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Abstract:

We present a novel method for motion segmentation and depth ordering from a
video sequence in general motion. We first compute motion segmentation based on
differential properties of the spatio-temporal domain, and scale-space integration.
Given a motion boundary, we describe two algorithms to determine depth ordering
from two- and three-frame sequences. A remarkable characteristic of our method is
its ability compute depth ordering from only two frames. The segmentation and
depth ordering algorithms are shown to give good results on 6 real sequences taken
in general motion. We use synthetic data to show robustness to high levels of noise
and illumination changes; we also include cases where no intensity edge exists at the
location of the motion boundary, or when no parametric motion model can describe
the data. Finally, we describe psychophysical experiments showing that people, like
our algorithm, can compute depth ordering from only two frames, even when the
boundary between the layers is not visible in a single frame.
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Motion Segmentation and Depth Ordering Using an
Occlusion Detector

Abstract— We present a novel method for motion segmentation
and depth ordering from a video sequence in general motion.
We first compute motion segmentation based on differential
properties of the spatio-temporal domain, and scale-space inte-
gration. Given a motion boundary, we describe two algorithms to
determine depth ordering from two- and three-frame sequences.
A remarkable characteristic of our method is its ability compute
depth ordering from only two frames. The segmentation and
depth ordering algorithms are shown to give good results on 6
real sequences taken in general motion. We use synthetic data to
show robustness to high levels of noise and illumination changes;
we also include cases where no intensity edge exists at the
location of the motion boundary, or when no parametric motion
model can describe the data. Finally, we describe psychophysical
experiments showing that people, like our algorithm, can compute
depth ordering from only two frames, even when the boundary
between the layers is not visible in a single frame.

1. INTRODUCTION

HE goal in motion-based segmentation is to partition images

in a video sequence into segments of coherent motion.
There are two main approaches: some assume a global parametric
motion model and segment the image according to the parameters
of the model (e.g., [12], [23], [24], [34]), while others assume
piecewise smooth motion and identify the boundaries along
motion discontinuities (e.g., [3], [13], [21], [33]). The second
approach is potentially more general, and it lies at the base of
owr proposed method here.

Motion discontinuities can be identified by clustering a previ-
ously computed motion field. The problem is that such discontinu-
ities are found at exactly those locations where the computation of
the motion field is least reliable: since all optical flow algorithms
rely on the analysis of a region around a point {(even if only
to compute first-order derivatives), the optical flow must be
continuous within the region to support reliable computation. This
chicken-and-egg problem, which can be addressed in different
ways (e.g., [24], [34]), makes motion segmentation particularly
challenging. On the other hand, the successful computation of
motion discontinuities can be useful for a number of applications,
including motion computation (by highlighting those areas where
the computation should be considered unreliable) and object
segmentation from multiple cues. Here we propose a motion
segmentation method that does not require a reliable optical flow
to begin with.

Having segmented the image, we next want to determine the
occlusion order of objects in the image, as the first step in 3D
scene understanding and object recognition. In principle, any

depth-retrieval algorithm (e.g., [13]) would also provide depth
ordering. However, full 3D reconstruction is usually only practical
in static scenes, and it relies on accurate geometric calibration
which remains a hard task. In this work we present a method
to compute depth ordering from occlusion cues without explicit
scene reconstruction. The most important characteristic of our
method is its ability compute depth ordering from only two
frames.

The problem of depth ordering is similar to figure/ground
segregation, an issue which has been studied extensively in the
context of Gestalt psychology. Many possible spatial cues may
contribute to figure perception from a single image, including
corvexity [25], junctions [27], and familiar configurations [26]).
However, depth ordering from a single image may be subjective
and prone to ambiguities, whereas motion gives a very powerful
and usually unambiguous cue.

Given an image sequence, the accretion and deletion of texture
elements [11], as well as the common fafe of texture and edge [5],
[36], have long been recognized as cues for depth ordering. There
are several methods for depth ordering from three frames or more,
e.g., by tracking disappearing texture elements [20], optical flow
filling [24], detecting T-junctions in space-time [1], [22], matching
the motion of surface and boundary [4], [6], [31] and localization
of errors in flow computation w.r.t. monocular segmentation [2].

However, as we claim in Section 5, when given only two
frames, it is impossible to determine depth ordering from motion
alone, without additional assumptions or prior knowledge. This
is because the motion of pixels that become occluded cannot
be determined, and thus they may belong to either side of the
motion edge, leading to more than one valid order assignment.
One solution would be to assume that the occluded pixels belong
to the layer that is more similar in appearance; i.e., determine
depth ordering by matching the motion of color and motion
edges [32]. However, color edges are often unreliable as edges
between layers, since the figure and ground may have similar
colors.

1.1, Motion Segmentation

Our work is based on the extraction of motion boundaries,
which are defined locaily as boundaries between different motions
(since many real video sequences do not obey any global motion
model). Several methods rely on color or texture edges [8], [13],
[30], which can be combined with alpha matting to produce
precise results [35]. In this work we restrict ourselves to so-
lutions which do not rely on such spatial cues, which are not
always present at motion boundaries. This is further motivated
by humans’ ability to segment objects from motion alone (e.g.,
in random dot kinematograms), and by the need to avoid over-
segmentation of objects whose appearance includes varying color
and textures. Finally, we only consider local properties of the



temporal profile of motion, in order to be able to deal with pairs
of frames or stereo pairs (but see, for example, [29], [35]).

In our approach, originally reported in [7], we start by consid-
ering the video sequence as a spatio-temporal intensity function,
where the goal is to extract information from this spatio-temporal
structure. Video sequences have highly regular temporal struc-
ture, with regions of coherent motion forming continuous tube-
like structures. These structures break where there is occlusion,
creating spatio-temporal corner-like features. Using a differential
operator that detects such features, we develop an algorithm that
extracts motion boundaries.

Specifically, our algorithm is based on the occlusion detector
described in Section 2.1. This operator is used to extract a
motion boundary at any given scale, as described in Section 2.2.
Since different scales may be appropriate for different parts of
the image, a cross-scale optimal boundary is computed, based
on the response of the detector. At the end, a closed contour
is built along the most salient boundary fragments to provide
the final segmentation. The algorithm was evaluated on three
challenging real sequences, as described in Section 3. We included
a number of synthetic examples which are particularly difficult
for some commonly used algorithms, in order to demonstrate the
robustness of our method. Some Results from other algorithms,
whose implementation was made available by the authors, are
provided for comparison. Finally, in Section 4 we analyze the
behavior and mathematical properties of the algorithm.

1.2. Depth Ovdering

A few recent papers explicitly model occlusion based on
matching, or lack thereof [13], [35], which can be used to infer
depth ordering. In this work we introduce a novel low-level cue
that indicates depth order.

