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Abstract: 

Information for category learning may be provided as positive or negative 

equivalence constraints (PEC/NEC) – that some exemplars belong to the same or 

different categories. To investigate categorization strategies, we studied category 

learning from each type of constraint separately, using a simple rule-based task. We 

found that participants use PECs differently than NECs, even when these provide the 

same amount of information. With informative PECs, categorization was rapid, 

reasonably accurate and uniform across participants. With informative NECs, 

performance was rapid and highly accurate for only some participants. When given 

directions, all participants reached high performance levels with NECs, but the use of 

PECs was unchanged. These results suggest that people may use PECs intuitively, 

but not perfectly. In contrast, using informative NECs enables a potentially more 

accurate categorization strategy, but a less natural, one which many participants 

initially fail to implement – even in this simplified setting. 
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1.  Introduction 

Since the early days of cognitive research, a number of theories have been suggested to 

describe both the structure of categories and the mental processes involved in their learning. 

The classical view suggests that categories may be described by a list of necessary and 

sufficient attributes that determine category membership (e.g. Katz & Postal, 1964; Smith & 

Medin, 1981). Similar ideas are still prevalent for category learning tasks where categories 

can be described with an explicit rule (Shepard, Hovland & Jenkins, 1961; Mooney, 1993; see 

also Ashby & Maddox, 2005 for recent view). On the other hand, probabilistic theories 

suggest that objects are categorized by similarity to an internal representation of a category 

prototype (Rosch & Mervis, 1975) or category exemplars (Medin & Schaffer, 1978; 

Nosofsky, 1987, 1988). As an object’s similarity to this representation increases, the 

probability that it belongs to the represented category also increases.  

A common theme in most of these views is that the process of category learning requires 

learning about the relevance of specific object properties for categorization. Many views of 

the role of similarity in categorization explicitly take this issue into consideration, suggesting 

that objects are grouped together based on their similarity in specific features (Tversky, 1977; 

Tversky & Gati, 1982) or within specific feature-dimensions perceived as more relevant for 

categorization (Garner, 1978; Nosofsky, 1987; Medin, Goldstone, & Gentner, 1993; 

Goldstone, 1994a). 

Apparently, evaluating the importance of different object properties is essential for category 

learning. In the current study we take a novel approach to address this issue of "dimension 

weighting" in category learning. We show that dimension weighting can be learned through 

provided equivalence constraints – indications of the pair-wise relationship between 

exemplars. We provide both conceptual and empirical evidence for an asymmetry in the 

contributions of two types of equivalence constraints and demonstrate implications of this 

asymmetry for numerous categorization scenarios. 

1.1 Category Learning from Equivalence Constraints 

We call a restriction indicating that two exemplars belong to the same category a Positive 

Equivalence Constraint (PEC), and a restriction indicating that two exemplars belong to 

different categories a Negative Equivalence Constraint (NEC). We claim that rule learning or 

dimension weighting can be performed naturally when a classifier is provided with 

equivalence constraints: Since equivalence constraints can be used for extracting a rule or to 

restrict the perception and/or use of similarities between objects within a category, or 

dissimilarities between objects of different categories, classifiers can generalize from 

constrained examples to other objects encountered later.  

Both PECs and NECs are available in a variety of category learning scenarios. For example, 

when a parent tells a child – pointing to animals unfamiliar to the child – “This is a dog and 

that is also a dog,” he or she indicates to the child that the two animals belong to the same 

category. When the parent then labels two other animals as “These are horses,” he or she 

provides the child not only with an indication that these two belong to a single category, but 

also that the latter two animals differ from dogs, and belong to a different category. Here, 

labels are used for identifying relations between exemplars, and, as is often the case with 

labels, the information provided mixes PECs and NECs. 

Naïve participants performing a supervised same/different task, where labels are not provided, 

also learn relationships among a few objects. When the participant guesses that two objects 

belong to the same category (or to different categories), feedback provided by a supervisor, 

indicating that he was right or wrong, ultimately provides him with an indication of whether 

the two truly belong to the same category or to two different categories (e.g. Cohen & 

Nosofsky, 2000; Goldstone, 1994b). Similar principles underlie supervised categorization 

tasks in which stimuli from two or more different categories are presented in sequential order 

(see Ohl, Scheich & Freeman, 2001, for an example of a category learning task with animals 
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participating in a go/no-go paradigm). Similarly, in everyday scenarios, when a child asks an 

adult, “Is this one the same as that one?” a yes/no response indicates whether the two are from 

the same category or from different categories. 

This principle of category learning from indications that some objects are or are not from the 

same category is not limited to category learning with explicit supervision. Many contextual 

clues can indicate whether objects are from the same category or from different categories. 

For example, seeing two animals playing together, one may assume that they are from the 

same species, while seeing one animal chasing another may indicate that the two are not the 

same. Such scenarios provide clues to the relations among objects without direct supervision 

and may contribute to category learning as much as scenarios in which direct supervision is 

available. In fact, current approaches to category learning argue that categories can be learned 

and representations built from acquired relations among exemplars (Gertner & Kurtz, 2005; 

Jones & Love, 2004). 

In the current study we tested category learning when providing participants with either only 

PECs or only NECs. We used a rule-based categorization task in which stimuli were defined 

by five binary dimensions (see Allen & Brooks, 1991 for a similar stimulus design). To 

maximize performance, participants had to identify two or three relevant dimensions in each 

categorization task (experimental trial). Guided by the studies reviewed above, we believe 

that using a rule-based task is a plausible approach for studying the role of equivalence 

constraints in dimension weighting for category learning. Furthermore, using this simple 

setup enables us to control the amount of information provided by each of the two types of 

constraints.  

The motivation for evaluating the separate contributions of PECs and NECs for category 

learning arises from the differences between these two types of constraints: NECs are more 

common than PECs, but generally PECs are more informative than NECs; PECs specify 

within-category variation, while NECs specify between-category variation; and PECs are 

transitive, but NECs are not. In the next section we survey these differences in detail, pointing 

out the importance of these differences for dimension weighting in the context of category 

learning. 

 

1.2 Differences between Positive and Negative Equivalence Constraints 

1.2.1 NECs are More Common than NECs 

In most natural scenarios NECs abound while PECs are less common. This simple 

observation is demonstrated in Figure 1. Figure 1a presents a natural scene with only three 

animal categories (5 antelopes, 3 giraffes and 3 zebras). The number of PECs is the number of 

possible pairs of antelopes (10), giraffes (3) and zebras (3), for a total of 16 PECs in all. The 

number of NECs is the number of possible pairs composed of two animals from two different 

categories, (15 antelope-giraffe, 15 antelope-zebra and 9 giraffe-zebra pairs), which is 39 

NECs in total. Thus, the difference between the number of NECs and PECs is large even in a 

scene with only three categories. 

If we add more categories, the number of NECs increases more dramatically than the number 

of PECs, as illustrated in Figure 1b. Here, each category (1-4) is composed of only 3 objects. 

The number of PECs in each category is 3. In a world which includes only categories 1 and 2, 

there are 6 PECs and 9 NECs. When we include category 3, the number of PECs increases by 

3 and the number of NECs by 18. When category 4 is added, the number of PECs increases 

again by 3, reaching 12, but the number of NECs is doubled from 27 to 54. The general rule is 

that when more categories are added, the number of PECs increases linearly while the number 

of NECs increases as a quadratic polynomial; (see Appendix 1 for a formal proof).  

1.2.2 Between-Catgory vs. Within-Category Variations 

Both PECs and NECs may play an important role in identifying features or dimensions which 

enable grouping objects into categories or discriminating between categories. Yet, the two 

types of constraints differ: When we learn that two novel objects are from the same category 
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(PEC), we can expect that at least some of the dimensions for which the two objects share 

similar values (features) are relevant to categorization. More definitively, we can conclude 

that all dimensions discriminating between the two objects are generally irrelevant, and that 

these differences only reflect within-category variation along these dimensions. Thus, the 

amount of information provided by a PEC is related to the number of irrelevant dimensions 

that it indicates. 

The case of NECs is more complex: When we are told that two objects are from different 

categories, if the objects differ by more than one dimension – which is the case for most 

NECs – then we can not definitively conclude which of these dimensions is relevant for 

discriminating between the categories. In fact, a salient non-relevant dimension may mask 

detection of a relevant less salient dimension (e.g. Huettel & Lockhead, 1999). Similarly, we 

can not determine whether a dimension in which the two objects share the same value is 

relevant or irrelevant for categorization, since two objects from different categories may share 

many features, as long as they differ by at least one feature that is relevant for categorization. 

The only time we can confidently learn which dimension is relevant when provided with a 

NEC, is when there is only a single dimension by which the negatively constrained objects 

can be discriminated (see Goldstone, 1994b for related ideas). In this case, we can conclude 

that this unique discriminating dimension is necessarily relevant for categorization. At the 

same time, even in this special case, we cannot confidently infer anything about the relevance 

or irrelevance of the other dimensions. 

