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Abstract:

We consider the problem of learning a similarity function from a set of positive
equivalence constraints, i.e. 'similar' point pairs. We define the similarity in
information theoretic terms, as the gain in coding length when shifting from
independent encoding of the pair to joint encoding. Under simple Gaussian
assumptions, this formulation leads to a non-Mahalanobis similarity function which
is efficient and simple to learn. This function can be viewed as a likelihood ratio test,
and we show that the optimal similarity-preserving projection of the data is a variant
of Fisher Linear Discriminant. We also show that under some naturally occurring
sampling conditions of equivalence constraints, this function converges to a known
Mahalanobis distance (RCA). The suggested similarity function exhibits superior
performance over alternative Mahalanobis distances learnt from the same data. Its
superiority is demonstrated in the context of image retrieval and graph based
clustering, using a large number of data sets.



1 Introduction

Similarity functions play a key role in several learning and information processing tasks. One example is data
retrieval, where similarity is used to rank items in the data base according to their similarity to some query
item. In unsupervised graph based clustering, items are only known to the algorithm via the similarities
between them, and the quality of the similarity function directly determines the quality of the clustering
resulte. Finally, similarity functions are employed in several prominent techniques of supervizsed learning,
from nearest neighbor classification to kernel machines. In the latter the similarity takes the form of a kernel
function, and its choice is known to be a major design decision.

Goad similarity functions can be designed by hand (Belongie et al., 2002; Zhang et al., 2006) or learnt
from data (Shental et al., 2002; Cristianini et al., 2002; Xing et al., 2002; Hertz et al., 2004; Bilenke et al.,
2004). As in other contexts, learning can help; so far, the utility of distance function learning has heen
demonstrated in the context of image retrieval (Hertz et al., 2003; Chang & Yeung, 2005) and clustering
(Xing et al., 2002; Hertz et al., 2004; Bar-Hillel et al., 2005). Since a similarity function operates on pairs of
points, the natural input to a distance learning algorithm consists of equivalence constraints, which are pairs
of points labeled as 'similar’ or "not-similar’ (henceforth called positive and negative equivalence constraints
respectively). Several scenarios have been discussed in which constraints, which offer a relatively weak form
of supervision, are readily available, while labels are much harder to achieve (Hertz et al., 2003). For example,
given temporal data such as video or surveillance data, constraints may be automatically obtained based on
temporal coherence.

In this paper we derive a similarity measure from general principles, and propose a simple and practical
similarity learning algorithm. In general the notion of similarity is somewhat vague, involving possibly
conflicting intuitions. One intuition iz that similarity should be related to commonalities, Le., two objects
are similar when they share many features. This direction was studied by (Lin, 1998), and is most applicable
to items described using discrete features, where the notion of common features is natural. Another intuition,
suggested by (Kemp et al., 2005), measures similarity by the plausibility of a common generative process.
This notion draws attention to models of the hidden sources and the processes generating the visible items,
which hag two drawbacks: First, these models and processes are relatively complex and hard to estimate
from data . Second, if such models are already known, clustering and classification can be readily done using
the models directly, and so similarity judgments are not required.

QOur appreach focuses on the purposes of similarity judgment, which is usually to decide whether two
items belong to the same class. Hence, like (Kemp et al., 2005), we relate similarity to the probability of two
items belonging to the same cluster. However, unlike (Kemp et al., 2005), we model the joint distribution
of 'pairs from the same cluster’ directly, and estimate it from positive equivalence constraints. Given this
distribution, the notion of similarity iz related to the information one point conveys about the other as
measured by coding length, see Section 2.1.

The basic idea is that two objects should be judged more similar the more we can 'compress’ one given
the information in the other . This idea is strongly related to the notion of “information distance™ presented
in (Bennett et al., 1998) (see alzo (Ziv & Merhav, 1993)), and the bottleneck method presented in (Tishby
et al., 2000). As shown in Section 2.1, in addition to its coding length origin, our method can alzo be derived
from a statistical inference perspective (as a likelihood ratic test). We regard the coding length interpretation
as more intuitive, because it relates similarity to the simpler notion of predicting one point from the other
via linear regression.

