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D4.15 - Building object hierarchies for
knowledge transfer

THE HEBREW UNIVERSITY OF JERUSALEM (HU]JI)

Abstract:

In this work we propose a hierarchical model of tasks. The model captures both part-
membership and class-membership hierarchies. We provide an algorithm for
discovering hierarchical structure in data. We extend the notion of task relatedness in
the context of multi-task learning to an hierarchical task relatedness approach, based
on hierarchy induced invariances. Based on the hierarchical multi-task framework we
analyze under what conditions learning a single task can benefit from multiple tasks
organized in an hierarchical structure.
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1. Introduction

We present a general hierarchical model of tasks. Providing an algorithm for inferring the model from data
and an analysis of the conditions under-which such a model can be beneficial when learning the tasks. A task is
considered as a probabilistic binary mapping of an input space. Categorization tasks, classifying if a sample does
or does not belong to a category can be viewed as a specific type of a task. Our model and structure inferring
algorithm assume a binary set representation of tasks, where each task is represented by a specific set of properties
defining the task. The theoretical analysis is not limited to the binary set representation.

Hierarchical approaches are common in various models dealing with perception both in biological/phycological
research of human perception and in artificial intelligence domains such as machine learning and computer vision.
It has been argued that humans rely on a hierarchal representation of objects in the world, in the process of
recognizing and referring to objects. Various studies have shown different aspects of hierarchal organization
of object categories in humans. A well known example of such a study of the nature of human hierarchical
representation is Rosch’s Basic-Level theory [ 7]. A different line of work, conducted recently by Kiani et al. [14]
shows neurophysiological findings of visual object hierarchy. In the field of machine learning general hierarchical
approaches such as CART [7] and hLDA [6] have been proposed for learning and modeling hierarchical relations
in data. The use of hierarchy has proven to be beneficial in increasing classification performance for tasks such
as visual object categories [, 16, 20]. Furthermore, explicitly modeling hierarchical relations among categories
achieves a richer more informative representation which can enable different responses for different tasks given
the same sample, e.g. a Dog, is not only a Dog, it is a specific type of a Dog such as a Collie-Dog, it is also an
Animal and can also be considered as Food. On the one hand hierarchies enable richer responses to what is known,
¢.g. from a learning point of view the hierarchical information can be used to calibrate the loss function [Y], on the
other hand the hierarchical structure enables incongruence detections which enable dealing with the unknown, as
presented in [19].

The proposed representation presented in section 2 consists of a set of properties for which it is possible to
measure the existence of the property in a data sample (e.g. image). This representation can be regarded as a
generalization of many existing representation approaches. For example, in the following we focus on computer
vision- object-class/image representation approaches. The bag-of-words model [15, 5] is a set of feature space
clusters where for each cluster it is possible to measure if local features sampled from an image fall into the cluster
or rather how many such features fall into the cluster. Spatial models such as part based star shape models [1, | 1]
can be viewed as sets of properties were each property is an appearance (region in feature space) of a part at a
specific location. Attribute representation such as [15] where images are characterized by a set of supervised high
level attributes such as “striped” or “yellow™ for which their appearance can be learnt and applied to testing images
by specifying whether the attribute exists or not. Each such attribute after the learning phase can be regarded as
a measurable property given the learnt model. Part-Hierarchy models such as [12, 10] can be regarded as sets
where parts at higher levels of the hierarchy are co-occurring lower level properties at relative proximate regions
in images from a training dataset. The set of properties is not restricted to the visual domain, for example cues
in the text of an image caption [3] or audio cues simultancously heard while viewing an image [| 2] can also be

formulated as properties representing an object class.
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The set of properties representation enables the combination of many properties from different domains in a
single representation: local appearance, global appearance, spatial relation, 3D cues, scene cues, different modali-
ties, object class classifiers stating if an object exists in an image. supervised attributes and many others, all can be
formalized as measurable properties and considered together in the set of properties representation. Obviously the
number of properties can be infinite but as evident in current research, even a selected sample of such properties
can yield relatively good results [ 15, 5, 15, 1, [ 1].

The basic partial order representation presented in 2 will be defined using properties for which it is possible to
measure whether they exist or not in a data sample. One of the merits of the model in 2 is the dynamic nature in
which adding properties as well as adding well defined tasks is straight forward and does not require recalculation
of known data, opposed to a model such as SVM where in the presence of a new feature the model should be
retrained.

When considering categorization tasks, the model presented in 2 captures both the part-membership and class-
membership hierarchies [19] in a single hierarchy. Given a representation of an object class as a set of measurable
properties, a grouping of several classes into a single more abstract class defines a co-occurring set of propertics
shared by these classes. On the other hand a set of co-occurring properties defines a grouping of one or more
classes sharing these properties. The connection between these two concepts is achieved by the notion of partial
order. A hierarchy of classes defines a partial order among the classes, while inclusion relations between sets of
properties define partial order over these sets.

By modeling a general level task using the co-occuring set of properties all more specific level tasks belonging
to the same general level share these properties, hence are invariant with respect to these properties. In 5 we give a
precise definition of invariance. Using the notion of invariance we will extend the multi-task learning framework
based on relatedness [4] to an hierarchical multi-task learning framework and analyze under what conditions such
a framework can be beneficial. In the context of multi-task learning our contribution goes beyond the hierarchical
extension of the framework in [4] the model of the hierarchy and algorithm for building such an hierarchy can
be considered as a means of discovering related tasks automatically; a crucial step in multi-task learning in cases
where the tasks beneficial for transfer are not known a-priori.

In Section 2 we will present the unifying partial order graph representation and in Section 3 we will describe
the algorithm discovering the hierarchical representation based on given data. In Section 4 we discuss a statistical
extension of the model- from the case where each task is represented by a set of properties to the case where each
task is represented by a set of samples and each sample is represented by a set of properties. This scenario fits the
standard supervised approach in learning tasks. In section 5 we will present the hierarchical approach to multi-task

learning.