1.2.3 PECs and NECs do not Provide the Same Amount of Information 

As we have seen (subsection 1), NECs are much more common than PECs and therefore they 

might be expected to be a more readily available source of information in most scenarios. 

However, as already implied (subsection 2), the reverse is true: Despite their greater number, 

most NECs are only poorly informative for the task of identifying relevant dimensions. Since 

the amount of information provided by a PEC depends on the number of irrelevant 

dimensions it specifies, while a NEC at best specifies one dimension as relevant, we conclude 

that most PECs provide more than one bit of information while NECs provide at most one bit 

of information, and rarely do even this.   

An example is shown in Figure 2. Assume that objects A, B, C, D belong to category 1, while 

E, F, G, H belong to category 2. Basically, the two categories can be discriminated by object 

color but not by texture or shape, where differences are due to within-category variation. Our 

naïve classifier is not aware of this category setting or the number of existing categories that 

will have to be learned from the given constraints.
1
  

 

Since NECs are not transitive, it is much harder to accumulate information for a 

categorization task when using only NECs. In the current study we will not directly address 

transitivity. We will only assume that this property of PECs may bias people in their use of 

the two types of constraints even in a task in which transitivity is neutralized.  

1.2.4 Summing up the Differences between PECs and NECs 

This theoretical overview has highlighted a number of inherent differences between PECs and 

NECs, and pointed toward a weakness of NECs: Whereas all PECs are informative for 

indicating irrelevant dimensions, NECs are informative in decisively indicating a relevant 

dimension only on those rare occasions when we are informed that two objects that are 

similar in most of their properties, nevertheless belong to two different categories. The second 

disadvantage of NECs when compared to PECs, (which is less important for the current 

experimental design), is that PECs are transitive whereas NECs are not.  

 

One could claim that a supervisor, when accessible, could save classifier effort by providing 

more useful PECs and NECs. For example, Avrahami et al., 1997 showed that in some cases 

“expert participants” teach “novices” new categories by using sequences of exemplars that 

identify the borders on each specific dimension, demonstrating members of the target 

category and non-category examples. However, in natural scenes this selection might be 
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difficult, since, as we have seen, informative NECs are rare; in addition, direct and explicit 

guidance may not always be available.  

Earlier findings also implied that there are differences in the way people use PECs and NECs. 

It was found that when participants are asked to define a target category using selected 

exemplars, they were biased toward using positive examples but not negative examples – i.e. 

defining the target category using only member stimuli, avoiding use of stimuli from outside 

the category (Wason, 1960; Klayman & Ha, 1987). This bias enables comparing stimuli 

within a category (PECs) but not comparing stimuli between categories (NECs). These 

findings are puzzling when faced with evidence demonstrating an advantage of using both 

positive and negative examples in categorization tasks (Levine, 1966) or when learning a 

mathematical rule (Kareev & Avrahami, 1995).  

Further research revealed that when a target category could be defined by a simple rule, 

people favored using positive examples, concentrating on “positive-ideal” stimuli from the 

target category that were relatively far from a category border. This selection is best for 

identification of task-irrelevant dimensions. On the other hand, when the border defining the 

target category was a diagonal line integrating two dimensions, more participants used both 

positive and negative examples, including stimuli that were close to the border from both 

sides (Avrahami et al., 1997). Similarly, in cases of exemplar-based categorization, a more 

refined representation is achieved when using both similarities between same-category 

exemplars and dissimilarities between different-category exemplars (Stewart, & Brown 

2005). These two lines of findings are consistent with the idea that more confusable 

categories – such as medical diagnosis of similar syndromes – require a representation that 

enables their comparison (Brooks, Norman & Allen, 1991; Kulatunga-Moruzi, Brooks & 

Norman, 2001). 

 

A difference in the use of PECs and NECs was also found in a category learning task with 

sequential-presentation of training stimuli. When participants were provided with a sequence 

of items from the same category, classification of a novel item was easier than if the provided 

examples were from different categories (Whitman and Garner, 1962). Recent sequential-

presentation studies also imply that the categorical relation between presented exemplars in a 

sequence affect the way later items are categorized (Jones, Love, & Maddox, 2006; Stewart, 

Brown, & Chater, 2005). Nevertheless the goal of these experiments was to study the effect of 

perceptual and cognitive factors, such as memory and contrast, and they do not provide a 

direct evaluation of differential PEC vs. NEC contributions. 

 

In summary, since PECs and NECs provide the classifier with potentially different types of 

insight and since there is evidence implying that they are used differently, it becomes 

important to directly investigate how people use these two types of constraints and to what 

extent the two types are integrated in categorization tasks. While the current research uses 

binary and discrete feature-dimensions, the implications regarding information provided by 

PECs vs. NECs are relevant whenever dimension weighting is involved. Similarly, in our 

experimental setting constraints are definitive regarding dimension relevance or irrelevance 

(binary weight of 0 or 1), but more refined dimension weights could be achieved by using a 

larger number of constraints, (e.g. with many indicating one dimension as relevant, implying 

a high weight, and fewer indicating another as relevant, implying low weight).  We believe 

that analyzing the separate contributions of these two building blocks of category learning can 

provide useful insights for understanding categorization errors, and may shed light on a 

number of known phenomena in category learning, such as the related findings described 

above. 

1.3 Outline of the Experiments and their Motivation 

In the current study, in each one of the ten experimental trials, participants performed a 

different categorization task in which they used exclusively either PECs or NECs for 

identifying the task relevant dimensions. The first experiment tested performance with 

randomly selected PECs or NECs. Results confirmed our prediction that performance is better 
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with PECs than with NECs. However, recall that this prediction derived from the fact that 

typical PECs provide more information than typical NECs. Thus, this result could reflect 

simply the information provided by the constraints and not the proficiency of their use by the 

participants.  

 

Experiment 2 therefore tested the use of PECs and NECs when these are specifically chosen 

to provide the same amount of information. Importantly, we find a difference here, too, in the 

performance with PECs versus NECs. This difference must reflect the use of these 

constraints, rather than their inherent information content. Interestingly, we find that people 

may be divided into two groups – those who are able to use NECs quite well, and those who 

are unable to do so. This raises the possibility that using NECs is non-intuitive and that it is 

difficult for some to derive the proper strategy for their use. Therefore, in Experiment 3, we 

provided all participants with directions for the use of either PECs or NECs. Here we find that 

all participants succeed in the use of either type of constraint, supporting the prediction that 

the difference between PECs and NECs in natural circumstances leads to different 

proficiencies in their use. 

 

2. Experiment 1: Baseline Performance 

The first experiment was designed to measure baseline performance. As in all our 

experiments, categories were defined by the conjunction of their features along 2 or 3 relevant 

dimensions. In this experiment there were three experimental conditions: in the first, 

participants categorized stimuli when no Equivalence Constraints were provided to them (the 

noEC condition). This condition was needed to assess the contribution of equivalence 

constraints that were provided in the other experimental conditions. In the second and third 

experimental conditions, participants were provided with randomly generated positive 

(randPEC) or negative (randNEC) equivalence constraints, respectively. These randomly 

generated equivalence constraints were consistent with the task-assigned categories, but no 

attempt was made to control the information they provide as a group (i.e., their selection was 

random). In a sense, these random constraint conditions were designed to represent expected 

real-world scenarios in which the classifier is provided with haphazard constraints and not 

those that are necessarily most useful for good categorization. 

 

2.1 Method 

2.1.1 Participants 

Participants in all three experiments were undergraduate or graduate students from the 

Institute of Life Sciences at the Hebrew University of Jerusalem. Participants were randomly 

assigned to the different experiments and experimental conditions, and did not participate in 

more than one Experiment. Twelve university students participated in the first experiment 

(mean age = 23.8, SD = 1.9), 7 male and 5 female, with normal or corrected to normal vision. 

2.1.2 Materials 

3D computer-generated pictures of “alien creature faces” were used as stimuli, as shown in 

Figure 3. Each face was characterized by a unique combination of 5 potentially task-relevant 

dimensions: shape of chin, nose and ears, and color of skin and eyes. We designed 10 sets of 

32 alien face stimuli such that for each set, all combinations of 5 binary dimensions were 

presented in each of the 10 experimental trials. All sets were used in each experimental 

condition in each one of the three experiments. Two or three (of the 5 possible) dimensions 

were selected as relevant for category definition on each trial, so that positively constrained 

pairs of objects had to have the same features (values) for all relevant dimensions and 

negatively constrained pairs had to differ in at least one of these. Stimuli were presented on a 
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22" high-resolution computer screen, using specially designed software that enabled both 

simultaneous presentation of many stimuli and the recording of participants’ reactions.  

