and the rate of incorrect responses to the No-Go-response
(CS-) across the training sessions. First 14 sessions are auditory training,
the following sessions visual training.

subsets of trials to get Go- and No-Go- centroids. Trials not used for cen-
troid computation were classified trial by trial as closer to a Go- centroid
or closer to a No-Go- centroid on the basis of a Fuclidean distance metric.
The probability of finding the observed number of correctly classified Go-
and No-Go- trials by chance (null hypothesis) was determined for all 20 ms
time steps of a trial. During auditory training, patterns could be classi-
fied correctly only in the electrocorticogramm taken from training sessions
where the animals started to discriminate the rates of tones. Interestingly,
patterns could be observed both in the auditory and the visual cortex, but
not each time a pattern occurred in the auditory cortex there was also a
pattern in the visual cortex. At earlier time, points during the course of a
trial patterns occurred predominantly in the auditory cortex, especially dur-
ing earlier phases of training there were no significant patterns in the visual
cortex at that time. Only at later time points after the start of the stimulus
patterns could be observed in both cortices. In addition, we observed that
during early phases of auditory training, when the animal was just about
to learn the discrimination (showing already some correct responses but not
yet producing them reliably), patterns appeared only in the auditory cor-
tex. During visual training in the congruent group there were both animals
which learned the visual discrimination fast and achieved a reasonably rate
of correct response, and animals which did not reach significant levels of
discrimination performance. In animals not showing correct responses dur-



ing the first sessions of visual training we can suspect that there was no
transfer learning. Figure 1 (b) shows as an example the performance of an
animal not showing signs of knowledge transfer. In these sessions also no
significant patterns could be detected. Nevertheless, some animals started
to produce some correct responses in later phases of the training. For these
animals patterns could be identified in the visual cortex. When the animals
became better in discriminating the stimuli patterns could also be found in
the auditory cortex, but still they could be classified more reliable in the
visual cortex. For animals showing a decent amount of correct response
already during the first training sessions, we can suspect that they trans-
ferred the rate-response association learned during auditory training to the
visual training. In these animals patterns could be detected in both the au-
ditory and the visual cortex already during the first training sessions. Often
patterns in the auditory cortex could be classified more reliably. The lat-
ter findings fit well to our expectations: in training phases we assume that
there might be transfer learning across modalities. Also, we find patterns in
the modalities involved. But we have to take into consideration that even
during auditory training, when information transfer across the cortices was
neither required nor helpful, patterns were found both in the auditory cor-
tex and the visual cortex. Apparently, the default state of the system is
to share the meaning of a stimulus among cortices even though there is no
immediate need to do so from the experimental situation. This could give
an explanation in advance on why transfer learning might work fast and
easily: when other cortices are already informed about the rate-response
association, they could make use of this information when stimuli are pre-
sented in the modality they are specific for. But this also means that the
emergence of patterns in multiple cortices is not the neural correlate which
distinguishes between transfer learning and simple discrimination learning.
Nevertheless some of our findings seem to be specific for transfer learning.
We already noted that, during auditory training, patterns appeared in the
auditory cortex first. Also during visual training, when the animals showed
no indication of transfer learning, significant patterns could be detected first
and predominately in the visual cortex. Obviously the cortex primarily in-
volved in the feature extraction process also seems to have a priority in the
production of patterns. It seems that the evolvement of patterns in only one
single cortex indicates that the animal somehow is involved in the process
of category learning, whereas patterns in both cortices indicate that the
animals successfully sorts stimuli into categories which have already been
formed. In contrast to this, in animals showing correct responses already in
the first training sessions, after the modality switch patterns could be ob-



served in both the auditory cortex and the visual cortex. Also these patterns
appear early in the course of the trials. We suggest that in these animals
both cortices are involved already during the process of category learning.

3 Transfer of Knowledge Across Modalities: A
Theoretical Framework for Artificial Systems

We now turn to artificial systems, with the aim to develop an approach
able to simulate the behavior of the knowledge transfer observed in the
experiments with the Mongolian Gerbils. In particular our aim is to de-
sign a learning algorithm that is able to replicate the finding that using
knowledge from another source helps to improve the performance. Here the
performance is measured by the number of mistakes the system does on a
sequence of inputs. We want to stress that we do not claim that the pro-
posed method has a biological plausibility. All we aim for is that it can
capture some critical aspects of the observed biological behavior.

In the rest of the section we present qualitatively our architecture (sec-
tion 3.1). In section 3.2 we give the details of the implementation and we
provide its theoretical analysis within the online learning framework. We
report our experimental findings, proving the soundness of our approach, in
section 3.3.