2. Partial Order Representation

Our hierarchical model is a partial order model capturing both the part-membership and class-membership
hierarchies [[9]. In the following we regard the part-membership hierarchy as a property co-occurrences hierarchy.
We view the task of finding an object class hierarchy as finding commonalities among object classes, see section 3.
Finding such commeonalities can be thought of as computing the intersection of the sets of properties representing

each class. The set of properties representation is a general representation which can be reduced to many of
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the recent object class representation approaches. This line of thought lead us to propose the following dual
representation model:

Given a finite set of properties P = {a, b, d, e...} and a matching set of boolean functions (predicates) 8 = {¢:x|x€P}
cach denoting if a given sample contains a property, thus: ¥,(s) = 1 iff the property a is present in s. We represent
a single class by the set of properties P, each instance in this class contains, thus s€C iff ¥ (s) = 1 ¥x€P,. This
can also be expressed as a boolean function which is a conjunction of all property functions, thus s€C iff ¢°(s) =
I where ¢°(s) = A\, cp_tx(s); we call :°(s) the membership function of class C.

In the class-membership hierarchy we say that B = A iff ¥s € A = s € B in the part-membership hierarchy,
or equivalently we say B = A iff ¥x € Pg = x € Pa. Given our representation of classes as set of properties
one can easily see that defining the Specific level class representation as the union of set of properties of all its
General level classes is equivalent to setting the samples belonging to a Specific level class to the intersection of
the set of samples belonging to all of its general level classes. This results in a partial order which is consistent
with both class-membership and part-membership hierarchies.

We shall note that by representing a specific class ¢ as the union of the set of properties of its more general
classes Pa. we get that 1"°(s) = A\ cp,. Nxep ¥x(s), thus the membership function of class ¢ is the conjunction
of the membership functions of classes Pa.. This fits our intuitive example of part-membership hierarchy from
above - if something has a leg, tail and head (conjunctions) then it is a dog, but just knowing that there is a leg
does not imply that there is a dog. Thus the conjunction of the part detections is more specific then each separate
part detection. Even more, given a set of specific classes which we know share a common general class, we can
represent the general class using the intersection of property sets of all its specific classes, thus we can compute
the membership function. On the other hand knowing which samples belong to all its specific classes we cannot
deduce all samples belonging to the general class as the (from our definition) union of all the samples belonging
to the specific classes is merely contained in the set of samples belonging to the general class. This point is critical
for later use of novel class detection. Thus the equality in DOG = AFGHAN U BEAGEL U COLLIFE holds
only in a fully observable world assumption where we know all categories.

Based on the set of properties representation of a class and the definition above for specific and general levels
we represent the partial order using a graph G =< V, K >. Each node v € V represents a class and is associated
with two sets: R, - the property set which is the class representation, and I - all instances belonging to the class
represented by node v. Each edge (v, u) € E represents that v implies u, thus u = v. Let Ch,, denote the set of

children of node v we define:
L. Ry =Ucecn, Re
2. L, =Neeci, Ic

In case Chy = :
1. R, = {x}, where x is a single property from the property set.

2. I, = {s|yx(s) = 1}
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Note, that as the representation of a node is based on the union of the representation of its children we get that
for each property used to represent at least one of the classes there has to be a single node represented by this
property alone. Let’s denote the special set of nodes for which Ch, = () as L and the set of nodes representing
all known classes we call La. We note that Ly U Ls © V.

R

e oo
(=) Cc3 €23 (=3 )

BT

OO OO

Figure 1. Possible graphical structures for a given set of properties: P = {a.b.c.d.e.f.g.h.1.j. k} , and a set of labeled
classes {A.B.C.D. E, F}. Each class has the following sub set of properties: P4 = {a.b}, Pg = {a.b.c} , Pc =
{b.d.e} ,Pp = {c.d.e} ,Pg = {d.e.f.g.h.i.j} and Pg — {d.e,g. h.i j. k}. L, nodes are labeled with lower case.
Ls nodes are labeled with upper case. Dashed lines (nodes and edges) represent constraint violations. Bottom row shows a
graph representation of the data which satisfies all constraints. Top row shows possible subgraphs each has a single constraint
violated- 2, 3,5 or 4 from left to right respectively.

For a given set of known classes and properties the description so far does not describe a unique graph repre-
sentation, as shown in figure |. From all possible graphs representing a legal partial order, we define the following

constraints which seem desirable for a “good™ graph:

1. Data Consistency: Given a sct of propertics and a set of classes, we would like the graph representation to

maintain the known relation and not add any new ones.

vu € Ly andv € Ly3path(v,u) & R, C P, (1)

2. Vertex Minimality Constraints: from the representation point of view, there are two types of redundant
vertices - those that represent the same class and those that have the same representation. First constraint -

no two vertices may represent the same class:
—3s, v € V such that {u : path(u,s) C E,u € Lo} = {u: path(u,v) C E,u &€ Lo} (2)
Second constraint - no two vertices may have the same representation:

—3s,v € V such that {u : path(s,u) C E,u e Ly} = {u: path(v,u) C E,ue Ly} (3)
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3. Maximal order: We would like to represnt all order relations within the set of known classes.

For example in figure |, all graphs represent a valid partial order, but the rightmost graph in the top line does
not show a maximal partial order representation as there is no edge going from B to A so we cannot deduce
from the graph that A = B, while the bottom graph does show this relation. Thus when presented with a
sample from B represented by Pp = {a, b, c} their will be two satisfied nodes A and B where neither one

is more specific then the other.

v:path(s,v) e B.v e Ly} C {v:pathlu,v) e B, v € L1} 2 path(u,s) C E (4)
P ) P 8 : P

4. Bdge Minimality Constraint: Let v® denote the node represented by only one property a, and v®? , v®¢ and
v denote classes represented by the sets of properties {a, b}, {a, c} and {a, b, c} respectively. A possible
graph would have the following edges: (v, v) (v v2¢) (v ) These edges are redundant in the

abe

sense that (v2%, v®) can be removed without effecting the representation of v2%¢ or violating the maximal

order constraint.

—Jde = (u,v) € E such that G* =<V, E'\e > (5)

maintains the maximal order constraint and R, = Ry

3. Hierarchy Discovery Algorithm

In our above discussion we dealt with representing the partial order given a set of classes. In this section we

deal with these arising two problems:
a) Not all possible labels in the partial order are given in advance.
b) How to find this partial order among a set of classes.