2.1.3 Procedure 

All participants performed the three experimental conditions in a within-subject blocked-

experiment design. Participants were told that during each experimental trial they would have 

to learn which of the 32 “alien creatures” (test stimuli) belonged to the same tribe as the one 

identified as “chief” (a standard representing the target category). They were instructed that 

each task (trial) in the experiment was independent and would necessitate learning a new way 

of categorizing the aliens into tribes. Participants were not informed that for each trial 2 or 3 

dimensions were chosen as trial-relevant. In general, we did not give subjects specific 

instructions which clarify the optimal categorization strategy or the structure of the categories; 

rather, participants were simply told that during each trial they will have to use the clues 

provided for identifying the chief tribe members. Participants were also instructed that they 

will have limited time to respond, and that they should perform the task not only accurately, 

but also as quickly as possible. 

In general, clues (equivalence constraints) were provided as colored frames around pairs of 

aliens, indicating that the members of the pair belong to different tribes (randNEC condition) 

or the same tribe (randPEC condition). Figure 3 shows an example of an experimental trial. 

On each trial, 3 constraints appeared for 20 seconds together with the ensemble of alien faces. 

All the trial’s constraints were presented simultaneously in order to allow participants to 

integrate the information provided by more than one constraint, without being affected by 

memory load. After 20 seconds the constraints were removed and the alien faces shuffled. 

Participants were then given 50 seconds to select (by drag-and-drop) those aliens that he or 

she thought belong to the chief’s tribe. The trial was then terminated and the next 

experimental trial began.  

Even without using the information presented in the Equivalence Constraints, subjects could 

perform better than chance by simply using an associative categorization strategy based on 

some idiosyncratic similarity measure. That is, for the chief's tribe they could choose those 

aliens that resembled the chief in some way. Therefore, we first tested participants on the “no 

Equivalence Constraints” (noEC) condition. In this condition participants performed the 

categorization task in a totally unsupervised manner: i.e. without being provided with either 

NECs or PECs. Performance in this condition was evaluated by tabulating the match between 

the tribe members selected by the participant and the expected tribe members according to the 

task pre-selected relevant dimensions. 

After performing the noEC condition, participants performed the randomly-selected NEC and 

PEC tasks (randNEC and randPEC, in counter-balanced order). In these experimental 

conditions the constraints were consistent with the computer-assigned alien creature 

categories. That is, there was no assignment of a NEC to two stimuli that belong to the same 

category or assignment of a PEC to two stimuli from two different categories. However, we 

made no attempt to select the three constraints in a way that maximized the information 

provided for optimal performance (identifying exactly all the trial-relevant dimensions). Note 

that for the reasons mentioned in the Introduction, in the randPEC condition the information 

provided by three randomly selected constraints almost always sufficed for identifying the 

task-relevant dimensions. This was not the case for randNECs, where the information 

provided was almost as poor as in the noEC condition. See Figure 4 for examples of random 

PECs and NECs.  

At the beginning of each experimental condition, participants performed an example trial in 

which they received a brief technical explanation about how they should perform the 

experiment and also about the identity of the constraints – whether the two constrained alien 

creatures are from the same tribe (PEC condition), or from different tribes (NEC condition). 

 



 

10 

2.2 Results and Discussion 

2.2.1 Performance Measures 

Participant performance is described by the Hit rate (the number of correctly selected “chief’s 

tribe members” relative to the total number of “tribe members”) and False-Alarm rate (the 

number of mistakenly selected “non-tribe members” relative to the total number of “non-tribe 

members”). Note that the average number of possible Hits in a trial is 6, and the average 

number of possible correct rejections is 26 (32 target stimuli in total). Therefore the False-

Alarm values are expected to be relatively small compared to the Hit values. 

To evaluate further participant sensitivity (i.e., their ability to discriminate between 

categories) we used the A’ nonparametric sensitivity measure (Grier, 1971; Stantislaw & 

Todorov, 1999): A score of A’=0.5 represents poor ability to discriminate between categories, 

whereas a score of A’=1 represents perfect ability to discriminate between categories. Scores 

between 0 and 0.5 represent response confusion. This measure is calculated as follows: 
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where H denotes Hit rate, and F denotes False-Alarm rate. Participant reaction time 

was also recorded. Reaction time represent the average time it took for participants to 

detect and select each member in the target category, starting from the point when the 

constraints were removed and the stimuli were shuffled.  

2.2.2 Results 

An ANOVA revealed a significant effect of the experimental condition both on participants' 

Hits F(2, 11) = 11.84, p < 0.001, ηp
2 
= 0.52, and False Alarms, F(2, 11) = 4.67, p < 0.05, ηp

2 
= 

0.30. Post-Hoc analysis using within-subject t-test showed that randomly chosen positive 

constraints serve to improve performance, while randomly chosen negative constraints do not 

contribute any more to participant learning than does the condition with no constraints at all. 

There was a significantly higher Hit rate in the randPEC condition (M = .57, SD = .15) 

compared with the noEC condition (M = .39, SD = .10), t(11) = 4.12, p < 0.005, d = 2.48, as 

well as compared with the randNEC condition (M = .44, SD = .14), t(11) = 3.54, p < 0.005, d 

= 2.13. Similarly, the False-Alarm rate in the randPEC condition (M = .10, SD = .05) was 

significantly lower than in the noEC condition (M = .14, SD = .04), t(11) = 2.64, p < 0.05, d = 

1.59, or in the randNEC condition (M = .15, SD = .08), t(11) = 2.52,  p < 0.05, d = 1.52. On 

the other hand, there was no significant difference between the randNEC and noEC conditions 

in either the Hit rate t(11) = 1.40, p = 0.19 or False-Alarm rate t(11) = 0.56, p = 0.59. 

 

This effect of random constraints type was also apparent when evaluating participants' 

sensitivity using A’ (defined above). An ANOVA showed a significant difference between 

conditions, F(2, 11) = 16.27, p < 0.001, ηp
2 
= 0.60. Post-Hoc analysis using paired sample t-

tests revealed that sensitivity in the randPEC condition (M = .83, SD = .02) was significantly 

higher than in either the randNEC (M = .75, SD = .02), t(11) = 4.81, p < 0.001, d = 2.90, or 

noEC conditions (M = .73, SD = .01), t(11) = 4.33, p < 0.005, d = 2.61. There was no 

significant difference between sensitivity in the randNEC and noEC conditions, t(11) = 1.02, 

p = 0.33. Nevertheless, there was no significant difference in reaction time between the three 

conditions (ANOVA: F(2, 11) = 2.24, p = .13). These results are illustrated in Figure 5. 

2.2.3 Discussion 

The goal of Experiment 1 was to measure baseline performance. Participant performance in 

the noEC condition represents the expected categorization performance when simply using an 

idiosyncratic associative categorization strategy. In this way we can estimate the contribution 

of the information provided by equivalence constraints in the other conditions more 
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appropriately. The results confirmed the theoretical conclusion that a set of random PECs is 

more informative than a set of random NECs. This finding may underlie the results of other 

studies in which randomly chosen PECs lead to better performance than do randomly chosen 

NECs; (e.g. Whitman & Garner, 1962 used sequences of same-category vs. alternating-

category exemplars and found that the former leads to better performance). Our results also 

confirm the expectation that a small number of randNECs are not informative at all. The 

absence of significant differences in reaction time suggests that when provided with random 

PECs, participants can perform the categorization task much more accurately, but also nearly 

as quickly, as when operating with an unconstrained idiosyncratic associative categorization 

strategy, as they were left to do in the noEC condition. 

 

3. Experiment 2: Highly Informative Sets of Equivalence Constraints 

In the second experiment participants performed categorization tasks similar to those in 

Experiment 1, but in this experiment both the PECs and the NECs were deliberately selected 

so as to provide all the information needed for perfect performance. We call the two types of 

constraints used in this experiment highly informative PECs and NECs (highPEC and 

highNEC conditions). The two types of constraints were provided to the participants 

separately in these two experimental conditions. The goal here was to determine participant 

inherent proficiencies in the use of PECs and NECs. In this experiment we used a between-

subject design to ensure that experience with one type of constraints would not influence 

performance with the other. 
 

3.1 Method 

3.1.1 Participants 

Eighty university students participated in the experiment (mean age = 24.2, SD = 2.8), 32 

male and 48 female, with normal or corrected-to-normal vision. Participants were randomly 

assigned to the two experimental groups (highPEC or highNEC), in a between-subject design. 

The large sample in this experiment was essential since the statistical analysis used here 

included not only simple mean comparison, but also higher order analyses of homogeneity of 

variance and normality tests. For these analyses to be reliable, a large sample size is required.  

3.1.2 Materials 

Materials. Identical to Experiment 1. 