Our computational approach to the problem of ordinal depth
from two frames utilizes the principle of common fate of texture
and boundary, though without attempting to extract the boundary
explicitly. The spatio-temporal partial derivatives in each frame
are affected by both the motion of the layers (i.e., their texture),
and the motion of the motion boundary. When using our occlusion
detector, which relies on these derivatives, a bias towards the
occluded side appears. The bias depends on the density gap
between the two layers (this bias disappears when the layers have
the same local density). Moreover, when measuring this bias in
scale space, it can be seen to increase as the scale is increased.

From this observation we derive an algorithm in Section 5.1,
which computes the ordinal depth of two layers based on the
trend of the bias in scale-space. With some minor modifications,
we show in Section 5.2 that the same algorithm can be applied
to three-frame sequences, without relying on local differences of
density between the layers. The algorithms are shown to perform
well on real sequences. The performance of the algorithms is
compared to the performance of human subjects on two- and
three-frame sequences of random-dot textures of varying density
and to an ideal observer model in Section 6.

2. SEGMENTATION ALGORITHM

The motion segmentation algorithm we present is based on a
differential operator defined in Section 2.1 that is applied to the
video sequence and responds at motion boundaries. While this
operator is shown to detect motion boundaries in many cases, it

is often unable to detect boundaries where certain degeneracies
exist locally. This is solved by a cross-scale scheme presented in
Section 2.2. Finally, closed contours are extracted using a saliency
measure and a simple heuristic to overcome small gaps, presented
n Section 2.3. See also Appendix II for some implementation
issues.

2.1. Occlusion Detector

Regarding the video sequence as a spatio-temporal intensity
function, let I(z, y, ¢) denote the intensity at pixel (z, y) in frame
t. We refer to the average of the second moment matrix over a
neighborhood w around a pixel as the Gradient Structure Tensor
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This matrix has been invoked before in the analysis of local
structure properties. In [14], eigenvalues of G were used for
detecting spatio-temporal interest points. In [18] it was suggested
that the eigenvalues of G can indicate spatio-temporal properties
of the video sequence and can be used for motion segmenta-
tion. The idea behind this is reminiscent of the Harris corner
detector [9], as it detects 3D “corners” and “edges” in the spatio-
temporal domain. Here we take a closer look and develop this
idea into a motion segmentation algorithm.

Specifically, if the optical flow in w is (vs,vy) and the
brightness constancy assumption [10] holds, then

G-(’vm]’vy,l)T =0 (2)

Hence, 0 is an eigenvalue of G. Since G is positive-semidefinite,
we can use the smallest eigenvalue of G as a measure of devi-
ation from the assumptions above, which leads to the following
definition:

Definition 1 Let Mz, y,t) denote the smallest eigenvalue of
the Gradient Structure Tensor G(z,y,t). The operator A is the
occlusion detector.

We do not normalize A with respect to the other eigemnvalues
of G (as in [18]), since it may amplify noise. In order to provide
rotational symmetry and avoid aliasing due to the summation over
the neighborhood cw, we define «w to denote a Gaussian window,
and the operation > in (1) stands for the convolution with a
Gaussian. Since we do not assume temporal coherence of motion,
the Gaussian window is restricted to the spatial domain.

Figure 1 demonstrates the detector results on a simple synthetic
example. In this example there are no intensity or texture cues to
indicate the boundaries of the moving object, and it can only be
detected using motion cues. The value of A, shown in Fig. lc, is
low in regions of smooth motion, and high values of A describe
the boundary of the moving object accurately.

The values of VI, and hence of A, are invariant to translation
transformations on f. Additionally, for any rotation matrix R,

M =G| = RO - GRT| = M- RVHRVHT

[
(I is the identity matrix) and therefore the values of A are also
invariant to the rotation of I. The issue of scale invariance is
discussed in Appendix 1.

"Note that the values of A at each pixel can be evaluated directly using
Cardano’s formula.
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Fie 1. PBandom dots examople. A shape iz moowving sideways, where both
fha shape and the haclkemound are coverzd by a mndom pattem of blacl and
whitz dote. It is npossitle to identify the movdnge objeet fromn 2ach of the o
fratres {a) and () {a stereo pairy alone. The occlusion detecior c) (higher
walues of A ate dadeen) shows the outlineg of the objact vary clearly. Clorograre
o the eround truth {d).

Wiociteodapted defector: While rotational imvanance 12 de-
arable in the spatial domain, non-epatial rotations 1o the spatio-
temporal domain have no physical meanung. It = preferable to
have 1mranance to spatiallyfoed shear traneformatons, wilach
cormegpand to 20 relative tranelational motion between the camera
and the scene. Az suggested 1 [15] by the reference to Galilzom
agonalization, one can uze the welocity-adapted matnx G given

by
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(% dencte the entiies of 5, and G* denctes the 2 x 2 upperleft
mubmatnx of 3 contamang only spatal informaton).

Defmition 2: The operater Ap 1z the velocifeodopted acala
som detector. _

To pustify thiz defiration, observe that G 12 alzo ireanant to
tranzlation and spatial rotabon. The entry A 12 an elgenvalue of
3, and it has been suggested that it encedes the temperal vania-
fion, being the “residue unexplamed by pure spatal informaton.

In prachce, Ap mves resultz simalar to A, thongh it has certam
adwantages, az dizcusred in Section 4. In the remainder of the
paper we uze A to dencte exther operator, unless stated otherwiss.

Detector gffectiiensss: High wlues of A mdicate sigmificant
dematon from (2), which 12 often due to the eztence of a motion
boundary. Other zoumces of lage dewations melude changes m
Mlurmnation (wmolaton of the bnghiness constancy assumphen),
of when the moton vanes spatially {motion 1z not constant o w).
Howewver, often these events lead to smaller A walues az compared
to moton boundanes (see Fig. 2), in wlich caze the boundary
reeponze can be distinguished from a filse response (eg, by
thresholding).

Lowr walues of A do not necessanly indicate that the moticn
m w 1= uraform. The ranls of G 1= affected by spatal stmcture
az well as temperal stctore, 2o A may be lowr even at mohon
boundanes, when certain spatial degeneracies swst. Specifically,
thiz cecurs when there 12 local ambigmity, 12, when the evstence
ofa moton boundary cannot be determuned locally. Thiz inelndes
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Fig. 2. False A response. The same exarople 2= i Fie. 1o (@) with 2095
swhite nodse: (b with illuroinabon change of 3% () with the objsct mtating
By 20° (i with both objzet and bacliground pattarns defomoed sTooothly.

.‘;_r_,.) uniform baclgground

M g Zatne—color baclground

Arar whar the A detector is liliely o cive lose waluss Gespite the
exstence of 2 ooal meotion boundary.