How do we deal with the case where not all possible labels in the partial order are given in advance? For
example an implicit description of the general level "Motorbike” class can be given by more specific motorbikes
such as "Cross-Motorbike’ and *Sport-Motorbike’, without stating explicitly that both belong to the same general
level class "Motorbike’. In such a case were a general class is not stated explicitly we’ll refer to it as a hidden
general class. In the following we will deal with discovering all the possible hidden general classes by finding
commonalities among known given classes. Given any two classes we say these classes have a general class in
common if the intersection of feature sets used as representation of both classes is not empty. Formally, We say
a class C is a hidden general class with respect to a given set of classes I' iff 3A, B & I such that Pg # () and
Pc=PanPg.

Under this definition finding all hidden general classes requires we find all possible intersections of representa-
tion sets between all known classes.

We propose algorithm | for finding all possible hidden general level classes while simultaneously building a
graph representation G =< V¥ E“ > consistent with the proposed graph partial order representation. In
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order to do so we start with an initial graph representation of a given set of classes which is consistent with the
above representation. For each feature in x € UgerP. we define a vertex v, vg = {x} and Ch, = 0. For each
class C € " we define a vertex u with a set of outgoing edges denoted Oug(u) where for each x € P there is
a corresponding edge (u,v) € Ou%(u) We denote the vertices corresponding to features as Ly and the vertices
corresponding to classes as Lo. Thus the input graph G —< V™ E™ > is defined by V" — L, U Ly and
E" = UueLEOHE(H), see fig for an illustration. We assume for now that in a given set of classes [ there aren’t
any two class A, B € [" where Pa C Pp or P C P4 (we’ll deal with this later).

Now we shell describe the four basic operation carried out by the algorithm: Split, Foward-Merge Backward-
Merge and Maximal-Ordering. These four operations enable the creation of new nodes based on the set of vertices
connected by outging edges Out(u) and the set of vertices connected by incoming edges In(u) of each vertex
uc V.

Split(s,in(s)): The split operation creates a new node for each pair of incoming edges in in(s) C In(s) of node
s € V. Intuitively this helps us mark an intersection between the representation of two nodes as equivalent

to R (the representation of node s).
Formally:
Yu,v € V such that {u, v} € in(s) do:

Create a new node t with

e Out(t) = {s}
o In(t) = {u,v}

Foward-Merge(U): The Forward-Merge operation merges all nodes in a specific set of nodes U which share
the same incoming edges. Intuitively by doing the merge operation after the split operation we find the
maximum set of intersection between the representation of any two vertices. This operation is essential
for maintaining constraint 2 as will be proven later. We denote E;,, as the group of maximal equivalence
sets of nodes according to the incoming edges. Thus, Em" € Ky, & VYu,v € Em" Iﬂ.(u) = Iﬂ(-u) and
VEin', Bin? € Ein,i# j ©Vu € Bin' and v € Eg In(u) # In(v)

Formally:

1. Compute the group of E;, over U.
2. VEy' € Eip if |[E’| > 1
Create a new node n with
e Out(n) = {s|s € Out(u) Yu € E'}
e In(n) = In(u) where u € B’
As the Foward-Merge(U) is done sequentially after the Split(s,in(s)) operation, each node u € U has

exactly two incoming edges- {(x,u), (y,u)}, where x,y € Ugin(s). We can compute E;,, using the

algorithm described in 6.1 after sorting the two incoming edges to each node given some predefined order
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over all possible incoming edges. As input to the algorithm in 6.1 we pass U as the group of sets, and
Usin(s) as the group of possible elements in each set. Thus the runtime of Foward-Merge(U) is O(] Us
in(s)| + |U)).

Backward-Merge(U): The Backward-Merge operation merges all node in a specific set of nodes U which share

the same outgoing edges. Intuitively by doing the Backward-Merge operation after the Foward-Merge
we find the maximal set of nodes which share the same representation. This operation is essential for
maintaining constraint 3 as will be proven later. We denote K.y as the group of maximal equivalence sets
of nodes according to the outgoing edges. Thus, Eouti € Hoy = 7u,v € I-_'}Omi Out(u) = Out(v) and
VEout", Bout?! € Bout,i # J < Vu € Egy’ and v € Egye/ Out(u) # Out(v)

Formally:

1. Compute the group of Egy over U.
2 VEoufi e Eout

Create a new node n with
e Out(n) = Out(u) where u € E,,'
e In(n) = {s|s € In(u) vu € E,.,'}

For the computation of E,,; we can again use the algorithm described in 6.1, where U is the group of sets
and Ug_yqs—spiieS is the group of possible elements in each set (outgoing edges). As mentioned in 6.1 for
each node u € U the elements (outgoing edges) should be sorted. Contrary to the computation of E;,, in the
Foward-Merge(U) operation where each node has exactly two elements (incoming edges) thus sorting the
elements of each node can be done in constant time, the size of the possible elements considered for each
node at this stage can be at most | Us—was—split s|. In order to over come the need of sorting outgoing edges
of each node at this stage we would like to keep the Out(u) of each node, ordered according to some chosen
order of the original s nodes. This can be accomplished easily by keeping each E;} during the Foward-
Merge(U) operation ordered according to the order of Split(s ,in(s) ). The runtime of Backward-Merge(U)
is O(| Us—was—spric S| + 2, [Out{u)]).

EdgeMin(U): Given a set of nodes U it may be the case that Ju, v € U for which R, C R.,. Under our partial

D4.15

order interpretation of the graph and in order to maintain constraints 4 and 5 we would like to connect by
an edge each node to the most specific node representing a more general level and when doing so we would
like to delete all edges to nodes more general then the newly connected node. This can be achieved by
checking for each pair of new nodes Ju, v £ U if w.l.o.g Ry, C R, in such a case all edges connecting u
to nodes in the intersection of In(u) and In(v) should be deleted. This will ensure that vs € In(u) N In(v)
for which it follows that- Ry C R+ C Rs, s will be connected to the most specific general node, v. Hence
maintaing the maximal ordering 4 by maintaining the connectivity between s to v and u, and maintaing the

edge minimality 5 by deleting redundant edges- (s, u).