3.1.3 Procedure 

The procedure in Experiment 2 was similar to the procedure in Experiment 1 except for the 

nature of the PECs and NECs that were provided. In this experiment PECs and NECs were 

deliberately selected so that each constraint would identify only one dimension as irrelevant 

(in the case of a PEC) or as relevant (in the case of a NEC). A “highly informative PEC” 

(highPEC) is composed of a pair of “aliens” from the same category (tribe) that differ in only 

one irrelevant dimension (e.g. the shape of their noses), so that the constraint enables 

participants to identify that this differentiating dimension is irrelevant for categorization and 

is due to within-category variation in this dimension. A “highly informative NEC” (highNEC) 

is composed of a pair of aliens from two different categories (tribes) such that the pair of 

aliens differ in only one dimension, which should be identified as a relevant dimension due to 

the between category variation in the dimension (the only dimension enabling the 

discrimination between two stimuli from different categories). In this experiment participants 

could identify all the trial-relevant dimensions by integrating the information from the 

highPECs or highNECs provided, and therefore they could (in principle) perform the 
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categorization task perfectly in both conditions. See Fig. 3 for examples of highly informative 

NECs and PECs. In each trial, the pre-selected relevant dimensions were identical to those of 

one of the trials in Experiment 1.  

3.2 Results and Discussion 

3.2.1 Performance Measures 

Identical to Experiment 1. 

3.2.2 Results 

Between subject t-tests showed no significant differences between the Hit rate in the highPEC 

condition (M = .64, SD = .17) and the highNEC condition (M = .57, SD = .25), t(78) = 1.49, p 

= 0.14. On the other hand, the False-Alarm rate in the highPEC condition (M = .12, SD = .06) 

was significantly higher than in the highNEC condition (M = .07, SD = .06), t(78) = 3.48, p < 

0.001, d = 0.79 (see also Fig. 6). Nevertheless, participant sensitivity (A’) in the highPEC 

condition (M = .85, SD = .07) was not significantly different than in the highNEC condition 

(M = .83, SD = .13), t(78) = 0.85, suggesting that the differences in the False-Alarm rates 

between the two conditions did not derive from a higher sensitivity in the highNEC group, but 

rather mainly from differences in response bias, where participants in the highPEC condition 

had a greater tendency to produce more False-Alarms together with a few more Hits (although 

the difference in the Hit rate was not significant) so that their categorization strategy can be 

described as more liberal. Later we will address this difference in more detail. These results 

are illustrated in Figure 6a-6c. 

 

Performance in the two experimental conditions differed in participant reaction time with RT 

in the highPEC condition (M = 6.9s, SD = 2.5s) significantly shorter than in the highNEC 

condition (M = 8.8s, SD = 4.1s), t(78) = 2.54, p < 0.05, d = 0.58. Generally, there were no 

differences in performance when comparing experimental trials with two relevant dimensions 

with those with three relevant dimensions – except that the expected main effects showed 

poorer performance in trials with three relevant dimensions, which may be perceived as more 

difficult. The only exception was a significant interaction between the highPEC and highNEC 

experimental conditions (between-subject variable) and the number of relevant dimensions 

(within-subject variable), F(1, 77) = 24.58, p < 0.001, ηp
2 
= 0.24. Post-hoc t-tests revealed that 

while there was no significant difference in reaction time between trials with 2 relevant 

dimensions (M = 6.7s, SD = 3.1s) and trials with 3 relevant dimensions (M = 7.0s, SD = 2.7s) 

in the highPEC condition, in the highNEC condition reaction time in trials with 2 relevant 

dimensions (M = 7.0s, SD = 3.8s) was significantly shorter than reaction time in trials with 3 

relevant dimensions (M = 10.6s, SD = 5.2s). These results are illustrated in Figure 6d. 

More importantly, the highPEC and highNEC groups also significantly differed in the 

distribution of their Hit rates. Levene's test for homogeneity of variances showed that the Hit 

rate in the highNEC condition is more variable across participants compared to the highPEC 

condition, F(78) = 8.93, p < 0.005. This difference is also apparent in the A’ standard-

deviation, with a smaller standard-deviation in the highPEC condition than in the highNEC 

condition, F(78) = 13.94, p < 0.001. The Shapiro-Wilk test of normality further shows that 

although in the highPEC condition, sensitivity is normally distributed, W(40) = 0.95, p = 0.11, 

the distribution of sensitivity in the highNEC condition differs significantly from normal, 

W(40) = 0.89, p < 0.001. As can be seen in Figure 7a, while in the highPEC condition the 

sensitivity distribution shows good fit with the expected normal curve and most participants 

show good sensitivity, in the highNEC condition there is a poor match with the expected 

normal.  

This divergence from the expected normal distribution is also illustrated in Figure 7b, where 

we plot on top of each ROC diagram a horizontal line representing the median Hit rate and a 

vertical line representing the median False-Alarm rate. It is clearly seen that participants in 

the highNEC group (Fig. 7b-right) are for the most part separated into two distinct subgroups: 

participants with poor performance (lower right quadrant) vs. those with good performance 
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(upper left quadrant). This is not the case in the highPEC condition (Fig. 7b-left) in which 

performance is distributed evenly around and relatively close to the crossing point of the 

medians. Thus, there is an important difference between the use of PECs and NECs: While 

most participants correctly used highPECs in the category learning tasks, performance in the 

highNEC condition varied – with about half of the participants succeeding in proper use of 

these highly informative NECs, even surpassing the performance of the highPEC group, and 

the others failing to derive any benefit from these highNECs. 

 

By comparing the results of Experiment 2 with highly informative equivalence constraints, to 

those of Experiment 1 with randomly selected constraints, we find that in the highNEC 

condition performance was significantly better than in the randNEC condition, while there 

was no significant difference between the randPEC and highPEC conditions. The superior 

performance in the highNEC condition stems from both more Hits and fewer FAs than in the 

randNEC condition, as follows: The Hit rate in the highNEC condition (M = .57, SD = .25) 

was significantly higher than in the randNEC condition (M = .44, SD = .14), t(50) = 2.44, p < 

0.05, d = 0.84. Similarly, the False-Alarm rate in the highNEC condition (M = .07, SD = .06) 

was significantly lower than in the randNEC condition (M = .15, SD = .08), t(50) = 3.88, p < 

0.001, d = 1.10. These differences in the Hit and False-Alarm rates were also apparent when 

comparing participant sensitivity in the two cases: In the highNEC condition (M = .83, SD = 

.13) sensitivity was significantly higher than in the randNEC condition (M = .75, SD = .02), 

t(50) = 2.13, p < 0.05, d = 0.60. Taken together, these findings confirm that in the highNEC 

condition constraints provide more information than in the randNEC condition, and that, in 

general, participants successfully used this information that enabled better performances. 

Performance in the highPEC condition did not differ significantly from that in the randPEC 

condition (see Table 1), suggesting that a deliberate selection of an informative set of PECs is 

not more beneficial than a randomly selected set of PECs. 

3.2.3 Summary 

After showing in Experiment 1 that sets of random NECs are less informative than sets of 

random PECs, we designed Experiment 2 to test whether this differentiating property of 

equivalence constraints affects the way people perceive and integrate PECs and NECs in 

general. It is possible that experience with natural conditions where NECs are generally not 

informative may lead to a lack of expertise in the use of NECs, and a resulting inability to use 

even highly informative NECs. Alternatively, despite their inexperience with informative 

NECs, participants may be sufficiently skilled and flexible so that they will be able to extract 

the information supplied to them when NECs are highly informative. In fact, as we show 

below, NECs may actually be easier to use than PECs. Furthermore, the very lack of 

experience may allow participants to use NECs in a more innovative and informative fashion 

than PECs.  

 

The results in the NEC condition clearly divide our participants into two groups, with one 

group lacking the ability to use highly informative NECs efficiently, and the other succeeding 

brilliantly in their use – surpassing even the performance with PECs. Such variability is not 

observed in the PEC condition. These results may suggest that NECs and PECs are used quite 

differently: In the PEC condition, the unimodal sensitivity distribution with its relatively 

small standard deviation, together with the relatively fast reaction time, provides solid 

evidence that category learning from PECs is done intuitively by most people. In contrast, in 

the NEC condition, the somewhat bimodal distribution and relatively large standard deviation, 

together with the long reaction time that was also highly dependent on task difficulty (two vs. 

three relevant dimensions), indicate that category learning from even highly informative 

NECs is not naturally performed and requires expertise that only some people have. This 

ability to correctly use highNECs for category learning tasks results in nearly perfect 

performance.  

 

 



 

14 

4. Experiment 3: Highly Informative Equivalence Constraints with 

Directions 

We concluded from the results of Experiment 2 that participants may have different abilities 

for reasoning about informative NECs – perhaps due to this type of constraint being rare in 

natural conditions. If this is so, then guiding people in the use of highly informative NECs 

may improve performance. This is the goal of Experiment 3. In this experiment, participants 

performed a categorization task identical to the one that was performed in Experiment 2, 

using exactly the same sets of highly informative PECs and NECs. The only difference 

between the two experiments was that in the current experiment we also provided participants 

with “meta-knowledge” – explicit directions for a categorization strategy enabling perfect 

performance. If the difference between the two highNEC subgroups in Experiment 2 was due 

to the fact that some participants did not know how to use these constraints, then giving them 

directions for their use should bring performance of all participants to the level of the better 

subgroup. In addition, Experiment 3 may help evaluate the findings of Experiment 2 with 

regard to the use of PECs. More specifically, we wanted to know whether the pattern of 

performance of participants in the highPEC condition in Experiment 2 truly represents the 

expected performance when in possession of the optimal rule-based categorization strategy.  