3.1 The Architecture

The proposed architecture is composed by a cascade of different classifiers,
see figure 2. In the first layer we have two classifiers that work independently
on the two modalities, i.e., audio and video. The second layer combines the
outputs of the first layer with a weighted sum. The weights are continually
and automatically adjusted to guarantee good performance. As shown in
the next section, this layer grants to the system the ability to exploit the old
knowledge gained when trained with a different modality. Still the system is
robust, in the sense that if the old knowledge is useless or even adversarial,
the performance will not be damaged that much. Moreover it is adaptive,
that is it wisely uses the old and new knowledge to have always the best
performance possible.

We also assume that there is a “link” between the two modalities (the
“Mapping” box in the figure). That is, it is possible to predict one modality
from the other one. Note that this mapping does not have to be perfect, a
noisy reconstruction of one modality from the other one will suffice. In the
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Figure 2: Diagram of the system in the two phases. The gray boxes are
active.

Classifier
Modaliy 1

biological experiments this mapping function is represented by the fact that
the audio and video signal have the same frequency. In our experiments we
learn the mapping offline (this can be done using any standard regression
method). Note that, during this offline learning phase, the system is fed
with inputs from the two modalities at the same time. However, during this
stage the inputs are not associated with any task.

The learning takes place in two different phases. In the first phase the
system is learning using only the first modality, figure 2.a. The second
classifier is inactive, so the output of the weighted sum is just equal to the
output of first classifier. In the second phase, figure 2.b, the environment
switches to the second modality and the system starts learning with the
second classifier. At the same time the input is transformed into the first
modality by the mapping function and fed to the first classifier. As a result,
the output is given by classifiers in both modalities, even if only one was
received as input.

3.2 Implementation and Analysis

To choose the algorithms for the different blocks of our architecture we first
note that the classic framework of batch learning is not suited to model the
learning task of the Mongolian Gerbils. We need instead to use the online
learning framework [8]. In this framework the learner receives one input
at the time and it acts based on its current knowledge. After its action,
the environment gives feedback to the learner on the validity of the selected
action. After each feedback, the learner can update its internal model. The
sequence of inputs can be of any length and no assumption is done on the
order of the data. The aim of the learner is to minimize the number of
mistakes on any sequence of inputs. Note that in this framework there is
no distinction between a training and a testing phase, as in batch learning.
On the contrary, the system is continuously used to predict (and decide
which action to do) and updated after each action. This models exactly the
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situation of the experiment with the Mongolian Gerbils. Algorithms of this
kind are for example the well-known Perceptron [9], ALMA [10], Passive-
Aggressive [11]. For a more comprehensive introduction to the topic see
[8].

As said above, there are not hypothesis on the order of arrival of the in-
puts nor any I.I.D. (Independent and Identically Distributed) assumption.
Still the algorithms have theoretical guarantees on the worst case perfor-
mance. More formally the performance is measured with a non-negative
loss function, for example the number of shocks in the biological experi-
ment. It is possible to show for the above algorithms an upper bound on the
cumulative regret, that is the difference between its total loss over the input
sequence and the loss of the best sequence of actions it could have done. In
the following we show that the design of the system allows us to prove an
upper bound on the cumulative regret.

Let us define formally the setting. The system receives at each time step
t an example (z4,7y;) where z; € R? is called an instance and y; € {—1,+1}
is called a label. We assume without loss of generality that ||z;| < 1,Vt. We
also define the hinge loss with margin 1 of a hypothesis u on the example
(e, 1) as

((w, 2, y;) = max{0,1 — ypu' =} , (1)

and we define the cumulative loss, D, of u on the first T" examples as

T
D= t(u,z,y) . (2)
t=1

The online algorithms of the first layer learn a mapping f : R? — R. In
the following we consider the linear setting, but it can be easily generalized
to the non-linear version through the use of Kernels [12]. The algorithms
we have chosen are Passive-Aggressive (PA) classifiers [11]. The prediction
of the algorithm is sign(w] z), where w; is an hyperplane and represents
the hypothesis of the system at time ¢. Starting from the null hypothesis,
wo = 0, the classifier is updated with the following rule

Wir] = Wt + 04Tt (3)

;= min (MW 1) . (4)

2222

Hence the hypothesis is updated each time there is a prediction error or
the prediction is correct but the magnitude of the prediction is too low,
i.e. the algorithm is not confident enough. Note that the update of the
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first classifier is stopped in the second phase, that is we are just using its
knowledge without updating it anymore.