Formally:
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1. foreach p € Us_ g spries create a list Lip)
2. foreach u? € U go overall p € Out(u'), and add i to L(p).
3. for each i choose p* = arg Mmin,coue(u) LIP)
(a) foreach p € Out(u’) mark all j # i € L(p*) which appear in L(p).
i. if j appears in all L(p), conclude that Out(u’) C Out(u’)
4. for each j such that Out(u') € Out(w’) do In(u’) = In(u')\In(u') N In(u)

Note that in following algorithm EdgeMin(U) is preformed sequentially after Backward-Merge(U) thus for

any two u', u/ € U there cannot be an identity between Oﬂt('u") and O-ut(-uj )

Initializing all L(p) takes O(| Us_was—spii¢ S|). Updating all L(p) for all u® € U takes o, |Out(ut)]). We
assume a predefined order over u* € U . Finding p* for each i takes O(|Out(u')|). Going over all other
p € Out(u') and checking for each j # i € L(p*) if it appears in L(p) takes O(Zpeomtu"l |L(p)]|), this
can be achieved as we assume that L(p*) and L(p) are ordered, so comparing both lists can be done in a
single pass with runtime O(|L(p)|) as |L(p=)| < |L(p)|. Thus, finding all containment relations among all
u' € U takes O3, |Out(u')|+3; Zpeomcui: |L(p)|). Finding and deleting the edges in the intersection
of both nodes, step 4, can take O(|In(u*)| + |In(u’)|), given a hash table of size | U; In(u')| (we do

not assume Infu) is ordered). Thus, in total we can conclude the runtime of the EdgeMin operation is

O(%; [Out(u')] + s Xpeourw) L (P)] + In(u!)] + [In(u!))D.

4. Statistical Model

Till now we assumed a scenario where a class/category is described deterministically by a set of properties P
which should appear in all instances of the class. We would now like to relax this definition to deal with the case
where group of properties belonging to a class, appear with a certain probability in each of its instances. Thus,
instead of requiring x€P. = #x(s) = 1 ¥s € C, we denote 6€ = P(9x(s) = 1|s € C), the class dependent
probability of a specific type of property- x and require: xP. = 0 >> p,, in such a case we shall refer to
the property x as “typical™ to class C. In addition properties can appear in classes where they are not typical, in
such a case we will refer to them as noisy properties. We define a property as noisy with respect to a given class
if px = ES. Px 1s a class independent probability of a specific property x to appear in instances of classes where
this property is not “typical”™.

We say x is “similarly typical” between classes if the class dependent values 6 are similar, formally we shell
denote X; a group of classes for which x is similarly typical- € € [0 — Ax, Oxi + Ax).7C € X;.

For example, lets denote I' = [A, B, C, D, E| a group of classes, and [0.1,0.4,0.45,0.78,0.8] the corresponding
class dependent probabilities [5;?,55,55,:5,?, Ef'] of property x, where p, = 0.2 and A, = 0.1. We will say
that x is "typical” to classes B, C, D and E where B is "similarly typical™ to C with respect to x and also D is
“similarly typical” to E with respect to x.

Similarly we can extend the notions of “typical” and “similarly typical™ properties to a “typical group™ of co-

couring properties, where x now denotes a group of properties, P a group of groups of properties and 6C =
P(/\x’Ex'!.‘i’x’(s) — 1|S € C)
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Algorithm 1 SIPO: Set Intersection Partial Order
Input :

GI" =< V" E" > where V" = L) ULy and E™™ = U o1, Out(u)
Output:
Gou,i =< th, Eoui =
1. Init:
_ Vo‘ut s Vin Eoui e Em
- S=L;¥s e Sin(s) =1In(s),
- FWMerg = ), BWMerg = 0, tmpS = 0
2. While 3s € S such that in(s) # @ do:

(a) ¥s € S do:
i. Split(s,in(s))
ii. add all nodes created by Split(s) to tmpS
iii. in(s) =0
(b) Foward-Merge(tmpS) and add all newly created nodes to FWhMerg
(c) Backard-Merge(F'WMerg) and add all newly created nodes to BWMerg
(d) Vout — vour U BWMerg
(e) EdgeMin(BWNMerg)
(f) ¥s € BWNMerg and Vu € In(s), 7v € Out(s) do:
i Eout — Eom\l:u, v)
ii. 7 = B U {(u,s),(s,v)}
iii. in(v) =in(v)Us

3. ¥v € V9 such that |Oué(v)| == 1 do:

(a) for s = Out(v) and Yu € In(v)
i. Out(u) = Out(u) U Out(v)
ii. In(s) = In(s)U In(v)
iii. B = E7 U (u,s)
(b) Vout — yout\y

In order to apply the graphical model and graph construction algorithm to this statistical scenario we restrict the

probability model using the following assumptions:

1. Noisy properties of a class are statistically independent.

2. If a group of properties is “typical” to a class then each individual property is also “typical”.
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3. A group of properties is said to be “typical” to a class if 6$ > [] d¢, where x denotes the group and x’ an

x'Ex

individual property in the group.

Assumption 2 is a strong restriction as we might want to allow two or more properties to be “typical™ only when
they occur together but not separately, in such a case we can define a new property as the conjunction of these
property, the new property will be typical, but the old properties and their conjunction wont.

In the deterministic case, we presented algorithm | for finding all possible general classes. This algorithm is
based on finding commonalities among classes by computing the intersection between the property sets of each
class. The notion of intersection between the sets P, can be extended to the statistical scenario by regarding any
“similarly typical™ group of properties between two or more classes as a partial intersection between the group of
classes. In the deterministic case the intersection of a given group of classes contains all properties shared by all
classes in the group, in the statistical case two groups of properties x and y which are both “similarly typical™
among a group of classes I, may not be “similarly typical” together with the respect to the same group of classes,
hence t = xUy is not “similarly typical” in ['. In such a case we will say the intersection between a given group of
classes is a set of sets of “similarly typical™ properties, opposed to the deterministic scenario where the intersection
is a single group. Thus, we will say that the statistical intersection, ST, of I is {x, y }, denoted SI(T") = {x,y}.
Given the set T of all “similarly typical” groups with respect to any group of classes I', we define the statistical

intersection of I' as a set of “similarly typical” groups of properties with the following two conditions:

1. ¥x € Y Jy € SI(T") such thatx C y.