 

4.1 Method 

4.1.1 Participants 

Twelve university students participated in the experiment; mean age = 23.9, SD = 5.4, 7 male 

and 5 female, with normal or corrected-to-normal vision.  

4.1.2 Materials 

Identical to Experiments 1 and 2. 

4.1.3 Procedure 

The procedure in Experiment 3 was identical to that of Experiment 2 with exactly the same 

sets of highPECs and highNECs. The only difference between the two experiments was that 

in the instructions provided during the example trial of each condition, participants in 

Experiment 3 were also directed how they should integrate the information provided by the 

equivalence constraints. The directions were straightforward and simple, and all participants 

easily learned the principles provided. More specifically, before performing the highPEC 

condition, participants were informed that they should exclude the dimension discriminating 

between each two constrained exemplars, since this dimension was necessarily irrelevant for 

the categorization task, and reserve judgment about the rest of the dimensions, with identical 

features, since they may or may not be relevant. Before performing the highNEC condition, 

participants were informed that they should take into account the dimension discriminating 

between each two constrained exemplars because, as the only differentiating dimension it 

must be relevant for the categorization task. Participants performed the experiment as a 

within-subject experimental design with the order of the two experimental conditions 

being counter-balanced.  

4.2 Results and Summary 

4.2.1 Performance Measures 

Identical to Experiment 1 and 2 
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4.2.2 Results 

Surprisingly, performance in the directed highNEC condition was superior to the performance 

in the directed highPEC condition, as shown in Figure 8. That is, when directions were given, 

the usefulness of the informative positive constraints was not improved, and the information 

provided by the negative constraints not only improved performance with these constraints, 

but such performance also surpassed that with the positive constraints. Specifically, in 

contrast to Experiment 2, the Hit rate in the directed negative constraint condition (M = .86, 

SD = .10) was significantly higher than with positive constraints (M = .68, SD = .18), t(11) = 

3.09, p < 0.05, d = 1.86. Similarly, the False-Alarm rate in the directed-highNEC condition 

(M = .03, SD = .04) was significantly lower than with positive constraints (M = .08, SD = .05), 

t(11) = 3.07, p < 0.05, d = 1.85. As a consequence, sensitivity in the directed-highNEC 

condition (M = .95, SD = .04) was also higher than in the directed-highPEC condition (M = 

.88, SD = .07), t(11) = 3.29, p < 0.01, d = 1.98. This superior performance did not occur at the 

cost of slower response, as there was no significant difference in reaction time between the 

directed-highNEC condition (M = 6.6s, SD = 1.5s) and directed-highPEC condition (M = 6.7s, 

SD = 3.2s), t(11) = 0.10 (see also Figure 8d).  

 

We now compare the non-directed highly informative equivalence constraint conditions of 

Experiment 2 to the directed highly informative equivalence constraint conditions of 

Experiment 3. Between-subject t-tests revealed that providing participants with directions 

affected mostly the way highNECs were used in categorization tasks but have almost no 

effect on the way highPECs were used for such tasks. More specifically, the Hit rate in the 

directed-highNEC condition (M = .86, SD = .10) was significantly higher than without 

directions (M = .57, SD = .25), t(50) = 3.94, p < 0.001, d = 1.12. The False-Alarm rate in the 

non-directed highNEC condition (M = .07, SD = .06) was significantly higher than in the 

directed condition (M = .03, SD = .04), t(50) = 2.65, p < 0.05, d = 0.75. Sensitivity in the 

directed-highNEC condition (M = .95, SD = .04) was also significantly higher than in the non-

directed condition (M = .83, SD = .13), t(50) = 5.30, p < 0.001, d = 1.50. This improvement in 

categorization accuracy did not occur at the cost of longer reaction time. In fact, reaction time 

was shorter in the directed-highNEC condition (M = 6.6s, SD = 1.5s) than in the non-directed 

highNEC condition (M = 8.8s, SD = 4.1s), t(50) = 2.77, p < 0.01, d = 0.78. In comparison to 

this across the board improvement with directions in the highNEC condition, there was no 

significant improvement when participants were provided with directions together with 

highPECs. Table 2 summarizes the impact of providing directions by comparing the results of 

Experiments 2 and 3. 

4.2.3 Discussion 

Providing highNECs together with directions for their use is extremely helpful in boosting 

accuracy and response time. The impact of directions is manifested not only in the improved 

performance in the directed-highNEC condition compared to the highNEC condition, but also 

in the relatively much more homogeneous performance in the directed-highNEC condition. In 

contrast, except for a moderate and barely significant reduction in the False-Alarm rate, 

performance in the directed-highPEC condition was not significantly improved compared to 

the non-directed highPEC condition. Performance in these two conditions is also similarly 

homogeneous. 

5. Further Comparisons of Experiments 1-3 

In order to investigate further the observed non-homogeneous performance in the highNEC 

condition of Experiment 2, we divided the highNEC group into two subgroups of 20 

participants each – the highNEC-poor (participants with relatively low performance) and the 

highNEC-good (participants with relatively high performance), separated by the median 

sensitivity (A’ = .86) of the highNEC group (see Experiment 2, Results). It is important to 

stress that this separation into two groups is artificial, and the A' value of .86 does not 



 

16 

necessarily represent an objective borderline separating poor performers from the good ones. 

Nevertheless, using a large sample insures that this observed median is a good approximation 

for the expected median performance in the population, (taking into account the type of 

population from which the participants were sampled). 

 

In order to understand better the source of this apparently bimodal performance, and the 

resulting division into two subgroups, we compared the separate performance of these two 

subgroups with those of participants who were given practically non-informative constraints, 

on the one hand, and with participants who were given the best possible information, 

(including both highly informative constraints and directions for their use), on the other. In 

other words, we compared the performance of the highNEC-poor and highNEC-good 

subgroups (Experiment 2) to that of participants in the randNEC (Experiment 1) and directed-

highNEC (Experiment 3) conditions. In Figure 9a we replot the randNEC points of Fig. 5a 

and the directed-highNEC points of Fig. 8a. We also reproduce in this graph the median 

dividing lines between the highNEC-good and highNEC-poor performers of Fig. 7b-right. 

Clearly, the randNEC points fall neatly within the lower-right quadrant – where the data of 

the highNEC-poor performers are situated (see Fig. 7b-right) and the directed-highNEC 

points fall neatly in the upper-left quadrant, the location of the data of the highNEC-good 

performers. Similarly, the sensitivity of the highNEC-good subgroup is similar to that of the 

directed-highNEC group, and the sensitivity of the highNEC-poor subgroup matches that of 

the randNEC group, as shown in Fig. 9b.    

 

Specifically, sensitivity in the highNEC-good subgroup (M = .93, SD = .03) was as high as in 

the directed-highNEC condition (M = .95, SD = .04), t(30) = 1.70, p = 0.10. At the same time, 

sensitivity in the highNEC-poor subgroup (M = .73, SD = .11) was as low as in the randNEC 

condition (M = .75, SD = .07), t(30) = 0.52. Also, reaction time in the highNEC-good 

subgroup (M = 7.6s, SD = 2.5s) was as fast as in the directed-highNEC condition (M = 6.6s, 

SD = 1.5s), t(30) = 1.16, p = 0.25,  see Fig. 9c. On the other hand, the mean reaction time in 

the highNEC-poor subgroup (M = 10.0s, SD = 5.0s) was not as fast as in the randNEC 

condition (M = 7.0s, SD = 3.1s), but this difference was not highly significant, t(30) = 1.91, p 

= 0.07.  

5.1 Results and Summary 

Participants in the highNEC-good subgroup of Experiment 2 apparently implemented a 

similar or similarly effective categorization strategy as that used by participants in the 

directed-highNEC condition of Experiment 3. On the other hand, participants in the 

highNEC-poor subgroup from Experiment 2 failed to implement a useful categorization 

strategy, and they performed the categorization task just as the participants in the randNEC 

condition of Experiment 1, who received random constraints with low information value. The 

only difference was in reaction time, which was somewhat longer in the highNEC-poor 

subgroup than in the randNEC condition. This suggests that although participants in the 

highNEC-poor subgroup failed to properly use the information provided, they may have 

invested time trying to do it ineffectively. 

 

6. General Discussion 

In the introduction we described inherent ecological differences between PECs (Positive 

Equivalence Constraints) and NECs (Negative Equivalence Constraints). Our main 

observation was that PECs are more informative than NECs. We then hypothesized that this 

fact may affect the way people process PECs and NECs in general. That is, the statistical 

difference in usability of NECs and PECs may lead people to expect, (inherently and 

presumably unconsciously), that NECs not to be informative. This expectation may result in 
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their greater use of PECs and thus their inability to process even informative NECs. The 

current research findings strongly support this hypothesis.  