The main contribution of this paper is the specific application of the abstract similarity notion discussed
above to continuous variables. Specifically, in Section 2.2 we develop this notion under Gaussian assumptions,
deriving a simple similarity formula which is nevertheless different from a Mahalanobis metric. Intuitively,
in the Gaussian setting the similarity between two pointe z and #’ is computed by using ' to predict z via
linear regression. The similarity is then related to log p(z|z'), which encodes the error of the prediction.
Now learning the similarity requires only the estimation of two correlation matrices, which can be readily
estimated from equivalence constraints.

The suggested similarity is strongly related to Fisher Linear Discriminant (FLD). The matrices employed
in its computation are those involved in FLD, Le., the within-class and between-class scatter matrices (Duda



et al., 2001). In Section 3 we show that FLD can be derived from our similarity as the optimal linear
projection. Specifically, when coding similarity is regarded as a likelihood ratio test, FLD is the projection
maximizing the expected margin of the test. In addition, we explore the connection between coding similarity
and the Mahalanobis metric. We show that in a certain large sample limit, coding similarity converges to
the Mahalanchis metric estimated by the RCA algorithm (Bar-Hillel et al., 2005).

To evaluate our method, in Section 4 we experimentally explore two tasks: semi-supervised graph based
clustering, and retrieval from a facial image database. Graph based clustering is evaluated using data
sets from the UCI repository (Blake & Merz, 1998), as well as two harder data sets: the MNist data set
of hand-written digits {(LeCun et al., 1998), and a data set of animal images (Hertz et al., 2004). We
used the YaleB data set of facial images (Georghiades et al., 2000) for face retrieval experiments. In both
tasks Gaussian Coding Similarity (GCS) usually outperforms Mahalanobis metrics, learnt by three readily
available algorithms (Xing et al., 2002; Bar-Hillel et al., 2005; DJe-Bie et al., 2003). In terms of computational
complexity, the method of (Xing et al., 2002) is relatively demanding, as it is based on iterative non-linear
optimization, while the two other methods offer closed-form solutions based on positive constraints alone.
The computational cost of coding similarity is low, similar to the methods of (Bar-Hillel et al., 2005; De-Bie
et al., 2003) and much smaller than in the method of (Xing et al., 2002).

2 Similarity based on Coding Length

2.1 General definition

Intuitively, two items are similar if they share common aspects, whereby one can be used to predict some
details of the other. Learning similarity is learning what aspects tend to be shared more than others, between
points which are equivalent w.r.t a certain goal. Such a similarity notion is naturally related to the joint
distribution p(z,z'|H1), where H; is the hypothesis stating that the two polnts share the same label. We
estimate p(z,z’|H1), and define the similarity codsim(z,z") between two items to be the information one
conveys about the other. We measure this information using the coding length cl(z), Le. the negative
logarithm of an event (Cover & Thomas, 1991). The similarity is defined as the gain in coding length
obtained by encoding = when 2’ is known.

codsim(z, z') = d(x) — d{z|z', Hy) (1)
= logp(z|z’, Hy) — log p(z)

As stated in (Kemp et al., 2005), this measurement can be also viewed as a log-likelihood ratio statistic:

log p(z|x", Hy) — log p(x) (2)
b plz,z'|H1) g plz,z'|Hy)
p(z)p(a’) p(z,2'|Ho)

where Hy denotes the hypothesis stating independence between the points. The coding similarity is therefore
the optimal statistic for determining whether two points are drawn from the same class or independently.
We can see from this last equation that it is a symmetric function.

The exact nature of the distribution p(z,z’|H1) may vary depending on the application and the oracle
from which the equivalence constraints are obtained. Consider data sampled from several sources in R?,
Le. p(z) = Eﬁilakp(ac\hi), where p(z|h;) denctes the distribution of the i-th source. A simple form for
p(z, '|Hy) is obtained when the two points are conditionally independent given the hidden source:

M

plz,2'|H1) = ) awple|hi)p(@ ki) 3)
k=1

This distribution, defined over pairs, corresponds to sampling pairs by first choosing the hidden source,
followed by the independent choice of two points from this source . In section 3.1 we show that FLD is the



optimal similarity- preserving dimensionality reduction when the equivalence constraints are sampled in this
manner. In Section 3.2 we discuss a common case in which the conditional independence between the points
is violated.