Fie. 3.

areaz where the cccluding object and itz baclground are of the
zame oolor, areaz where the bacleground 12 um forma i color, and
areas where the baclrground texture 1z unaform o the direction of
the moton (Fg 3). In the first case the ranls of G iz 0, and 1n
the other cases the ranlt of G may be 1 or 2, depending on the
appearance of the cecluding object (recall that the A detecter 1=
high when the ranlr of S 1= 3). In these cases, the baclground
may be mterpreted az part of the mowng obect, since no features
in the bacligrennd appear to wamzh due to ccclusien.

2.2 Extroction of Motion Bowndarizs snd Seale-Spoce Structuve

The mesponse of A to cccluimion cccurs cnly where some
bacleground features become oecluded. Clearly boundary location
cannot alwaye be inferred on the bazz of local information alone.
Hoswever, while there may be no cues to mndicate the location of
the boundary at a fine zeale, there may be encugh micmmation at a
coarser scale (1.e, in a larger neighborhood) and A may respond.
Thus we inccrporate a multieseale element o our algenthm, 1n
arder to detect motion boundanes that are neot detectable at fine
seales.

Defining scole: In onder to defime the notion of scale 1n
our algonthm, note that the evalnaton of A mwolves Ganssian
conwolutions 1n two different stapes — dunng the estmation of
the partial denwvatves, and when talong the awverage ower the
neghbothood w. In both caszes, larger Gansmians lead to coarser
structures, and we refer to the aze of the Ganszzian as the scale.
In thiz wworls e only conmder the spatial scale. As we show in
Appendix I, thess two scales are related, and we define 2 umfied
seale dimension, and a scaling-nwatant operator %) at any scale
s = 0, using scale-normalization.
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Fe 4 Checlethoard exanople: () A frane foom fhe sequence; (b and
(c) showe the responss of A at fing (sey = 1) and coares (sey = 100 2caks
Eepactively. At the fine acals, A only responds at intensity adese (which
appedl af discree Uusts), while the entite confour iz visible at the ooarse

aralke, thou oh with considerabla disiorbon. (di shows the fmal contour salactad
by intzeTating oer acalss.

The notion of scale has been stadied extencively for features
such az edges and Blobs. Az wath these features, different stmc-
turez can be found at different scales. The responee of A o nodse,
wfich can oceur in finer zeales, 1z suppreszed 1n coarser scales.
Cm the other hand, locahizaton 12 poor at coarse scales and moton
boundanes may breale and merge.

Figure 4 1llustrates this idea — at fine seale (Fig. 4b), A responds
only at diserete locatons, because the baclgground conmsts of
egens with constant color, and the ccclusion can coly be
detected where there are color vanations 1n the bacliground. In
the coarser szcale (Fig. de), the neighborhood of every boundary
point contains gradients mnseveral directions and the boundary 1=
detected conbnuenshy.

Image features, such as edges, typically shuft and become
diztorted at coarse scales. The zecale space stmcture of motion
boundary edges {and m partienlar our ecclusion detector) has
itz own parbcular azes In coarse scales. As dizcussed m See-
fien 4, moton boundanes at coarse acales are shofted tosrards the
occluded side, 12, the cccluding objects becomes “thicler”. In
addition, 1t can be shown that the bias 1z stronger when there 1= 2
large inteneiby difference between the object and the baclground,
and 1t mmcreazes wath scale.

Estimating denwatves in the temporal domain 12 prone to
alasing. Ses Appendix IT for implementaton details, meluding
elirination of aliasing and estmation from only two fames

Bowndary extracion & soale-spece: Sinee M 12 computed bar
talong the average cwer a neghborhood, itz rezponze 12 diffize.
We want to exfract a ndge curve where M 1z strongest. This can
be defined locally as points where A 1z maximal in the direction
of the maximal ponneipal curmtore, which can be expressed as

Pl — MG — Aedalhee — dag) = 0

(et Aan) - (Darw — Aagd(33 — 250+ dhe dgday) = 0 (d)
Ao Ay — L Ay A < 0

Thus, at ewery szcale s, the walues of A and 1= denwatives

are computed, and the ndge can be extracted. For reascns of
mmerical stability, the defwatives of A% are computed with the
same Chussian smoothing s used for computing A%, at each
acale.
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Fig 5 Salizncy measute. (&) AN boundsties axiracted fromn the randorn
daot=s sxearrgple with illuroination changss (Fie, 20); infensity codes A responsze.
(b Tha roost salient claged contour

Inflerent boundanes are extracted at different zcales, az fine-
zeale boundanes may offen spht because of the absence of
local mmformation, and coarseseale boundanes may dizappear or
merge. Jince these may ccenr at different parts of the mage at
different scales, we need to consiruct 2 scale-adapted boundary,
by zelecting different zcales for different localities (az in [16]).
Considenng the moult -scale boundarny surface az the umaon of all
ridges m A for s e 0, 00), we want to find a crossecale
boundary where 220 iz madmal This can be expressed as

A = 0
{ Ags o= D )
uzsng the scale denvatvwes of A
Combinng (4} and {5) defines the final cros-scale mogon
bowndary. It 12 a curve 1 the three-dimensional space ¥ -T— 35,
defined by the intersecticn o fthe two surfaces defined respectivel y
by these 2 zetz of equations.

2.3, Boundary Completion

Az stated abowe, M aleo has some falze responzes which lead to
the selection of falze boundary Fagments. It 1z there fore necessary
to define a zaliency coterion, which 12 uzed to zelect the mcet
interesting boundaries. Since we regard A az a measure of local
boundary strength, for each connected zet of boundary ponts we
define the slfency megswe to be the sum of the value of A
along the boundary, az in [19]. Thiz measure may be sensitive
to fragmentation of the boundary, o in cur mmplementation we
tolerate small gape.

Finally, segmentation 1z achieved by zearching for closed
contours with lugh sahency and small gape uwsing a simple
heunztic methed. Since the extracted boundanes are umally
almeoet complete, thiz heunstic mvee good remlts (see Fig. 50,

The algonthm startz by finding a cloeed regon wath hugh
zaliency. The detected edges are thicleened zo 2z to bndge ower
zmall gape 5 pxels are typically sufficient), thue segmenting
the 1mage 1nto remons. For each such remon, the saliency of
itz bordenng edges 1z summed and the meoet zalient remon 1=
zelected. Finally, consdenng only those edges that border the
zelected remion, we employ a simaple heunstic method to conmect
the motion boundary fragments into a contimmous boundary sath
maximnal zaliency and mindmal gape.