2. ¥y € SI(I') Ax € T such thaty C x.
It can be said that ST is the maximal set of “similarly typical” groups with respect to any group of classes.

5. Hierarchical Multi-Task learning

In this section we introduce an hierarchical view of multi-task learning. We extend the notion of task relatedness
[4] to an hierarchy of task relations in 5.2. In section 5.3 we extend the learning paradigm presented in [*] to deal
with the hierarchical setting, we present IMT-ERM (Iterative Multi Task-ERM) which is an hierarchical general-
ization of MT-ERM. We recall the generalization analysis of MT-ERM and motivate a specific learning approach
based on a cascade of classifiers, such an approach is often applied in hierarchical learning algorithms (e.g. CART
[71). Limiting our-selfs to a more restrictive approach we are able to propose a constructive paradigm for which
under two assumptions, transformation-independance and optimality-preservation we can derive explicit learning
bounds, opposed to the general lower and upper bounds on the generalization bound of the MT-ERM approach.

The cascaded approach and its required assumption are presented in 5.4.

5.1. Background

We start by restating the multi-task learning scenario and Ben-David’s et al. [4] notion of relatedness. As in
[] we view multitask learning as having a single task that one wishes to learn and the extra related tasks are just

an aid towards learning the main task. We follow the notations and restate briefly the definitions from [4], where
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its relevant we refer the reader to the specific definitions in []. Formally, the multi-task learning scenario can be
stated as follows: Given domain X" and unknown distributions P .... P, over X' x {O, l}1 a learner is presented with
a sequence of random samples 54....5,, drawn from these F;’s respectively. and has to come up with a hypothesis
h: X — {0,1} such that, for (z, b) drawn randomly from P, i(z) = b with high probability. As in [1] we focus
on the extent to which the samples S;, for 7 # 1 can be utilized to help find a good hypothesis for predicting the
labels of Pj.

Task relatedness is defined based on a set F of transformations f : X' — X. Tasks P and F%: are said to be
F-related if P(x,b) = Py(f(x),b) or Pa(x,b) = Py(f(x),b). For the formal definition we refer the reader to
definition 1 in [-!]. Given an hypothesis space, H, over domain X" we assume J acts as a group over [H, namely
F is closed under function composition and H is closed under transformations from 7, for a formal definition see
definition 2 in [1]. Two hypothesis hq, iz € H are said to equivalent under JF iff there exists f € JF such that
ha = hy o f, hypothesis equivalence under J is denoted by ~ . [fz]m}_ = {ho f: f € F} denotes a set of
hypothesis which are equivalent up to transformations in 7. H/ ~ denotes the family of all equivalence classes
of H under ~ g, namely- H/ ~z= {[k], : h € H}.

The learning scenario in [4] assumes the learner gets samples {Si g < n}, each 5; is a set of samples drawn
i.i.d from P;. The probability distributions are assumed to be pairwise F-related. The learner knows the set
of indices of the distributions, {1,...,n} and the family of functions F, but does not know the data-generating
distribution nor which specific function f relates any given pair of distributions. In this setting, Ben-David et al.
[+] proposed exploiting the relatedness among tasks by first finding all aspects of the tasks which are invariant
under J then focus on learning the specific F-sensitive elements of the single objective task. The potential benefit
lays both in the reduction of the search space from the original H to a smaller F-sensitive subspace [h],, and
from the bigger sample size available to learn the F-invariant aspects of the task. Though, the second potential
benefit is not guaranteed and depends on the complexity of finding a single [k, in H/ ~x. The complexity of
finding [h]m}_ is formalized in [4] using the notion of generalized VC-dimension from [3]. See [-!] for an analysis

and example of the complexity of finding ||~ .

5.2. Multi-Task Hierarchical Setting

Now we shall extend the multi-task learning setting to an hierarchical multi-task learning setting. In the hier-
archical setting our objective is the same as in the original multi-task, that of learning a single task by exploiting
extra related tasks. Our approach extends the original by assuming that the group of tasks, indexed- {1,...,n}
and the corresponding family of transformation functions 7 can be decomposed hierarchically. We denote by {
a single level in the hierarchy, 0 < [ < L and 7; C {1,...,n} the group of related tasks in the {'s level of the
hierarchy. J; denotes a family of transformations for which all task in 7; are pairwise F;-related.

We assume that the set of transformation for each level 0 < [ <Z L. —1 can be written as a concatenation of the set
of domain transformations corresponding to the proceeding level [ + 1, F; 1, and a set of domain transformations

Gi,hence- Fy = {go f: g € Gi, f € Fiy1}-

Definition 1 We say that the group of tasks 7; 4 is invariant with respect to the set of transformation G iff:

i € {1.n} \ Ti41. 3g € Gy such that Vj € Tpyq , 3fY € Fyyq for which: P(z,b) = P;(g(f(x)),b)
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We call this property an invariance, as all tasks in 77, 1 share the same transformation from G; when transforming
into tasks which are not in the group 7;, 1. For example, lets consider n rectangles in R? each is marked with an
index from {1..n}, now lets assume that some of these rectangles share the same size lengths but differ in their
location, lets mark this group by 7 C {1..n}. Now we shall consider two different sets of transformations- F
shifts in R and G scaling in R?. Clearly the group of rectangles 7 is invariant with respect to the transformations

in G but not to JF.

Definition 2 We say {7;, 7;}}F  is an hicrarchical decomposition of a set of F-related tasks, {1, ..., n} iff:
1. o ={1,..,n}
2. Tp, = {1}, hence T, represents the single objective task.
3. Fr = {f}. where f is the identity transformation, hence f(z) = z.
4. forall0 << L —1:
a1 CTp
b. ¥i,j € T;. exists f € F; such that P;(x,b) = Pj(f(x),b)
¢. 7741 is invariant to G;
d. Fi={gof:9€q,f€Fin}
e. JF; and Gj act as a group over HI.