2.2 Gaussian coding similarity
We now develop the coding similarity notion under some simplifying Gaussian assumptions:
o p(z,x'|Hy) is Gaussian (in R?%)

* plz) = {p(fv,ﬂr’\fﬁ) = [ ple,a'|Hy)

The second assumption is the reasonable (though not always trivially satisfied) demand that p(z) should
be the marginal distribution of p(x,z'|H1) w.r.t both arguments. It is clearly satisfied for distribution (3).
It follows from the first assumption that p(z) is also Gaussian (in R?). The first assumption is clearly a
simplification of the true data density in all but the most trivial cases. However, its value lies in its simplicity,
which leads to a coding scheme that is efficient and easy to estimate. While clearly inaccurate, we propose
here that this model can be very useful.

We assume w.l.o.g that the data’s mean is U (otherwise, we can subtract it from the data), and so we
can parameterize the two distributions using two matrices. Denoting the Gaussian distribution by G{:|u, ¥)
we have

plz) = G(=]0,X) (4)
plz,2’|H) = G(z,2'|0,2s,)
Ew Eww’
EQw - ( E:z:z" Ez )

where ¥, = Elzz?), ¥op = El2(z")Y]. The conditional density p(z|z’, H) is also Gaussian G{z|Mz', X, ) ,
with M, Y., given by

M= Ewwa;I Em‘m/ =g — Eww/Eglsz (5)
Plugging this into Eq. (1), we get the following expression for Gaussian coding similarity:

log p(z|z’, H1) — logp(z) = (6)
log G(z|Mz', By ) — log G(z[0,X,) =

L |Zs|
—[log

+en e — (x - Mm')tE;‘lﬂ {zr — Mz")

The Gaussian coding similarity can be easily and almost instantaneously learnt from a set of positive
equivalence constraints, as summarized in Algorithm 1. Learning includes the estimation of several statistics,
mainly the matrices ¥, Y., from which the matrices M, ¥,/ are computed. Notice that each constraint is
considered twice, once as (r,z’) and once as (z', ), to ensure symmetry and to satisfy the marginalization
demand. Given those statistics, similarity is computed using Eq. (8), which is based on Eq. (6) but with the
multiplicative and additive constants removed.

3 Relation to other methods

In this section we provide some analysis connecting Gaussian coding similarity as defined above to other
known learning techniques. In Section 3.1 we discuss the underlying connection between GCS and FLD
dimensionality reduction. In Section 3.2 we show that under certain estimation conditions, the dominant
term in GCS behaves like a Mahalanobis metric, and specifically that it converges to the RCA metric
(Bar-Hillel et al., 2005).



Algorithm 1 Gaussian coding similarity

Learning procedure:
: ; AN : ; ;
Input: a set of equivalence constraints {z;,%;}; ;, and optionally a dimension parameter k.

1. Compute the mean Z = ;% Efil[scz + z{] and subtract it from the training data

2. Estimate X, Y0

N
By = oo >l + 2ol @
=1

3. If dimensionality reduction is required, find the & eigenvectors with the highest eigenvalues of Y713,
and put them into A € M..p.

Let ¥p = AT, A | Yow = A5 A , Z=274

4. Compute M and ¥, according to Eq. (5).

Return Z, M, %71, %71 and A (f computed).

oot

Similarity computation for a pair (z,z’):
IfAiedefineds =24 -7 , 2" =x'A—-Z

else T =, =8 &
Return codsim(z,z’) =

2’5ty — (- Ma:’)tE;li, (x — Ma") (8)

3.1 The optimality of FLD

As defined in Eqgs. (5)-(8), the coding similarity depends on two matrices only - the data covariance matrix
¥, and the covariance between pairs from the same source ¥,... To establish the connection to FLD, let us
first consider the expected value of 3., under distribution (3):

Ep(e,or 1 [2(2')] = (9)

M
/Z%p(ﬂslhk)p(ﬂf’\hkﬁ(f)t

2 d k=1

M M
3 0k Bpaing (2] - B [(@)1] = Y ogmymi
k=1 k=1

The expected value above, which gives the convergence limit of ¥.,,/ as estimated in Eq. (7), is essentially the
between-class scatter matrix Sp used in FLD (Duda et al., 2001). The main difference between the estimation
of ¥iypr in Bq. (7) and the traditional estimation of §p is the training data, equivalence constraints vs. labels
respectively. Also, while Sg is always of rank & — 1 and so is its estimator based on labeled data, our
estimator from Eq. (7) is usually of full rank.