3. EXPERIMENTAL EESULTSE

In our expennments we apphed our algonthm to a f&w sets of
real and synthetic mage pairs. The moning tme of the MATL AR
implernentation for 256 x 192 images 12 approsimately 70 zeconds,
and 1z ronghly linear 1n the number of mxels



Fig. 6.

Results on real sequences, The cup (top) and flower (middle) examples are stereo pairs, and the octopus sequence (bottom) is a dynamic scene,

(2) One of the frames. (b)) The most salient edge detected by our algorithm (with the area of the segment highlighted), (¢) Canny edges in the optical flow
(d) Edges from a MEF-based segmentation algorithm (Kolmogorov and Zabih [13]).

We compared our algorithm with the most prominent motion
segmentation approachss, wherever code was available. To begin
with, we establish the baseline result by segmenting the optical
flow. Such a segmentation lies at the heart of some more elaborate
segmentation methods, such as [24]. We used a robust and
reliable implementation of the Lucas-Kanade algorithm [17], and
segmented it using a wvariety of edge operators, including Canny
and various anisotropic diffusion methods and clustering methods
{e.z.. [34]), presenting the best results for each example.

One influential motion segmentation approach is based on
Markov Random Fields [13] (and is therefore related to the
more fraditional regularization based approaches [19]}. Code for
two wariants of this approach is available on the web by the
respective authors [13], [30], and we could therefore use their
code to establish credible comparisons. We note, however, that
in both cases the publicly available code can only work with
rectified images. Therefore, in order to obtain fair comparisons,
we compared our results to the results of these algorithms only
with rectified image pairs, when possible.

The cup and flower examples in Figure 6 demonstrate our
algorithm’s performance on a stereo pair. The most salisnt motion
boundary is shown in Fig. &b superimposed on the first input
image. Fig. 6c¢ illustrates the baseline result - the edges of the
optical flow. Fig, 6d illustrates the best MRF-based segmentation

using graph cuts [30].

The octopus example in Figure 6 shows our algorithm’s perfor-
mance on a video sequence with a dynamic scene, featuring non-
rigid motion and illumination changes. The octopus and the reef
below have similar color and texture, and thus spatial coherence
is unreliable {note in particular the triangle-shaped projection near
the octopus™ head, which is in fact a backeround feature).

In Fig. 7, a large amount of noise was added to the synthetic
checkerboard sequence, causing numerous optical low estimation
errors. The magnitude of the flow sstimation error is often greater
than the trus flow (Fig. 7b), particularly around the centers of the
squares, making segmentation based directly on the optical flow
impossible. Results of our algorithm and MR F-based method are
also shown.

The main weakness of many MEF-based methods is their
reliance on spatial coherence, which leads to failure when no
zpatial edge coincides with the motion edge. This is demonstrated
on the random dots example in Fig. 8a,b where such methods
have no spatial support and therefore fail. Fig. 8c,d demonstrates
our algorithm’s advantage when no global motion model can be
assumed. In this example, the texture of both the moving object
and the backeground undsrgo smooth non-linear deformation. The
results of applying [34] show that when motion varies smoothly
within an object, global model methods fail.
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Fig. 7. Checkerboard example with 25% white noise. (a) One of the frames;
(b) Lucas-Kanade optical flow magnitude; (¢) MRF-based segmentation;
(d) The most salient contour found by our algorithm.
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Fig. 8. Random dots example (see Fig. 1). With 20% white noise: (a) MRF-
based segmentation; (b) The most salient contour found by our algorithm.
With smooth non-linear deformation: (c) Segmentation assuming affine motion
using an implementation of [34]; (d) The most salient contour found by our
algorithm.
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Fig. 9.
frame (a), and with larger motion of 4 pixels per frame (b).

Fig. 10.
sequence.

Results on the synthetic Yosemite

Figire 9 demonstrates how our algorithm works with very slow
motion. As long as there are features in the background that
become occluded, our algorithm can detect the motion boundary
even at sub-pixel motion. Figure 9a shows results for a sequence
where the foreground object moves by 1/2 pixel. All MRF-based
algorithms we have applied have failed to detect the foreground
object altogether. Although the velocity in Fig. 9a is 8 times
slower than in Fig. 9b, the values of A in both cases are similar.

Figure 10 shows results on the synthetic Yosemite sequence,
which congists of a terrain with no occlusions that has non-rigid
motion (in 2D), and a cloud pattern with illumination changes.
The detector response is very weak in the terrain region, and the
motion edge between the terrain and the sky is correctly detected.

4. ANALYSIS

In order to analyze the performance of the proposed technique,
we consider a video of two moving layers !, i%, where w.lo.g.
I partially occludes {'. A frame in the video sequence can be
written as

= i-m+*m (6)

where m is the matting map. We assume w.l.0.g. that the occlusion
edge is perpendicular to the X axis and that at frame £ = 0 it is at
= 0. We further assume that the occlusion edge is a Gaussian-
smoothed line, so m is of the form m s, () = ffoo Gso (W) du (we
denote the Gaussian function with variance s as g).

If the motions of I! and I* are (v;, v?},) and (vf,vg) respectively,
then the video volume is given by

Hz,y,t) = ll(azfvit,yfv;t) . (lfm(:rfvgt)) -+

lg(aszugt,yfvit) . m(azfvgt) (€]

Note that the motion of m is the same as the motion of %, since
it is the occluding layer.

Denoting the video volume of each layer as
I* (2, 4,t) = > (x — vict,y — v{jt), the gradient of the wvideo
volume is given by

VI = (1—m) - Vil4m VI?+ =1 gy-n (8)

where n = (1,0, —vg)T. Note that n is perpendicular in space-
time to the occlusion edge (0O, I,O)T and to the motien vector
v = (Ug,'us, l)T; ie., n is the normal to the plane in the video
space formed by the motion of the occlusion edge.

Therefore, VI is composed of the matting of VIl, VIZ,
and a component that depends on [ 2 _ I'. Note that VI' is
perpendicular to v!, while both Vi? and n are perpendicular to
v?. This means that VI is composed of two components that are

Results on a randem dots example with small motien of 1/2 pixel pgglated to the occluding layer and only one that is related to the

occluded layer.
For scale-space analysis we use the approximation

g (f-my= (g 1) (g»m) ®

where g is a Gaussian function and +n is an integral of a Gaussian
as defined above. Eq. (9) is an equality when f is constant, and it
provides a good approximation when f does not change rapidly
near # = 0 (in each layer separately).