For PA it is possible to prove an upper bound on the maximum number
of mistakes, M, the algorithm does on a sequence of examples, relatively to
any hypothesis u € R?, even chosen with the prior knowledge of the entire
sequence of examples:

M < |jul|*+2D . (5)

The algorithm used to update the weights of the second layer is the
Incrementally Adaptive Weighted Majority (IAWM) [13]. Denote with ogl)
and 0§2) the predictions of the first and second classifier at time ¢. The

output of AWM is
oo + 57” (6)

where A1) and 3 are two positive weights, with sum equal to one, selected
by the algorithm in order to minimize the upper bound on the cumulative
regret. We refer the reader to [13] for the exact details of the update rule
of AWM. Chaining the bound of the PA with the bound of TAWM we have
that

My +2+/2M>log 2 + 3log (1 4+ M) + 8, (7)

where Mo is the number of mistakes done by the classifier 2, trained on
the new data. This bound tells us that in the worst case scenario, that is
when the mapping function is useless, we can expect the performance of the
system to be close to the one of second classifier. In particular the number of
mistakes of the overall system will be equal to the ones of the second classifier
alone plus a term that is just O(y/Mz). In other words, the system is betting
on the utility of the mapping function, but in the case the mapping is wrong
or too noisy it will still recover the performance of the learning without any
transfer of knowledge. However when the mapping is not noisy we expect
to obtain better performance, as we show in the experimental results.

Moreover it is reasonable to think that old knowledge is useful only for a
short period of time, that is when the second classifier did not acquire enough
samples. After a certain amount of time the performance of the second
classifier will reach the performance of the first one. When this happens,
the TAWM will automatically online set its weights to give more importance
to the new knowledge. In the next section we will show experimentally this
intuition.
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A very important case is when the task at hand is linearly separable,
that is D is equal to zero. So from (5) we recover a convergence bound, i.e.
after a finite number of mistakes the algorithm converges to a solution that
will correctly classify any future instance. This means that also the bound
in (7) will become a finite number. In particular we have

lee]|* + 2w v/21og 2 + 3log (1 + [|ul*) +8 (8)

that is a constant, independent of the ordering of the inputs and their num-
ber.

3.3 Experimental Results

As preliminary tests, we have used the '3’ vs '8 discrimination task of
the MNIST database and a subset of the census-income (Adult) database!,
widely used to benchmark machine learning algorithms. For both the databases
we have randomly split the features in two groups. Each group models one
modality of training inputs. In this way we are sure that each modality
carries more or less the same amount of information and that it should be
possible to build the mapping function from one set of features to the other
one.

We have used a standard Support Vector Regression method to build
the mapping function, using 1000 examples. We use 4000 examples for each
of the two phases of learning. The kernel used is a homogeneous polynomial
of degree 5 for MNIST and a Gaussian Kernel for Adult.

In figure 3 we show the average online number of mistakes during the
second phase, that is the number of mistakes until time t divided by ¢, for
MNIST. The performance of the system is compared to the performance
of the classifier that is trained only using the second modality. This cor-
responds to using only the new knowledge available to the system. The
other baseline is given by the performance of the first classifier used with
the mapping function, that corresponds to using only the old knowledge. As
said above, in the first steps the performance of first classifier, fed with the
mapping function, is better than the performance of the second one. After
about 1000 examples, the second classifier reaches a performance similar and
after that point it gets better. The performance of the proposed system is
always close the best one between the two systems. This can be seen even
better in figure 4, where we have plotted the weights of the last layer. In fact
around 1000 examples the two weights are equal, while before the weight of

lyww.csie.ntu.edu.tw/~cjlin/libsvmtools/
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Figure 3: Average online error on MNIST dataset as a function of the num-
ber of examples, during the second phase of learning.

first classifier is higher (more importance to old knowledge) and after it is
lower (more importance to new knowledge).

Similar results are shown in figure 5 and figure 6, showing results ob-
tained from the Adult database. Again the performance of the system is
close to the best one between the classifier using only the old knowledge and
the one using only the new knowledge. As predicted by the theory, when
the performance of the system is worse than the one of the second classifier,
for example around 1000 samples, the difference is small.

4 Conclusions

In this paper we addressed the problem of knowledge transfer across modal-
ities in biological and artificial systems. We specifically investigated how
perceptual categories formed in one modality could be transferred to an-
other modality in biological systems, and how to design learning algorithms
able to mimic this behavior for artificial systems. We presented a study
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Figure 4: Weights of the online combination as a function of the number of
examples, on the MNIST dataset.

on Mongolian gerbils who’s outcome indicate quite clearly that the animals
could use associations learned in the auditory modality when engaged in a
visual discrimination task. We presented an algorithm, developed within
the online learning framework, that improves performance on one modality
by transferring knowledge from another one, via a mapping between the two
modalities learned off line. Experiments on two different databases show the
effectiveness of our approach.
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