From the definition of the hierarchical decomposition we see (4.c) that the set of transformations for level [ can
be obtained by concatenating the set of invariances of levels {4 1 till L. This point will be crucial in understanding

the benefit of the cascaded hierarchical approach.

Lemmal F . C F,foral0 <! <L —1.

From the fact that G; is a group, hence contains the identity transformation and from definition 2, setion 4.c

Lemma2 Given k € H, [h]”ﬂﬂ G [h]m}_I Jforall 0 <! < L-—1.

This is an immediate consequence of Lemma 1 and the definition of [h]. ..

5.3. Learning paradigm and Generalization analysis

Now we shall extend Ben-Davis’s et al. [1] two stage learning paradigm, MT-ERM (Multi-Task Empirical Risk
Minimization), to an L + 1 stage learning paradigm, denoted IMT-ERM (Iterative MT-ERM). Both are empirical
risk minimization approaches. We follow standard notation and denote the empirical error an hypothesis for a

sample set S as:

[{(z,b) € S: h(z) # b}

E‘?‘S(h) = 5]
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the true error of an hypothesis, as:

ErP(B) = P({(z,b) € X x {0,1} : h(x) # b}).
and following [/] we define the error of any hypothesis space, H as:

ErP(H) = inf EvP(h).

(1) = inf Er2(n)
For notation convenience we shall denote |T;| (the number of tasks in each level) by #;, and [; corresponds to the
i'th task in 7;.

Definition 3 Given H. n tasks hierarchically decomposed by {7;, F; }f‘z o and their sequence of labeled sample
sets, 51, .., Sy, the IMT-ERM paradigm works as follows:

1. H° — M.
2. for{ =0..L

a. Pick h € H* that minimizes infh;l.m.h;,

;E[h]’";ﬁ Z?:IEITS“ (fu,) over all [h]w.ﬁ € Hli” ™

b. H'F = [A].,,
3. output /2 the single hypothesis in [i],, as the learner’s hypothesis.

First we state that the fact that ~° is the single hypothesis in [h]"'ﬂ. , 1s derived directly from the definition of
JFr, as containing only the identity transformation.

Following the definition of hierarchical decomposition one can easily be convinced that for L = 1 the IMT-
ERM is exactly the MT-ERM. The first iteration corresponds to the first step of the MT-ERM- learning the aspects
which are invariant under ;. The second iteration corresponds to the second stage of MT-ERM where only the
training samples coming from the target task, the single task in 77, are used to find a single predictor, the single
hypothesis in [A].,. .

The learning complexity of step 2.a, picking [h]mv.FJ € H!/ ~ ., is analyzed in [4] using the notion of gener-
alized VC-dimension from [?], denoted by c:EH]J},;m}_J (n) where n refers to the number of tasks, ¢; in our setting.
This measure has a lower bound of sup{VC — dim([h] ) : [P, € '/ ~x} and in the general case an
upper-bound of V' — dim(H!"), see proposition 1 in [1]. This analysis captures the interrelation between the set
of transformations 7; and the hypothesis space H!.

From lemma | and lemma 2 we know that both sup{VC — d'i-m([h],uﬁ) : [h]’“-’Fr €M/ ~g}and VO —
dim(H') monotonically decrease with I, which may imply the potential of the hierarchical approach. But, these
measures only act as lower and upper-bounds on the search complexity of step 2.a. In order to account for the
potential benefit in the hierarchical approach we shall limit our following discussion to a scenario were we can

precisely calculate the search complexity of step 2.a.

D4.15 16 of 28 DIRAC 027787



=0

>

Detection and Identification of Rare Audiovisual Cues

Insperata accident magis saepe quam quae speres.
(Things you do not expect happen more often than
things you do expect) Plautus (ca 200(B.C.))

Furthermore, the measure dy e (n) is used in [-] theorem 3, to bound the minimal amount of samples needed
for each task in 7;, separately. In the following we shall consider the case where we are concerned with the total
amount of samples from related tasks, this will enable richer learning scenarios where we can still benefit from
tasks with very few samples as long as the shared aspects of the tasks can be learnt in conjunction with tasks with
many samples.

Finally, the MT-ERM paradigm and its hierarchical extension IMT-ERM, don’t provide a constructive way of
preforming step 2.a. In the following we shall consider the conditions under which step 2.a. can be preformed
by searching over the possible set of invariance’s G; yielding a constructive approach with search complexity of
VC — d-im([h]mgi ).

5.4. Multi-Task Cascade

In this section we analyze the conditions under-which an optimal hypothesis of a single task can be found via
searching for a cascade of invariants, each invariant fits a single level in the hierarchical decomposition described
above. We start by analyzing specific properties of the optimal transformations given our hierarchical decomposi-
tions, lemma 3 and 4. In section 5.4.1 we present the cascaded approach defining a new task for each level in the
hierarchy. In sections 5.4.2 and 5.4.3 we present two properties of a cascade of invariances which are the basis
of the assumptions under which a cascaded approach can reach optimality. Finally in section 5.4.4 we state the
assumptions and prove the cascaded approach can reach optimality.

We shall start by recalling that from lemma 2 in [] we can deduce that-

LI

1
Erfti(n]., ) = inf — N" ErPu(hy 6
i ([h)er,) nl:mnliﬁe[n]wﬁ |TJ|; % (hy) (6)

In the above hierarchical decomposition definition (definition 2) we assumed that 7; is invariant to G;_q. In
the following we show that any g € G;_1 which is optimal for a single task j € 7; in the sense that it minimizes

Erfh ([ho g]mﬁ ). is optimal for all other tasks in 7;.