Applying (9), the gradient estimated at scale s, denoted by
VIE) = g« D), is

VI(S) ~=  (l—1mgyts) - Vfl(s) + 125045 -VIZ(S) e

(I 1) gogys o m (10)



4.1, Velocity-Adapted Occlusion Detector Ap

We assume the 2D gradients in each layer are distributed
isotropically, in the sense that the mean gradient is 0. Furthermore,
we assume that they are uncorrelated. Thus, using (8) and (9), we
can write the gradient structure tensor defined in (1) as

G gsw*((1fmso+s)2wl(wl)T+

mEO+SV12(V12)T + 12—11)2 . g?o+s . nnT)

~ hy M'4hs M2+ hs nnT (11)
where
1 0 —of
ME = 0 1 o (12)
v =l R f)
and
h1 = e1-(1—mgoists, ¥
he = o2 moisis, (13)
hs = €' st (sots)/2
The coefficients ¢ = <(lg—l1)2> /\/m and

o = <HV£‘!€H2> /2 deseribe the distribution of intensities in
the layers.

Then, the velocity-adapted occlusion detector from (3) can be
shown to be

figs ) by vl

1/h1+1/(h2+h3) 1/h1+ 1/]’:,2

Maximum.: In the general case, the expression above is hard
to analyze. Simulations show that Ay typically has a single local
maximum. Although it may have two local maxima, this only
happens when ¢z > 9:.¢; and ¢ > 180 :¢; for s > 1, and the
second local maximum is usually very subtle. Therefore, for all
practical purposes, it can be assumed that Ay has a single local
maximurm.

Bias due fo fexture: In the limit ¢ — 0 (l.e., both layers have
similar intensities), Ay becomes

1 242 1 242
(v — vi) +(vy7fvy) (1%)
1/e1(1l—m)2 + 1/cam?

Differentiating for m yields that Ay is maximal at zmas such
that

A =

A =

Ve (16)
Yo Ve

and thus @mar > 0 <= 1 > co, which means that the
location of the detected edge is biased towards the layer with
lower intensity variance. The magnitude of the bias vanishes when
e1 = co, and it is proportional to +/s + sg + sw, therefore it
vanishes at fine scales.

Bias due o occlusion: In the case where ¢ > 0 and ¢1 = c2
(i.e., both layers have the same intensity variance), the detected
edge location is biased towards the occluded layer. To see this,
we substitute = — O in the derivative of Ap

m(ﬂ:mam) ==

d’\_T(g;:()) _ —(vl —v2)?
dz T(s0+5+5w) (VEw Ts0T8/c+v2/c1)

< 0 (17)

Since Ag¢ is always positive, has a single local maximum zmaz,
and vanishes at = — oo, it follows that %‘-Tz > 0 when

¢ < tmaz and BT < 0 when > Zmaz. From (17) it follows
that #smaex < 0, which means that the detected edge location is
biased towards the occluded layer.

4.2. Occlusion Defector A

Behavior analysis of the smallest eigenvalue A is harder. Thus
we make the further assumption that = along the edge. Then
we can omit the last term in (11) and get

G = c1(l—mPPM! 4 epm?M? (18)

Calculating the eigenvalue of (18), the following can be shown:

s The smallest eigenvalue of G is given by

}\:%(af\/MJ (19)

where
2 12 2 2,2
= (—m) er|[v']]" +m eV
22 1 22
= (l-m)"mcaclv —v7

e A has a single local maximum.

o If o1||vt]® = co||v?||?, then X is maximal at = = 0 — where
the edge is located.
o If c1||[v]]? > e)|w?||?, then A is maximal at some = > G,

and vice-versa; in other words, the detected edge location is
biased towards the layer with lower intensity variance and
smaller absolute motion.

The biasing effect towards the occluded laver is not evident
due to the particular assumption we have made, although it was
observed in our experiments. Note that A is affected by absolute
velocity, unlike the velocity-adapted operator Ap.

4.3. Discussion

The analysis we have presented, albeit approximate and lim-
ited to an idealized model, explains properties of the occlusion
detectors that are observed with real sequences in a much wider
scope. Assuming that the occlusion edge is linear approximates
the local behavior of smooth edges (or any edge in coarse scale),
and empirical evidence suggests that the behavior of the detector
at corners is also similar. Finally, assuming that the edge is aligned
with the Y axis clearly does not limit generality, due to rotation
invariance.

In general, the distribution of intensity gradients also does not
significantly affect the properties discussed above, although strong
features may affect localization in their vicinity. Even though we
have analyzed the biases due to texture and due to occlusion
separately, clearly they may occur together.

One important aspect of motion segmentation that was not
addressed in this analysis is the mutual effect of different edges,
possibly from different objects, on each other. Edges shift at
coarser scales and ultimately merge, which limits the applicability
of this approach at coarse scales.

5. DEPTH ORDERING

We now present two algorithms for determining ordinal depth
based on the occlusion detector defined in Section 2.1, using either
two frames or three frames.

‘When only two frames are available, it is impossible to infer the
order of depth from motion alone, without additional assumptions
or prior knowledge. Consider a pair of images of a video sequence



Hg 11, Twofrane occlusion problero Two of the pixels in fratoee & do not
correspond o any pixel in & due to occlusion, and they roay belong sither
o the meht (2 or e laft (b laper

for a steren pair) that contain the motion of two lavers where
one partially cecludes the other Az dlnstrated 1n Fig. 11, pixels
that appear in cne ffame and become cocluded in the other may
belong to either of the layers. Whichewver layver they belong to
1= the cecluded laver, and since their interframe cormespondence
cannot be determined, both interpretations are equally wahd. Cur
two-ffame algonthm, descnbed in Section 5.1, 1= bazed on the
azzumphion that there 12 a (poesibly small) difference of mtensity
between the layers on average.

The sitnation when meore than twe fames are awmilable 1=
considerably different. Wlule there may be two interpretations
to a twn-fame sequence, additional fames can be uzed to mle
out falze interpretations. With a slight modification, our algonthm
can be applied to three fames even when the two layers have the
same 1ntensity on average, and achiewe better localization, see
Section 5.2

5.1, Two-Frame Algorithm

Chiven the scenano descobed abowe and generalizing (8}, the
space-ime gradient of I 1=z given by

VI = V' (1-m)+ VI m+ I -INom (20)

Observe that the expression above 12 a sum of thres wectors —
two of them proportional to the gradientsz of the two layvers, and
a thard component that steme from the edge between the lavers.
Hnce the edge and the cocluding laver have the same moton (or
commen fre), the gradient of T 12 more affected bar the motion
of the cccluding layer than that of the cceluded laver in areaz of
transihon between layers. Tz asymnmetry 12 man fested moa biws
towards the occluded layer i the locaton of the detected meohon
boundary, az denved from (14,

e first note that thiz bias typically grows wath scale. Tz =
because the components representing the gradients of each layer
are amoothed acroes the motion boundary into the other laver, and
the compenent that 1z due o the difference between the lavers 1=
amocthed i both directions. Therefore, the effect of the meoton
of the cccluding layer expands farther into the cccluded laver as
I 1z farther smoothed.