 

In Experiment 1, which was designed to evaluate baseline performance, we saw a clear 

advantage for category learning from randomly selected PECs compared to randomly selected 

NECs. Moreover, as expected from the theoretical background, random NECs were found to 

be poorly informative, enabling categorization performance similar to that observed when 

participants merely performed associative categorization, as in the control condition without 

constraints.  

 

Experiment 2 investigated whether the fact that PECs and NECs are differently informative 

affects the way people process these constraints when they are equally and highly 

informative. Results showed that deliberately selected PECs, containing all the information 

needed for perfect performance, were in fact not more beneficial than randomly selected 

PECs. In contrast, deliberately selected informative NECs enabled much better performance 

than randomly selected NECs. Taken as a group, participants in the highNEC condition had 

similar sensitivities to those in the highPEC condition. The main differences were that the 

highNEC group had a slower mean reaction time, a lower False-Alarm rate, and an evidently 

but non-significantly lower Hit rate. It seems like highNECs lead participants to use a more 

conservative decision criterion at the cost of a longer reaction time. 

Further analysis revealed an interesting dichotomy in the highNEC group: While in the 

highPEC group, sensitivity was normally distributed with a relatively small standard-

deviation, in the highNEC condition, the sensitivity distribution was not unimodal and it had a 

relatively large standard-deviation. This pattern of performance in the highNEC condition was 

also apparent in the Hit and False-Alarm distribution patterns, showing that about half of the 

participants in the highNEC condition performed almost perfectly while the other half 

performed poorly, as though they had not received any informative constraints at all. In 

contrast, in the highPEC condition, both nearly-perfect and poor performances were relatively 

rare. Instead, most participants showed reasonably good performance. Further testing of 

reaction time also revealed that in the highNEC condition, responses were not only slower 

than with PECs, but they were also highly dependent on task difficulty and individual 

participant sensitivity; namely, participants with high sensitivity also had faster reaction 

times. These findings clearly demonstrate that while the use of PECs is accomplished 

relatively easily and intuitively, many people have difficulty in using highNECs in category 

learning tasks.   

 

Experiment 3 provided a number of surprising results. First of all, we found that the strategy 

for using highNECs could be readily learned via simple instructions, leading participants to 

nearly perfect performance. This change – compared to the non-directed highNEC case in 

Experiment 2 – was probably due to improved performance of the potentially poor 

performing subgroup, bringing them up to the level of good performers. This result suggests 

that the failure of the poor performance subgroup in using highNECs was due to their 

inability to find the correct strategy, and not their inability to adopt new strategies. Still, it is 

surprising that a strategy for using highNECs was easily learned when instructions were 

provided, but many people (university students!) failed in intuitively implementing this 

strategy when performing the task without instruction.  

Secondly, we found that giving similar instructions for the best strategy for using PECs did 

not improve performance and participants remained at quite good, but not perfect 

performance levels. This difference between the benefit of instructions for using PECs and 

NECs was rather unexpected, and supports our main conclusion that people use PECs, but not 

NECs, intuitively. These findings also help in rejecting the possibility that the pattern of 

performance observed in the highNEC group in Experiment 2 could have resulted from some 

confusion of the poor performers concerning the experimental setting. Figure 10 summarizes 

participant performance in the three experiments. Note that performance with PECs is similar 

in all three experiments, while with NECs, performance improves for some when we gave 

informative NECs, and for all when directions were added. 
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6.1 Strategies for Using Positive Equivalence Constraints 

The lack of change when provided with instructions for using PECs (in Exp. 3) may be 

accounted for by one of the following: (i) participants’ default strategy was similar to the rule-

based strategy suggested by the directions, and so the “tips” gave them no additional 

information, (ii) participants’ default strategy, although different from the instructed one, led 

to similar performance levels, or, (iii) the default strategy – while not optimal – was so natural 

and intuitive, that participants were reluctant or unable to shift to a potentially better strategy. 

Related to these alternatives are the questions: What is the default strategy that people use 

with PECs? Why is this strategy natural? Why is this strategy not optimal, in the sense that it 

leads to less-than-perfect performance (e.g. compared to the NEC group of Exp. 3)? We 

examine two alternative strategies in light of these questions: 

6.1.1 Similarity Based Strategy 

PECs seem to be naturally suited to an exemplar-like strategy, based on the storage of a large 

number of examples, or to a prototype-like strategy, based on abstraction of typical class 

elements. In our setup, however, participants were shown only pairs of objects of the same 

class (PECs). It may be difficult to build a prototype from two examples, and may be even 

more difficult to use an exemplar-based strategy with only two exemplars per category. 

Furthermore, the chief (an exemplar from the target category) was not necessarily from one of 

the categories shown in the constraints – and in fact usually was not – so that participants had 

to decide who belongs to the chief’s class based on only one example from the target 

category. Nevertheless, participants could derive the size and shape of typical classes (in the 

multi-dimensional space) by averaging over the pairs shown, and, using the chief as the 

prototype of this unknown class, decide which other objects belong to it. Thus, we cannot rule 

out the possibility that people use this type of strategy, which may be natural for PECs, even 

though it is not optimal in the current setting, which forces generalization using a rule-based 

strategy. 

6.1.2 Rule Based Strategy 

A strategy that is based on a rule determined by the constraints provided to the participant, 

could guarantee perfect performance in our experimental setting, if it were used correctly. 

Specifically, participants could reliably derive from PECs the identity of the dimensions that 

are relevant or irrelevant to classification in each experimental trial. They could do this in one 

of two ways: a. For each pair in a PEC, find the dimension or dimensions that differentiate the 

two stimuli, and identify them as irrelevant. After all the irrelevant dimensions are collected 

(a union operation), identify the remaining dimensions as the relevant dimensions (a set-

complement operation). This strategy is the one provided to participants in the directed 

highPEC condition of Experiment 3. b. For each pair in a PEC, find the set of dimensions 

shared by the two examples, and identify these dimensions as potentially relevant. As 

additional constraint pairs are examined, compute the intersection of the identified sets of 

dimensions, i.e. the dimensions that are shared in all the pairs. The result is the set of relevant 

dimensions. If participants used one of these methods for the PEC condition, they could have 

ended up with an elevated level of False-Alarms (as seen even in Experiment 3), because they 

may have missed less-salient relevant dimensions either when performing the set complement 

operation (in method a) or initially in identifying all the similarities within a constrained pair 

(method b). This error, due to missing less-salient dimensions, is prevalent in real-world 

cases, where the full group of possible dimensions may not be known or even inferable. Thus, 

even using this optimal strategy for PECs does not guarantee perfect performance.  

 

We return to the question raised at the beginning of this section: Why is there no 

improvement of performance in the PEC condition when directions are provided? We remain 

with the three possibilities outlined there, which we now express in terms of the two strategies 
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outlined above: (i) Participants actually use the rule-based strategy from the outset, but this 

strategy does not lead to perfect performance. (ii) They may intuitively use a similarity-based 

strategy and then indeed shift their strategy, but performance may not improve, since the 

False-Alarm level remains high. (iii) Participants may intuitively use a similarity-based 

strategy, and, since this strategy is quite effective even when performing a rule-based task, 

they may be reluctant to learn another strategy, and thus do not shift to the rule-based strategy 

even when given directions for its use. This latter possibility is supported by earlier studies 

showing a tendency of participants to use similarity-based categorization strategies even when 

an explicit rule is provided (Allen & Brooks, 1991).  

6.2 Strategies for Using Negative Equivalence Constraints 

We compare the cases of PECs and NECs in terms of the two strategies presented above. The 

use of an exemplar- or prototype-like strategy is even less appropriate to NECs than to PECs, 

and may be impossible even for highly informative NECs, since this strategy is based on 

similarities among objects of the same class. An attempt to use this strategy with NECs must 

lead to very poor performance, similar to baseline performance with non-informative 

constraints or even no constraints at all. This is just what we found for many of our 

participants.  

 

Alternatively, participants could use a rule-based strategy, parallel to the one suggested above 

for PECs. Participants would identify as relevant the single dimension differentiating the 

stimuli of each pair, and collect these (a union operation) to form the set of relevant 

dimensions. No additional set-complement operation is needed, and less-salient relevant 

dimensions are highlighted directly by the constraints provided. Thus, perfect performance – 

without elevated False-Alarms – is likely, once this strategy is known and used. This is what 

we found for some participants even without giving them directions (Exp. 2), and for all 

participants who were given directions (Exp. 3).  

6.3 PECs vs. NECs 

Two additional differences between the use of PECs and NECs require clarification: 1- The 

individual differences in the use of NECs, leading to a non-uniform distribution in the use of 

highNECs vs. the uniformity and unimodal distribution for highPECs, and 2- The usefulness 

of giving directions for use of NECs but not of PECs. 