Lemma3 Foreachj < 7;,g" = arg min
ErPi(hogl.,)

v F. 5 ' 3
gegr_, Bt ([hogl.,) & Vi € Tland Yg € Gy Er™i([hog*].,) <

Proof -+=: This direction is trivial, if g* attains minima for all 7 € 7} it does so also for 7. O
=: Assume that g* = argming.g, | Erf ([h e gl~y ). Let f9 € F; be the transformation which minimizes
Erf ([ © g]~, ) hence by definition Erf (hogo f9) = ErP ([%2 © gl ). Fi is the family of transformation
between tasks in 7;, thus Vi € 77 3f;; € F;, such that Erfl (hogo f9) = Erfii(hogo foo fij)-¥g € Gi_1.
By the definition of ; as a group we know that f9o fi; € F;, lets assume that Erf (hogo f9o fij) # Erfi ([ho
g]mﬂj,thus exists z € Fy such that Erfli (hogoz) = BrFi ([hog]m_ﬁ) and Erfti(hogoz) < Erfli(hogo f9ofi;).
Let f;; € F; be the transformation from task i to task j. Thus, Erft (hogozo fj) < Erf (hogeo f9) which

contradicts the definition of f7, as zo f;; € 7. So we can derive that- £ B; (hogof9ofij) = Erfi([n oGy, )-
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We know that Er'li(h o g* o f9°) < Erfti(hogo f9) ¥g € Gi1 , thus Erfi(h o g* o f9" o fi;) <
Erfii(hogo f90 fi;) ¥i € T;. Thus, ¥i € T, and Yg € Gi—1 ErFi([h EffJung) & BErfi(lho P 30

Lemmad If g’ = argming.g ErP([hog]~,)and f' = arg min o ErP(hog'of),then g’ = arg ming.g Erf(ho

gof')

Proof Foreach g € G lets denote by f¥ the optimal f € F with respect to g, thus f9 = arg minsc» Erf(ho
g o f). From the definition of g" we know:

Erf(hog o fy< Erf(hogo f9),Yg € G. )
From the definition of f9 we know:
Erf(hogo f9) < Erf(hogo f'),7g € G. (8)

From 7 and 8 we get that:

Erflhog of) < Erf(hogo f),vgeq.
Hence- g’ = argmingeg Erf(hogo f'). O

5.4.1 Single Unified Task

Our cascaded approach is based on defining a single task for each level in the hierarchy and optimizing the solution
based on this task. We start by defining the task-

For each level in the hierarchy 0 < [ < L — 1, we define the task representing the level as the union of all tasks
in 7;. As before we mark the i'th task in 7; as [; € {1..71}. Let #....P, be the probability distributions over . x
{0,1} of tasks {1..n} respectively. Hence, for j € {1..n}, Pj = P(z,b|j). We shall now define the probability
distribution over X x {0, 1} ,which fits the single task a; representing the union of all tasks in 7; , as the average

of distribution of tasks in 7;, hence:

7|

1
Pyy(z,b) = WEP*" («,0) ©
i=1
Lemma 5
Ll
Erfa(n) = — Y Erfu(n (10
( Ed ; (h)

This is straight-forward from the definition of F;; and ErF,
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In our hierarchical approach we assume that 7,1 = {go f : g € Gi_1,f € F} is the set of pairwise
transformations of group 7;_;. Thus an hypothesis &' € [h] ,can be written as " = hogo f,where g € G, 4

and f € F;. Developing this another level, 2" £ [R']

il
G \;clcan write ' = k' o g’ o f', where g’ € G, and
f' € Fiy1, which can also be written as h"" = ho go g’ o f', thus we get that 1" € [k o _gi],\,‘.FH_1 . where g € Gj_1.

In the cascaded approach we propose finding the optimal g € G;_ for task a;, where 0 < [ < L — 1. The
potantial gain in such an approach is that each learning step is governed by VC — dém([h]mﬁ_l) and the number
of samples available for the unified task is larger.

In the following we analyze under what conditions this approach guarantees optimality with respect to the
original tasks, hence: finding arg min

9EGr_ 1 Erf ([heo g],\,‘.’;I ), by choosing g € G;—1 which minimizes the error

of task a;: finding arg ming.g | ErPu(hog).

5.4.2 Transformation Independence

Definition 4 Two transformations taken from two families of transformations g € G and f € F are said to be
independent with respect to hypothesis h € Hiff hogo f(z) = hog(x) - ho f(z).

[t is easy to see that {x|h o g(z) - ko f(z) = 1} = {z|h o g(z) = 1} N {z|h o f(x)}. For illustration lets
consider rectangles in R?, G is the family of scale and translation of the first dimension and F is the family of
scale and translation of the second dimension. We shall parametrize the rectangle by [cl, €2, s1, s2| where cl and
c2 correspond to the center of the rectangle and [s1.52] correspond to the size of each arc (width and height of
rectangle). Let i € H be the rectangle [3,3,2, 2|, and let g € G be translation of 0.5 and scale of 0.5 of the first
dimension, let f £ F have the same values of g applied on the second dimension. Hence: h o g is rectangle
[3.5,3,1,2] and L o f [3,3.5,2, 1] the intersection of their support corresponds to rectangle [3.5,3.5, 1, 1] which
is the same as ko g o f(x). On the other hand if we were to consider just translations but no scaling we would get
that & o g is rectangle [3.5,3,2,2] and k2 o f [3,3.5,2, 2] the intersection of their support would be the rectangle
parametrized by [3.25,3.25,1.75, 1.75], thus will not equal i © g o f(x) which is rectangle [3.5,3.5, 2, 2].

The transformation independence property will enable us to write ErF(hogo f) as ErF(ho g) plus a residual

term, describing the gain of adding the transformation from JF.

Definition 5 We shall denote the residual term by B9/ hence-

R = P({(z,6) € X x {0,1} :b=1,hog(x) =1,ho f(x)
—P({(z,b) e X x {0,1} : b =0,hog(r) =1,ho f(x)

})
1) (11)

=0
=0

This term specifics the amount of errors introduced when adding transformation f minus the amount of cor-
rections this transformation makes with respect to transformation g. Under the transformation independence as-
sumption, adding a transformation f can change the overall classification value only for points in the support of

hog.
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Lemma 6 If transformations ¢ € G and f € F are independent with respect to hypothesis h € H then:
Erf(hogo f) = Erf(hog) + R¥ (12)

for notational convenience in the proof following we shall omit the domain X x {0, 1} when referring to (z, b),
and h o f({X) we shall write shortly as 2 f(X).