Meore specafically, conader the spatial sealing of 2 wdeo T bar
o, namely

Jimw )= Tafo,ufe, €) 20

=2 4
a
H 4
_ﬁ -5
=
" 5 10 I3 m 25 =0
arale

bias (pixels)

Fig. 12. {a) The hias of the locabon of medmal A as a function of

= {zcale) on a synthetic randoro-dot pait. Bach cumve mpresents a different
valuz of (F—Iijﬂzmgjngﬁumﬂ{tﬂp}toﬂ.?{ba‘tbrfﬁ.{h}Thﬂbiasas
predctad d om i 14).

& G

fal Y
Fig. 13. Randorn dols exarnople with 2084 density difference bebtwsen

foremund and taclieround: the ades of #% & supennpozed on ha msponss
of & at acale » = 5 with an occluding (a2 and ooclwdsd (b seerent

De to zeabng wnvanance (31},

AP w00 = 3 et o, €) (22}

Thus, 1f at zcale 51 the maximum of AEJ“:' 1z chbtained at scme
s < 0, then at acale 59 the maximum of .XE}SQ} aromld b obtaimed
at . /sof5y - when Jis a sealing of T by sofsy. If the values of
o1, 0o, (defined 1n (13)) do not wary betwween the zcales 53 and
g, then 3520 20 3% and the maximal A for T at scals g weuld
alzo be at /5051 - # Thiz means that the bias in the location of
maximal A iz proportional to /%, which means that not only i
the location Mased towards the cccluded zide, Tt thiz biaz also
grovs wath seale. Thiz property of A 12 demonstrated m Fig. 12
on a synthetic example of randem dots. In real sequences, the
assurnption that the mmtensity distnbution 1z amdlar 1o different
zoales 12 nsually not satzfied. Mewertheless, the effert descnbed
abowe 12 still observed qualitatwely, and can be used to determine
depth crdenng.

Thiz observation can be uszed to design a depth-ordenng alga-
rithm, Consider the fdge & of 281 and the response of 2820
for scales 5y < sq. The directicn of palEl — I:AQ'E,SQ:' .h.g}sﬂ:'j is



(d)

Fig. 14. Eesults onreal sequences of three dynamic scenes: (a),(b) The two frames. (¢) Response of d (fram Eq. (23)) coded as darl=negative, light=positive.
{d) Final layers detected by the algorithrm with relatire depth coded as white=near, grey=middle, and blacle=far,

towards the ridge of A(‘SQ), and thersfore for each pixel along e,
th(c \jfcctor 2620 indicates the dirsction of the bias of A2} wrt,
AhFLL

Our algorithm starts by segmenting the two-frame sequencs
uszing the segmentation algorithm described in Section 2, to yield
an sstimate of the matting map v(z, v) (as defined in (6)). Since
the bias grows with scals, the ridges in A'®! at higher scalss should
bs biaged with respect to the edge of rf2. Therefors, at points along
the edge of v, the direction of A should be towards the outside
if the segment iz the cccluder, and towards the inside if it iz
occluded (see Fig. 13). Defining

d="A Vi (23}
we expect that d < O if the segment is the cccluder, and & > 0
if it ig occluded. Thus, summing the value of & along a contour
of the segment can dstermine which side of the contour is the
occluder.

SBince the bias effsct grows with scale, it iz preferable not to uss
small scalss. On the other hand, higher scales distort the imags
data and other nearby images features may interfere with the valus
of d. Therefors, we surn the value of d in several intermediate

scales:

D:i 3T vl s

s=s51 aSdrh

(24

The response of & (from Eq. (23)) on boundary pixels in real
gequences is shown in Fig. l4c. In the bottorn row, points on
the edge between the flower and the hand have positive values
with respect to the hand and negative wvalues with respect to the
flowesr. Relative depth iz shown in Fig. 14d. The octopus in the
top row and fower in the bottom row are comectly dstscted
as the occluders, whils the hand iz detscted as occluding the
background and as occluded by the flowsr. The scens viewed
through the window of the old ruin in the middle row is correctly
detected as occluded. Note that the internal frame of this window
iz (comrsctly) not deteeted, since there is no depth dizcontinuity
in this area.

3.2 Three-Frame Algorithm

Recall that high walues of A occur in arsas whers thers is
no smooth motion, i.e., at motion boundariss. At peints with neo
correspondence (due to occlusion), the partial derfvatives would
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Fig. 15. Three frames with pixel correspondence; pixels that have corre-
spondences between ¢ and ¢ — 1 and have no correspondence between ¢ and
t 4 1 ae located to the right of motion boundary pixels, indicating that the
right side is the occluded side.

have random values (with the exceptions that were discussed in
Section 2.1), leading to a high A value, even though these points
are not strictly boundary points. These areas are adjacent to the
true motion boundary and the A response would appear as a thick
boundary region. Based on two frames alone, it is impossible
to determine which side of the thick boundary is the true edge,
which i1s equivalent to determining which side the occluded pixels
belong to.

When three frames are available, we denote the response of A
on frames (¢t,¢t —1) as A_, and frames (¢,£ + 1) as Ay; ¢ is the
reference frame m both cases. We define

Mnin = mind{A_, Ay} and Anaxn = max{A_, AL H25)

Points on the true motion boundary are dstected by both A_ and
At, thus A4 23 0 at these points. Points that are not occluded
in any of the frames are not detected by A, thus X,.,;,, == 0. There
exist points that are occluded in ¢ — 1 and not in ¢ + 1 and vice
versa, and in these points A, &= 0 and Amax 3 0.

Therefore, the true motion boundary can be detected as the area
where Az 33 0. The regions where M & 0 and Mpes 320
belong to the occluded layer, and the relation between these
regions and the boundary yields depth ordering, as illustrated in
Fig. 15.

This approach is closely related to [24], which also uses infor-
mation from the preceding frame to fill m missing information
with respect to the succeeding frame, and vice versa. Here this is
done implicitly based on the response of the occlusion detector,
only for the purpose of depth ordering and without first extracting
accurate optical flow.

This principle can be implemented by slightly modifying the
two-frame algorithm as follows:

e Use A, for the segmentation to obtain .

e Use A\ 1n (23) to obtain the bias direction d.

Using A.qip for the segmentation gives better localization of
the segment’s edge, since it responds only to the true edge. Since
Amaxn responds also to occluded regions, its profile 1s biased
towards the occluded side (as 1s the bias due to the mtensity
gap), and thus d < 0 if the segment 1s the occluder, and d > 0 if
it iz occluded.