6.3.1 The Individual Difference in the Use of NECs 

The individual differences may be explained by two characteristics of the information 

provided by NECs, one which facilitates their use, and one which complicates their use: 

NECs provide information indicating a dimension that is relevant to categorization. Such 

information may be more easily integrated than that provided by PECs – which decisively 

indicate dimensions that are irrelevant. On the other hand, NECs provide information 

regarding two categories, both of which must be kept in mind simultaneously. This may be 

more difficult than the use of PECs, which relate to one category at a time. Thus, use of NECs 

inherently contains both a difficult aspect (relating to two categories simultaneously) and an 

easy aspect (directly pinpointing relevant dimensions). The relative weight of these two 

factors may be individual, leading to the broad and non-unimodal distribution in their use, and 

explaining why when not provided with additional directions, only some participants 

effectively used highly informative NECs 

6.3.2 The Usefulness of giving directions for Use of NECs but not PECs 

The second major difference between PECs and NECs is that performance with NECs, in 

contrast to PECs, benefited significantly from the instructions regarding the optimal 

categorization strategy. Two factors may have contributed to this difference: (i) Participants 

were more open to advice on how to use NECs because they did not have a strong intuitive 



 

20 

idea of what to do a priori; they may have been using an ineffective exemplar- or prototype-

like strategy, another strategy, or no strategy at all.  (ii) It was easier for the participants to 

learn the rule-based strategy with NECs, perhaps because it did not involve a set-complement 

operation. This latter ease of abstracting the optimal strategy may also be the source of the 

excellent performance by the good-performing highNEC subgroup in Experiment 2; they may 

have used this strategy even without directions. 

 

Our findings reveal one way that behavior reflects statistical properties of objects and 

categories in the world: People have the tools needed to integrate PECs, since PECs are 

generally informative. In the case of NECs, only some people have the wherewithal for proper 

use of this information. Others, who lack this ability, are able to acquire it when provided 

with the necessary directions. Interestingly, NECs lead to better performance, once the proper 

strategy is found naturally or through directions. 

 

6.4 Implication for the Categorization Hierarchy 

The current findings have important implications for understanding known phenomena in 

category learning, and may provide an effective tool for predicting performance in a variety 

of category-learning tasks. As an example, the tendency of children to over-generalize when 

classifying objects (Clark, 1973; Chapman et al. 1986; Neisser, 1987) may be seen as a 

consequence of their using mostly PECs, which, as pointed out above, can lead to 

disregarding less-salient, but relevant dimensions and a subsequently higher rate of False-

Alarms. Perhaps later in life over-generalization is reduced when more refined strategies are 

acquired and better dimension weighting is attained including less salient dimensions (see 

Diesendruck, Hammer & Catz, 2003; Hammer & Diesendruck, 2005; Sloutsky, 2003 for 

similar thoughts). For example, as we saw above, some people do learn to use NECs in the 

rare cases when they are informative, resulting in the reduction of such False-Alarms.  

 

These findings also shed light on the hierarchical structure of our conceptual knowledge, 

pinpointing differences between levels and the possible source of the order of acquiring them. 

Specifically, superordinate and basic level categories are expected to contain objects which 

are both similar in many aspects (dimensions), but also are dissimilar in many other aspects 

(Neisser, 1987; Murphy, 2004; Rosch, & Mervis, 1975; note that superordinate categories 

require a further level of abstraction and use of more “functional” rather than perceptual 

dimensions than basic-level categories). As we demonstrated, identifying the relevant 

dimensions in such categorization scenarios can be done only from PECs – but not from 

NECs because two negatively constrained objects, i.e. from different categories, are expected 

to be dissimilar in many dimensions, only some of which are relevant. Informative NECs 

(with only one discriminating dimension) should therefore be extremely rare for superordinate 

and basic level categories. The use of NECs might be relevant only on those occasions when a 

supervisor intentionally selects informative NECs or highlights relevant discriminating 

dimensions. For instance, an adult telling a child, “You see these two (pointing to a horse and 

a dog), they are not the same because this one is large and that one is small” is adding to the 

information of the constraint itself, highlighting size as a relevant dimension for 

discriminating dogs from horses and shifting the child's attention from other irrelevant 

dimensions in which the regarded two instances differ. Similarly, training medical diagnosis 

is more effective when novices are provided with an explicit rule including a list of 

differentiating symptoms. Nevertheless, after encountering a sufficient number of exemplars, 

further improvement involves use of similarity-based strategies (Kulatunga-Moruzi, Brooks 

and Norman, 2001).  

 

The case of subordinate level categories is different. Here a pair of negatively constrained 

objects from different subordinate categories – but the same basic level category – will 

generally differ on very few dimensions that will also be less distinct (Murphy, 2004). Such a 

constraint may often be informative. Thus, subordinate level categories can be learned from 
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either PECs or NECs. Moreover, subordinate level PECs may be less useful since objects 

from subordinate categories are usually already perceived as similar, and so are likely to be 

perceived as belonging to the same category – as they are at the basic categorization level. In 

this context, PECs will not be useful in highlighting non-salient relevant dimensions for 

categorization although they might still be useful for identifying salient non-relevant ones.  

On the other hand, NECs may help in breaking default beliefs about the relation between 

highly similar exemplars, as illustrated in Figure 11: This example suggests that NECs may 

act as a useful tool in boosting perceptual learning or dimension-creation by directing 

attention to subtle differences, between constrained instances, that otherwise would be 

disregarded or overshadowed by more salient ones. Later, the importance for categorization of 

these newly learned dimensions can be further evaluated. Similar ideas for NECs playing such 

a function are implied by Schyns, Goldstone, and Thibaut (1998) who discussed diagnostic-

driven learning and differentiation in supervised categorization tasks. They and others 

provided examples for sensitization effects occurring only on task relevant dimensions that 

were identified via training in supervised categorization (Goldstone, 1994b) or similarity 

judgment (Livingston, Andrews & Harnad, 1998) tasks. 

 

These differences in the possible roles of PECs and NECs for learning different levels of the 

categorization hierarchy may explain why it is often hard to learn subordinate level 

categories. PECs suffice – and may even be better – for learning basic level and superordinate 

level categories, but NECs may be crucial for learning subordinate categories. Therefore, our 

current findings, demonstrating difficulties in using NECs even in a simple categorization 

task using easily identified dimensions (as verified in Exp. 3), suggest that subordinate-level 

categorization will be hard even without perceptual difficulties. Expertise must involve not 

only better perceptual capabilities, but also an ability to implement an appropriate strategy for 

using NECs. Viewed from a different perspective, perhaps the fact that discriminating 

subordinate level categories is less frequently necessary in everyday life may underlie 

people's difficulty in using NECs.   

6.5 Other Theoretical Implications 

The current findings may have implications for additional category learning phenomena. 

More specifically, the role of PECs vs. NECs may change when faced with complex or fuzzy 

boundaries including boundaries in typical XOR learning (e.g. Dixon, 2000; Kinder & 

Lachnit, 2003; Palmeri & Noelle, 2003) or information-integration tasks (e.g. Ashby & 

Maddox, 2005; Avrahami et al., 1997; Palmeri & Noelle, 2003). The conclusions discussed 

above are consistent with NECs being more suitable for these difficult cases, since they may 

more clearly define questionable boundaries. We suggest that these cases may be more 

difficult also because they depend on the use of NECs. 

 

Although the current research was designed to test human use of equivalence constraints in 

category learning, it also raises theoretical issues that are directly relevant to other fields of 

research. In the introduction, we described theoretical limitations in the use of PECs and 

NECs that are relevant in any context involving the identification of common or 

discriminating attributes in a multidimensional object space. The differentiating properties of 

PECs and NECs should affect their use by any agent, whether human, animal or machine, 

when faced with a category-learning, discrimination, or similarity-judgment task. 

For example, in many studies involving animal training, the often wearying effort of teaching 

an animal to discriminate between multidimensional stimuli (e.g. Brosch et al., 2005) can be 

avoided by the use of well chosen stimulus pairs during training. The use of highly 

informative NECs – when possible – is expected to be most beneficial for teaching 

discrimination between different types of stimuli. At the same time, it would be of interest to 

determine if animals possess biases against the use of even informative NECs, similar to those 

observed here in humans.  
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Similarly, in the context of machine learning, it has already been demonstrated that an EM 

(Expectation-Maximization) clustering algorithm designed for using equivalence constraints 

has difficulty using even informative NECs, but easily succeeds in learning target categories 

when provided with PECs (Hertz et al., 2003). This limitation arises from the fact that this 

algorithm represents categories by cluster centers and the distributions around these centers, 

i.e. they are conceptually similar to prototype-based classifiers. As described above, PECs are 

more efficient than NECs for calculating prototypes; (but see Winston, 1982 on learning from 

“near misses”, as an example of a possible algorithm which learns from NECs).  