When the data distributions p(z,z’|H;1) and p(z) lie in high dimensional space, in many cases the
projection into a lower dimensional space may increase learning accuracy (by dropping irrelevant dimen-



sions) and computational efficiency. We now characterize the notion of eptimal dimensionality reduction
based on the ™atural margin’ of the likelihood ratio test. This test gives the optimal rule (Cover &
Thomas, 1991) for deciding between two hypotheses Hy and Hp, where the data comes from a mixiure

p(z) = ap(z[Ho) + (1 — a)p(z|Hy):

p{X|H1) -

decide H — o > lo 10
1 & (X o) g — (10)

Hypothesis margin: Let the label of point z be 1 if hypothesis H; is true, and —1 if Hy is true. The
natural margin of a point & can be defined as y;(log % — log :L?To‘)
(Given this definition, the expected margin of the test is

Eufya) oz B2 log =) ay

W . . plz|h1) B 1—a
- J5<h”“gpumw

—(1— a)fp($|hg)[log i(z‘zl) — log 1= a}daj

(ko) a

|dx

= aDylp(z|h1)||p(z|ho)]

+ (1 — @) Dyi[p(z|ho)|p(x|h1)]
l1—«a

(83

+ (1 —2a)log

Optimal dimensionality reduction: 4 € My, is the optimal linear projection from dimension d to
k if it maximizes the expected margin defined above.

Theorem 1. Assurme Gaussian distributions p(z,z'|Hy) in R*® and p(z) in R?, and a linear projection
AE Myup where z = Az, For all 0 < a < 1, the optimal A

A* = arg max| aDy[p(z, 2’| H1)||p(z, 2’| Ho)] + (12)
AEM&xk

(1 — ) Dialp(z, 2’| Ho)l[p(z, #'| Hy)] |
is the FLD transformation. Thus A is composed of the k eigenvectors of ¥ 'Y, with the highest eigenvalues.

The proof of this theorem is relatively complex and we only describe here a very general sketch. Since
the distributions involved in Eq. (12) are Gaussian, the Dy;[||-] can be written in closed-form. We can upper
bound these terms by using Atzm‘muﬁl to approximate 33;|;, . The approximate bound, for fixed @, can be
shown to obtain its maximal value at the %k elgenvectors of E;li, 3, with the highest eigenvalues. These

vectors, in turn, are identical to the highest eigenvectors of Y7 1¥.,,,. Finally, it is shown that the optimum
of the upper bound is also obtained by the original expression, using the same matrix A.

3.2 The Mahalanobis limit

Above we have considered specifically coding similarity with pairs distribution of the form (3). However,
in practice the source of equivalence constraints often does not produce an unbiased sample from this
distribution. Specifically, equivalence constraints which are obtained automatically, e.g. from a surveillance
camera, are often biased and tend to include only very similar (close in the Kuclidean sense) points in each
pair. This happens since constraints are extracted based on temporal proximity, and hence include highly
dependent points. When the points in all pairs are very close to each other, the best regression from one to
the other is close to the identity matrix. The following theorem states that under these conditions, coding
similarity converges to a Mahalanobis metric.



Theorem 2. Assume that equivalence constroints are generated by sampling the first point x from p(z)
and then x' from a small neighborhood of ©. Denote A = (z — x')/2. Assume that the covariance matriz
Ya < €y, where e > 0 and A < B stands for "B — A is a p.s.d matriz”. Then

codsim{z, x") = (x — 2" (4ZA) Lz — z') (13)
where the limit g(z) — f(z) means g{z)/f(z) — 1.

Proaf. We concentrate on approximating the second term in Eq. (8), which involves both z and z’. Denote
r=(x+a)/2,s0x =T+ A,2 =z~ A We get the following estimates for X, , X,

Yom = %E(f— A)z — A)t+%E(i+A)(E+A)t
= Xz +Za
Yow = EE4+AE-AY=%;—-3a

We therefore see that ¥,,» = ¥, — 234, and obtain the following approximations for M 3, .