Unlike the bias due to mtensity difference, the bias that is
due to occluded pixels is not affected by scale. Note that no
intensity difference was assumed, so this bias can be detected
even when there 1s no intensity difference between the layers.
On the other hand, when there s an imntensity difference, both
effects contribute to the bias, boosting the correct assignment.

(a) (b)

Fig. 16. Results of a real three-frame sequence (octopus example from
Fig. 14): (a) Edges based on A..4. (black) compared to the response of
Amaw (gray) —the response is stronger outside the edge, indicating that the
segment is the occluding layer; (b) Edges based on A,.qp (black) compared
to edges based on AL (i.e., from two frames), showing that three frames give
better localization.

Fig. 17. Two frames used in our experiment with density varying between
45% and 55%. The sequences used in the experiment are available on the web
at http://www.cs.huji.ac.il/~daphna/demos. html#motion.

An additional advantage of the three-frame algorithm is better
localization of the segment boundary, as occluded pixels are
distinguished from boundary pixels.

Figure 16a shows the edges based on A,y and Aqp. from
three frames of the octopus sequence. The Arppy edge 1s outside
the A..:n edge, indicating that the segment is the occluder. The
Amin-based edge gives better localization of the motion boundary
(compared to the two-frame result), as shown in Fig. 16b.

6. PSYCHOPHYSICAL EXPERIMENTS

The algorithms we have presented determine depth order from
two or three frames based on motion alone. They perform well
even when monocular segmentation is impossible. Below we
show that human observers can also perform these tasks, with
comparable success.

In Section 6.1 we describe the 2-alternative forced choice
experiment, in which we presented subjects with random-dot
sequences of two moving layers. In Section 6.2 and 6.3 we
describe the results of experiments with two- and three-frame
sequences, respectively.

6.1, Methods

In our experiments we presented subjects with sequences in
which two layers with random-dot textures, one partially occlud-
ing the other, are moving horizontally in opposite directions. The
boundary between the layers is the middle vertical line, and the
density of the dots varies across each layer along the motion
boundary. Figure 17 shows an example of such a sequence. Each
side was the occluder in half of the sequences, m random order
(counter-balanced).
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Fig. 18. Results of experiments on human subjects: (a) Two-frame sequences.
(b) Three-frame sequences.

In each sequence, the density was characterized by some
density gap A, so that the density varied between (1 — A)/2 and
(1+ A)/2 across each layer. Participants were instructed to click
on the side (left or right) where they thought the occluder was in
each sequence. The experiments were conducted in sessions of 20
presentations, with 3-6 sessions per participant for each different
value of density gap.

6.2. Bwvo-Frame Sequences

Seven volunteers participated in this experiment. In each pre-
sentation, the two frames were displayed alternately at a rate of
3 frames/second. The density gap between the two frames was
0%, 5%, 10%, 15%, 20%, 40%.

For a density gap of 40%, subjects selected correctly in nearly
100% of the sequences. For a density gap of 0%, i.e., the density
was uniform across the whole frame, subjects selected correctly
in 50% of the sequences, i.e., no better than chance. This is
consistent with the fact that both interpretations are equally valid
in this case. The results are summarized in Fig. 18a.

For comparison, we applied our two-frame algorithm to the
same sequences. For density gaps of more than 20%, the success
rate was nearly 100%. As expected, when density was uniform,
the success rate was 50% (in such sequences both interpretations
are equally valid). The performance of the algorithm is summa-
rized in Fig. 19a.

6.3. Three-Frame Sequences

Two volunteers participated in this experiment. In each pre-
sentation, a sequence was played back and forth at a rate of
10 frames/second. The density gap between the two frames was
0%, 10%, 20%, 40%. Results for three frames were much better
than those for two frames, as expected. In particular, for a density
gap of 0% (uniform density), subjects selected correctly in 75%
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Fig. 19. Performance of our algorithm on the experiment sequences: (a) Two-
frame sequences. (b) Three-frame sequences.

success rate(%o)

=
=

0 10 20 30 40
density gap A (%)

Fig. 20.
sequences.

Performance of an ideal observer on two-frame experiment

of the sequences, in contrast to the two-frame experiment in
which subjects performed no better than chance. The results are
summarized in Fig. 18b.

Our three-frame algorithm, applied to the same sequences, gave
the correct answer in nearly 100% of the sequences, and even with
uniform density, its success rate was 96% (see Fig.19b).

6.4. Two-Frame Sequences: Ideal Observer Analysis

In order to evaluate the results of the two-frame experiments
and algorithm, we consider an ideal observer that “knows” the
form of the distributions generating the sequences, but does not
know which side is the occluder. Let H;, Ho denote the two
possible choices: “lefi-front” and “right-front”. For a given two-
frame sequence I, the probability that it was generated as H;
is

Pr(I|H;) - Pr{H;)
S SR U AR

(26)
where

Pr(f|H;) = [ ] PriI(z,y, ) Hs)

T4,

@n



Pr(I(z,y,t)|H;) and Pr(H;) are known to the ideal observer.
Thus, for any given I, the ideal observer can compute (26)
for ¢=1,2 , and then choose the most probable hypothesis.
By sampling sequences, we estimated the probability of correct
choice at 97.7% for A = 10% and 100% for A = 20%. This
provides a theoretical upper bound on the performance of an
observer in this task.

A less informed observer, that does not know the exact form
of the distribution used to generate the data, may consider all
possible videos in which the density of dots in each layer
remains constant within a small region. Such an observer can
compare the density in neighborhoods of occluded pixels to
nearby neighborhoods within either layer. For a neighberhood
width of 16 pixels, such an ad koc scheme chose correctly in
88% of the sequences for A = 10%, and 99.7% for A = 20%
{see Fig. 20).

7. SUMMARY AND DISCUSSION

The occlusion detector we have presented is useful for extract-
ing motion boundaries. Since we do not make any assumptions
regarding the color or texture properties of objects, or about the
geometric properties of the motion, our algorithm works well
on natural video sequences where such assumptions are often
violated.

The algorithm relies mainly on background features which
disappear and reappear as a result of occlusion. These features
may be sparse and still indicate the location of motion boundaries,
as the algorithm processes the data in multiple scales. As opposed
to algorithms that rely on motion estimation, our algorithm
usually does not require any texture on the occluding object.

Since occlusion is the main cue used by our algorithm, it works
well when velocity differences between moving objects are small,
since features will still disappear due to occlusion. Algorithms
that rely on motion differences typically find it hard to distinguish
between different objects in such cases.

We described a second algorithm, extending the occlusion
detector to compute the depth ordering between the layers across
the motion boundary. The algorithm was shown to give good
results on real sequences with different occlusion settings. With
only two frames, the algorithm relies on some (possibly small)
difference in texture between the moving layers. Without this
assumption, we face the well known inherent motion ambiguity,
which states that depth ordering cannot be computed from two-
frames and motion alone.