6.6 Future Research 

The current study provides insight into category learning strategies and dynamics. Further 

study is needed to address related questions concerning the separate role of PECs and NECs. 

As discussed above, we expect differences in the use of PECs and NECs in early 

development: Children might use PECs as do adults, but their use of highly informative NECs 

may be similar to the poorly-performing adult group (of Experiment 2). In another direction, 

it would be interesting to see what happens when non-binary dimensions discriminate 

between otherwise very similar categories (i.e. with similar property values). Here 

informative NECs may play a more significant role, as they do for subordinate categories (see 

above). 
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Appendix 

We analyze the dependence of the number of possible PECs, NECs and highNECs on the 

number of objects and categories. Note that all PECs are informative for identifying relevant 

dimensions while in the case of NECs, only the highNECs (negative constraints made up of 

two objects from two different categories that differ in their value on only a single dimension) 

are informative for such a task. To simplify the discussion, we assume that the number of 

objects in each category is identical.  

Specifically, let: 

 

c = the number of categories. 

n = the number of objects in each category. 

d = the number of relevant dimensions, assuming binary dimension, cd 2log=  

 

It follows that:  

 

number of              ; number of     ; number of 

 

This calculation shows that the total number of PECs is much smaller than the total number of 

NECs when the number of categories, c, is large. In addition, highNECs (NECs which provide 

1 Bit of information) are a small subset of NECs when the number of category members, n, is 

large. Specifically: 

 

 

 

 

 

 

 

 

 

In the current experiment, nc = 32. When d = 2, c = 4 and n = 8. Then, there are 112 PECs 

and 384 NECs, of which 32 are highNEC. When d = 3, c = 8 and n = 4. Then, there are 48 

PECs and 448 NECs, of which only 48 are highNEC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Footnotes 

(1) For clarity of presentation and simplicity of experimentation, this example – as our experimental 

paradigm – uses binary feature values and categories defined by rules. Nevertheless, the conclusions of 

the analysis – as the results of the study – extend to other categorization scenarios. 
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 Figures 

 

Figure 1. Demonstration of difference between PECs and NECs in terms of availability. a. A natural 

scene with three different categories, including 16 PECs and 39 NECs (see text). b. An illustration in 

which each gray circle represents a category of three objects (inner shapes); there are four categories, 

12 PECs and 54 NECs (see text). Generally, in any scenario representing three or more objects taken 

from two or more categories, the number of NECs will always be higher than the number of PECs (see 

text and Appendix). 
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Figure 2. Example of a three-dimensional object space with two categories. In this simplified example 

each dimension is binary (i.e., has only two values/features). The dimensions are color (red vs. blue) 

shape (circle vs. square) and texture (filled vs. dashed).  

Figure 3. Example of stimulus configuration on one specific trial. Participants decided which of the 32 

test stimuli belong to the chief’s tribe. Clues (constraints) were presented as frames surrounding pairs 

of exemplars. Positive and Negative Equivalence Constraints (PECs and NECs) are illustrated 

respectively as solid lines, marked P1-P3, and dashed lines, marked N1-N3. Note that in the 

experiment, the two types of constraints never appeared together in the same trial. Highly informative 

constraints (Experiment 2 and 3), as illustrated here, present pairs of images that differ in only one 

feature. In the current example, participants had to learn that skin color and ear shape are relevant for 

categorization. Specifically, NEC N1 informs participants that skin color is a relevant dimension 

because it is the only dimension discriminating between the two exemplars. Similarly, N2 and N3 both 

imply that ear shape is relevant for categorization. P1, P2 and P3 inform participants that eye color, 

nose shape and chin shape are not relevant for categorization since these features are different in pairs 

that belong to the same tribe. In the highly informative constraint task, as in the current example, all the 

information needed for proper categorization was provided (for either NECs or PECs, separately; see 

text). 
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Figure 4. Examples of randPECs (left) and randNECs (right). Randomly selected constraints are 

applied to the same experimental trial depicted in Fig. 3, but here the constraints are randomly selected. 

In this trial, participants had to identify ear shape and skin color as the relevant dimensions for 

categorizing the aliens. Thus, valid positively constrained pairs (PECs) include aliens with the same ear 

shape and skin color and with either identical or differing chin shape and skin and eye color. Generally, 

as few as three such pairs suffice to identify the irrelevance of the latter three dimensions and thus the 

relevance of the first two. On the other hand, valid negatively constrained pairs (NECs) will include 

aliens with either different ear shape or different skin color. These were usually non-informative since 

to be informative, the pair could not differ on any other dimension. As can be seen in these examples, 

the task relevant dimensions can be easily identified from the three randPECs, but not from the 

randNECs, since the pairs differ also on non-relevant dimensions. 
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Figure 5. Experiment 1. Performance without equivalence constraints (noEC) or with randomly chosen 

positive or negative equivalence constraints (randPEC or randNEC). a: The Receiver Operating 

Characteristics (ROC) diagram, plotting Hit rate (ordinate) vs. False Alarm rate (abscissa). Each point 

represents one participant’s performance in the specified experimental condition. Distance from the 

dashed line represents participant sensitivity, with points near the line representing random stimulus 

selection. (Note that the abscissa is limited to the range 0-0.4, since, as expected, there were relatively 

few FAs; see text.) b: Mean Hit and False-Alarm rates in the three experimental conditions. c: Mean 

sensitivity (A’). d: Mean reaction time (in seconds). Error bars in all figures are standard errors of the 

mean.  
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Figure 6. Experiment 2. Performance with highly informative positive or negative equivalence 

constraints (highPEC or highNEC). a: The Receiver Operating Characteristics diagram showing largely 

overlapping results for highly-informative PECs and NECs. b: Mean Hit and False-Alarm rates. c: 

Mean sensitivity (A’). d: Mean reaction time (in seconds).  
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Figure 7. a: Sensitivity distribution in the highPEC (left) and highNEC (right) conditions of 

Experiment 2. The horizontal axis represents participant sensitivity (A’) and the vertical axis represents 

the number of participants. Dashed curves represent the expected normal curves calculated from each 

group mean and standard deviation. b: Receiver Operating Characteristic diagrams for the highPEC 

(left) and highNEC (right) conditions. Dashed lines represent the median Hit (horizontal lines) and 

False-Alarm (vertical lines) rates in each condition. 
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Figure 8. Experiment 3. Performance following directions for optimal use of highly informative 

positive or negative equivalence constraints (directed-highPEC or directed- highNEC conditions). a: 

The Receiver Operating Characteristics diagram. b: Mean Hit and False-Alarm rates. c: Mean 

sensitivity (A’). d: Mean reaction time (in seconds). 
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Figure 9. Between-experiment comparisons. a: The Receiver Operating Characteristics diagram of the 

directed-highNEC (Exp. 3, Fig. 8a) and randNEC (Exp. 1, Fig. 5a) conditions. Dashed lines represent 

median Hits (horizontal line) and False-Alarms (vertical line) as they were calculated for the highNEC 

condition (see Exp. 2, Fig. 7b). Note the clear separation of these results into upper-left and lower-right 

quadrants, respectively.  b: Mean sensitivity (A’) for participants receiving NECs in each of the three 

experiments.  c: Mean reaction time (in seconds) for these groups of subjects. 

 

 

 
 
Figure 10. Schematic summary of performance in the three experiments of this study – with randomly 

chosen constraints (I) or highly informative constraints, without (II) or with (III) directions for their 

use. The level of performance with Positive Equivalence Constraints (left) was similar and moderate in 
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all of the three experiments. Deliberately selecting constraints for maximizing information (highPEC, 

Exp. II) and providing participants with directions for how to use these constraints (directed-highPEC, 

Exp. III) did not improve performance compared to the randPEC condition (Exp. I). The pattern of 

performance with negative constraints (right) was different: While performance with randomly chosen 

constraints was poor (randNEC, Exp. I), deliberate selection of informative NECs (Exp. II) resulted in 

a bimodal distribution of performance with some participants performing poorly and others almost 

perfectly. Providing directions (Exp. III) resulted in near-perfect performance for most participants. 

 

 

 

 
 

Figure 11. The role of NECs in perceptual learning and category learning: Before reading any 

further – try to determine quickly which of the three creatures above belongs to a different species 

than the other two.  

When asked, most people first choose creature C as the different one since its limbs are very 

different than those of the other two. But when provided with an indication that creature A is 

not of the same kind as creature B (NEC), people become aware of the differences between 

the creatures in terms of the size of the spikes on their back, a dimension that was previously 

left unnoticed. When provided instead with the corresponding PEC, indicating that B and C 

are from the same category, people understand that the limb shape is not important, but yet 

they still do not notice or identify the spikes-size dimension as a relevant one. We claim that 

using NECs in such a context is essential for learning. Our current findings suggest that even 

when overcoming the perceptual limitations when provided by such NECs, many will still 

find it difficult to correctly use the information provided by them. 

 

 

 

 