M = Tgp¥pl= (3, —25A)%;
= J-2BxE 5 E b
Tolr = Ze— (I —28a%; (5 —28a)
4¥ A — 4252512,5 > AYA(l —€)

These inequalities lower bound M and X,,/, and since Ya¥,tis p.s.d it is clear from the equalities
above that M < I, ¥, j,» < 4Xa. We hence get that M = I 4 O(¢) and X, = 4Xa (I + O(c)).

Returning to Eq. (8), we note that the first term 0 < z?¥ 1z < 6:53211:5 is negligible w.r.t the second in
the limit of € — 0. Therefore this term can be rigorously omitted, and we get:

codsim(z, ')~ —(z — [I + O(e)]2') -
[4Ba T+ O@EN " (2 — [+ Oe)]a)

- — (& —g VAT o —=l)
£
Note that codsim(z,z’) is negative as appropriate, since it measures similarity rather than distance. O

The Mahalancbis matrix ¥a = Epy oz y[z — (z+2')/2] is actually the inner chunklet covariance matrix,
as defined in (Bar-Hillel et al., 2005). It is therefore the RCA transformation, estimated from the population
of 'near’ point pairs.

4 Experimental validation

We first present several experiments with synthetic data sets in section 4.1, testing the potential value of
GCS under controlled conditions. In Section 4.2 we compare several methods in a semi-supervised clustering
task, where the data is augmented by equivalence constraints. Finally, in Section 4.3 we test Gaussian coding
similarity and other methods in a face retrieval task.

Data sets In Section 4.2 we have experimented with nine data sets from the UCI repository (Blake &
Merz, 1998) and added two harder data sets, with 10 classes each: A subset of the MNist digits data set
(LeCun et al., 1998), and a data set of animals images (Hertz et al., 2004). For MNist, we randomly chose
50 instances from each digit, and represented the data using 50 PCA dimensions. The animals data set
includes 565 images taken from a commercial CI}. As in (Hertz et al., 2004) we represent the images using
Color Coherence Histograms (CCV) (Pass et al., 1996), containing information about color distribution and
color continuity in the image. The vectors were then reduced to 100 PCA dimensions. For the evaluation of
retrieval performance In section 4.3 we used the YaleB data set (Georghiades et al., 2000). The variability
in this data set is mainly due to change of illumination. Images were aligned using optical flow, and then
reduced to 60 PCA dimensions.
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Figure 1: Top 3 of the 4 synthetic data sets used (the forth data set (number 2) is the analog of data 1 in R®).
Bottom Cumulative neighbor purity curves for the 4 synthetic data sets, The Y axis shows the percentage of correct
neighbors ve, the number of neighbors considered (the X axis). In each graph we compare Gaussian coding similarity,
RCA and the Euclidean metric. Coding similarity has a considerable edge when the data contains several Gaussian
clagses, For many small clagses (Data 3) GCS approaches RCA, and for the non-convex rings data it fails. Results
were averaged over b0 realizations. The figure is best seen in color.

Constraint oracle Following (Hertz et al, 2003), we obtained equivalence constraints by simulating a
distributed learning scenario, in which small subsets of labels are provided by a number of nncoordinated
teachers. Accordingly, we randomly chose small subsets of data points from the dataset, and partitioned
each subset into equivalence classes. The constraints obtained from all the subsets are gathered and used for
learning. In all the experiments we choge the size of each subset to be 5§ = 2M, where M is the number of
classes in the dats. In each experiment we used N/S subsets, where N Is the total number of points in the
data. While the number of constraints thus provided iz linear in the sample zize N, notice that it i3 a zmall
fraction of all possible pairs of data points, which 1z O(Ng), Whenever tested, the method of (Xing et al,
2002) is given both the positive and the negative constraints, while the other tested methods use only the
positive constraints.

Compared methods We compare the Gaussian coding similarity to 3 learning technigues which learn a
Mahalanobis metric. The method presemted in (Xing et al., 2002) learns the metric by non-linear optimiza-
tion, using iterative projections. The RCA metric, suggested in (Bar-Hillel et al., 2005), is essentially the
inverse of the inner clags covariance matrix, as estimated from the equivalence constraints. The method of
(De-Bie et al., 2003) learns a low-rank Mahalanobis metric based on the FLD dimensionality reduction. The
IMahalanobis matrix iz A* A where A is the estimated FLD matrix.