Can humans use a similar heuristic to get around this inherent
ambiguity? We asked humans to rank the relative depth of two
moving layers in two or three frames. In our experiments there
was a difference in texture between the moving layers, but the
difference was set to be local and small, so that it could not be
detected in a single frame as a distinct boundary between the two
layers. Nevertheless, when presented to human subjects in motion,
this difference was sufficient for the detection of relative depth.
‘We showed that our algorithm can also utilize this small difference
to detect relative depth, giving qualitatively similar results (cf.
Fig. 18 and Fig. 19).

APPENDIX [
SCALE NORMALIZATION

One problem with multi-scale analysis is that derivatives de-
crease with scale. Indeed, if 0 < I < 1, then
1

S 2m8ay

when smoothing with a spatial Gaussian of variance szy. This
well-known problem can be handled by scale normalization, as
proposed in [16]. Scale normalization is done by defining the
scale-normalized partial derivatives

5 = g (gen, + )
I = my - fy(gen, 1)

where gs.., # stands for convolution with a Gaussian with variance

Hal, [1y] < 2%

(29

szy. Thus Ig(gs“‘) and Iés”y) are used in the evaluation of X instead
of I and I. Note that scale normalization does not violate the
assumptions leading to the definition of A in Section 2.1.

One important property of scale normalization is that A be-
comes invariant to spatial scaling of I. This means that A gives
comparable values for a video sequence in different resolutions.

To see this, let us scale I by o, and define

J(an;t) = I('T/O—ay/o" t) (30)
Substituting (30) into (29) yields
VJ(UQS“’)(U:E] oy, ) = Vf(s’?)(a:,y,t) 31

Let s, denote the variance of the Gaussian window w, and
let G{$ev>%)[]] denote the second moment matrix defined in (1),
with the scale of differentiation sxy, and scale of averaging s.w.
From (31) it follows that

(G(sw,sm)m) () — (G(azsw,ozsu)m) (cz,0u,t) (32)

That is to say, if J is a scaling by o of I, then the value of
Aat (e,y,%) m I at scales suy, s will be the same as at the
corresponding point in J at scales 0'25%,, 25,

For our purpose of computing a good occlusion detector, it
follows from (32) that as long as our computation scans all scales
in scale space, the result does not depend on the image resolution.
Note that in order for A to be scale-invariant, it follows from
(32) that s must be proportional to szy, as in [14]. In our
implementation we use s = szy = sw, which defines a single
scale 5. We denote the A evaluated at scale s as AL,

APPENDIX II
IMPLEMENTATION [SSUES

I 1. Temporal Aliasing

Since real video data is discrete, the partial derivatives in the
definition of A must be estimated. This is done by convolving I
with the partial derivatives of a 3-dimensional Gaussian. Rota-
tional invariance implies that the spatial variance in the X and
Y directions should be the same, and the kernel is therefore
an ellipsoidal Gaussian with spatial variance s, and temporal
variance s¢. Due to the distortion introduced by the convolution,
it is desirable that these values be small.

Estimating the temporal partial derivative from video presents
a severe aliasing problem. Since video frames represent data
aceumulated during short and sparse exposure periods, and since a



feature may move several pixels between two consecutive frames,
data is aliased in the temporal domain significantly more than
in the spatial domain. We overcome this problem by taking
advantage of the spatio-temporal structure of video, as described
next.

Suppose that the velocity in a certain region is v = (vz,vy),
and therefore

Iz, p,t) = Hz — vat, y —vyt, 0) (33)
The temporal derivative in ¢ = 0 is given by
It = —vply — vy ly (34)

In discrete video, I: can be estimated by convolution in the T
direction, which, due to (33), is the same as convolution in the »
direction of a subsample of I(z,y,0) at intervals of size |v|. In
order to avoid aliasing due to undersampling while estimating Iy,
the Sampling Theorem requires I to be band-limited, so that its
Fourier transform vanishes beyond :tglv . This can be achieved
by smoothing with a spatial Gaussian. Ewever, smoothing poses
a notable drawback, as it distorts the image data, causing features
to disappear, merge and blur.

An altermative approach, closely related to the concept of
“warping” (e.g., [17]), would be to take advantage of prior
estimates of the optical flow. If a point is estimated to move
at velocity uw = (ua, uy), We can use the convolution of 7 in the
direction of (us,uy, 1) to estimate the directional derivative I
and apply

I =Ly — unle —uyly (35)

The convolution that yields [, is equivalent to subsampling in
the direction of (v — ), and thus the estimate of I; is unaliased
if the Fourier transform wvanishes beyond igviu . This occurs
when either the estimated velocity « is close to the real velocity
v, or the region is smooth. This is particularly important, as the
estimation of optical flow in smooth regions is often inaccurate.
In other words, this estimation of I is tolerant to inaccuracy in
motion estimation exactly when it is least reliable. The figures in
Secion 3 demonstrate our algorithm’s tolerance to poor motion
estimation.

Note that the spatial smoothness of u is not required. Also note
that temporal smoothing has no effect on the aliasing problem,
and it is desirable to have as little temporal smoothing as possible.

112, Differentiation with Iwo Frames

Differentiation, as described earlier, is done by convolution
with derivatives of a spatio-temporal Gaussian, which requires
several frames to achieve a good estimation. When only two
frames are available, special care should be taken to provide a
consistent estimation of spatial and temporal derivatives. Given
two frames I(z,y,0) and I(z,y, 1), let us define

oot — {I(a:,y,O) t<0

t>0 Gg

Iz, y,1)

Then, for any temporal variance s, the partial derivative estimates
are

il

- 1
¥ = E(I(T,,y,O)JrI(z,y,l))*gy
It* = (I(xay’l)ff(x’y=0))*g

(37

(where +g, #gz and #g, denote convolutions with the spatial
Gaussian and with its X and Y derivative respectively).

II.3. Application to Opfical Flow

It is well known that the computation of optical flow in
textureless regions and along straight lines (aperture problem) is
ill-posed. When these situations ocecur, the rank of G is 0 and 1,
respectively. These situations arise from spatial structure alone,
and can therefore be detected by the spatial 2D second moment
matrix (used, for example, in the Lucas-Kanade algorithm [17]),
in order to mark these regions as unreliable (as done in many
implementations). Optical flow is also unreliable at motion bound-
aries, which may be treated by the joint estimation of motion and
segmentation [28], [33].

These two cases can be treated jointly using the rank of G.
Optical flow in regions where rank((G) #£ 2 can be estimated by
filling from adjacent regions where rank(G) = 2. In a coarse-
to-fine algorithm, this should be done at each scale.
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