4.1 Synthetic data

We conducted a series of experiments on synthetic data, comparing the performance of GOS8 to RCA and
the Euclidean metric in several interesting conditions. The first three data sets were generated by choosing
class centers from a Gaussian distribution Gi(M|0, 24}, then selecting class points from Gaussians around
those centers Ga(z|M,E.). When the number of classes is large, p(z) s Gaussian as the comvolution of
Gy and Gz, and the GUS assumptions are fully met. The first data set was generated by sampling 400
two-dimensional points in four classes using this protocol. A second data set was produced in a similar
manner, but with points in R%. The third data set includes 600 points in 30 classes with relatively small
varlance, thus approaching the limit discussed 1@ Theorem 2. Finally we produced a data set of concentric
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results are averaged over 50 constraint realizations. The figure is best seen in color.

rings, which critically violates class convexity. The data sets are shown in the top row of Figure 1.

The bottom row of Figure 1 shows commulative purity graphs of GCS, RCA and the Euclidean metric
on the synthetic data sets. These results give an overview of the strength and weaknesses of GCS. When the
data contains several Gaussian data sets (Data 1), GCS has a clear advantage over RCA and the Fuclidean
metric. This advantage is more pronounced in higher dimension (Data 2). In the case of many small classes
with shared covariance (Data 3) the performance of GCS becomes closer to the performance of RCA, as
predicted by Theorem 2. Finally, in data 4 the Gaussian assumptions are severely violated, as class centers
are all identical to each other and classes are non convex. In this cage, GCS totally fails as expected.

4.2 Clustering with equivalence constraints

Graph based clustering includes a rich family of algorithms, among them are the relatively simple agglomer-
ative linkage algorithms used here (Duda et al., 2001). In graph based clustering, pairwise similarity is the
sole source of information regarding the clustered data. Given equivalence constraints, one can adapt the
similarity function to the specific problem, and improve clustering results considerably. In our experiments,
we have evaluated clustering results obtained using several distance functions: The Euclidean metric, the
Mahalanobis metrics learnt using the algorithms mentioned above, and the (Gaussian coding similarity. The
distance functions were evaluated by applying the agglomerative average linkage algorithm to the similarity
graphs produced. Clustering performance was assessed by computing the match between clustering results
and the real (known) data labels.

We tested the different similarities in the original space first, and after reducing the data dimension to
the number of classes using constrained-based FLD. The results after FLD, which are usually better, are
summarized in Figure 2. The ranking of the different algorithms has a large variance, but Coding similarity
(rightmost bar, in brown) gives the best average performance, with 5 cases in which it outperforms all the
other metrics and 3 cases of being second best. The results in the original space show a similar trend.
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Figure 3: ROC curves for several methods in a face retrieval task. Left: Retrieval of test images from constrained
classes using 60 PCA dimensions. Middle: Retrieval of images from constrained classes using 18 FLD dimensions.
Right: Retrieval of test queries from unconstrained classes using 18 FLD dimensions. Results were averaged over 20
constraints realizations. The figure is best seen in color.

4.3 Facial image retrieval

The YaleB data set (Georghiades et al., 2000) contains 64 images per person of 30 people. From each class,
we randomly chose 48 images to be part of the 'data base’, and used the remaining 16 as queries presented to
the data base. We learned the three Mahalanobis distances and coding similarity using constraints obtained
from 25 of the 30 classes, and then evaluated retrieval performance for images from both constrained and
unconstrained classes. Notice that for unconstrained classes the task is much harder, and any success shows
inter-class generalization, since images from these classes were not used during training.

The performance of the four learning methods and the Euclidean metric in the original 60 dimensional
space are shown in Figure 3. We can see that coding similarity is clearly superior to other methods in the
retrieval of faces from known classes. In contrast to other methods, it operates well even in the original 60
dimensional space. It also has a small advantage in the ’learning-to-learn’ scenario, i.e., in the retrieval of
faces from unconstrained classes.

5 Summary

We described a new measure of similarity between two datapoints, based on the gain in coding length of one
point when the other is known. This similarity measure can be efficiently computed from positive equivalence
constraints. We showed the relation of this measure to Fisher Linear Discriminant (FLD), and to relevant
component analysis (RCA). We demonstrated overall superior performance of the suggested similarity in
clustering and retrieval, using a large number of datasets.
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