Proof

Erf(hogo f) = P({(z,b) : hgf(z) # b}) =
P(

P({(z,5) : haf(z) # b, ki (@) = 1)) + P({(z,b) : haf(z) £ b,hi(x) = 0}) = (13)
P({(28) : hg(@)hf (z) £ b, hf (=) = 13) + P({(2:8) : haf (z) £ b, hf(z) = 0}) =
P({(2,8) : ho() £ b,hf(z) = 13) + P({(2,8) : haf (z) £ b,hf(z) = 0}) =
P({(x,8) : hg(x) # b, hf(z) = 13) + P({(2,5) : hgf(z) # b, hf(z) = O})+
P({(2,8) : ho() # b, hf(z) = O}) — P({(2,8) : ha(z) # b, hf(z) = O}) =
P s hg(x) # b}) + P({(x,b) : hgf(z) # b, hf(z) =0})—
x,b) : hg(z) # b, hf(z) =0}) = (14)
(

h|

e e e e e T e T e
L T e T e T e T e T

R

ﬂ_‘\ﬂ_‘\ﬂ_‘xﬁ_‘xﬁ_‘xﬁé‘\’_‘\’_‘\’_‘\’_‘\’_‘\
L= = = T~ I = L = R = TR = N = L = T = T = )

R e s il e P e e S e

thg(z) # b}) + P({(x,b) : b= 1, hg(z) = 1, Af(z) = O})+
b=

P({(z,b) : b =1,hg(z) = 0,hf(z) = 0}) — P({(x,b) : b= 1, hg(z) = 0,hf(x) = 0})—
P({(z,b) : b =0,hg(z) = 1,hf(z) =0}) =
P({(z,b) : hg(z) # b}) + P({(x,b) : b= 1, hg(z) = 1,hf(z) = 0})—
P({(z,6) :b = 0, hg(z) = 1, hf(z) = 0}) =
Erf(hog) — P({(z,b) : b=0,hg(z) =1, hf(z) = 0})+
=

P({(,) :6 =1, hg(z
E?‘F(h og)+ R,

hf(z) =0}) =

Equalities 13 and 14 are due to the transformation independence. O
Choosing a transformation f € 7 which minimizes Er" (hogo f) implies that R9 f < 0as it can only decrease
the overall error, this is stated formally in the following lemma-

Lemma7 f = argminf;efb'fp(h ogof)= R <0

Proof We know that the identity transformation f’(x) = x is in F (F is a group), thus Er¥ (hogo f)— LrF (ho
g) <0, from lemma 6 we know that 9 = ErP(hogo f) — Erf(hog). O
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5.43 Optimality-Preservation

As we've shown in lemma 6, under the transformation-independance assumption the error Erf (hogo f)can
be decomposed into the error obtained by choosing g € G, ErF(h o g), and a residual term R97 referring to the
change in the overall classification value of points in the support of h o g, when adding a transformation f € F. If
an optimal transformation remains optimal when adding another transformation from a different family we shall

say the added transformation has the optimality-preservation property, formally-

Definition 6 A transformation f € F is said to have the optimality-preservation property with respect to a
distribution P, an hypothesis h and family of transformations G, if for g* = arg mingeg ErP(h o g) the following
holds:

R _ R < ErP(hog)— Erf(hog®),Wge G

To illustrate a scenario where such a property occurs, lets consider rectangles in R?, and two families of transfor-
mations § and F each scales and translates a different set of coordinates. Lets assume that any two transformations

g € G and f € F are statistically independent. Hence:

P({(z,b) :hog(z) =a,ho f(z)=c}) =
P({(z,b) 1 hog(z) =a})- P({(z,b) : ho f(z) =c}) (15)

Now we shall assume a realizable learning scenario where for each rectangle v, P"(z,b = 1) = 1 iff = is within
rotherwise P"(z,b = 1) = 0. The family of hypothesis we consider, H, is the family of functions h(z) € {0,1}
defined over all possible rectangles in R, hence h" (x) = 1iff z is within the rectangle . In this scenario for each
7 there exits an hypothesis #* € H where Erf" (h*) = 0.

From the realizability of the learning scenario, we can conclude that for g* = argmingg ErP(hog). g is
minimal in both types of errors separately , has lower false postives- P({(z,b) : b = 0, hg*(z) = 1}) and lower
false negatives- P({(z,b) : b = 1, hg*(z) = 0}) then any other g € G. This can easily be seen by assuming
that there exists some g for which this is not the case, changing g* according to g, can only reduce the error-
making the rectangle bigger in order to include the false negative will not cause false positives, while making the
rectangle smaller in-order to exclude false positives will not cause false negatives. This claim is straight forward
for the scaling transformation and also holds for translations as they can be viewed as two consecutive non uniform

scaling operations.
Corollary 1 For the task of learning a rectangle r given the hypothesis space H, and transformations G and F

as defined above, each f € F which is statistical independent of any g € G has also the optimal preservation

property with respect to P", G and any k < H.
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Proof Letg* = argmin,.; ErP(ho g)and f which is statistical independent of any g € G then:

gey

R _ gpef — (16)

P({(z,5) : b= 1,hg*(z) = 1, hf(z) = 0}) — P({(z,b) : b= 0, hg* (z) = 1, hf(z) = O})
)

(P({(z,0) : b=1,hg(x) = 1, hf(x) = 0}) — P({(x,b) : b= 0, hg(z) = 1, hf(zx) = 0}) (17

[P({(z,8) : b = 1,hg"(z) =1}) — P({(x,b) : b = 1, hg(x) = 1})|P({(z,b) : b = 1,k f(zx) = 0})—

[P({(z,b) : b = 0,hg*(z) = 1}) — P({(z,b) : b = 0, hg(x) = 1})]P({(z,b) : b = 0,hf(z) = 0}) =

[P({(z,b) : b = 1,hg(x) = 0}) — P({(z,b) : b=1,hg*(z) = 0})]P({(z,b) : b= 1, hf(x) = O})+

[P({(z,b) : b = 0,hg(x) = 1}) — P({(z,b) : b= 0, hg*(x) = 1})]P({(z,b) : b =0,hf(z) =0}) < (I8)

[P({(z,b) : b= 1,hg(z) =0}) — P({(x,b) : b= 1, hg"(z) = 0} )]+

[P({(I b): b=0,hg(z) =1}) — P({(x,b) : b= 0, kg"(z) = 1})] = (19)
rP(hog) — Erf(hog).

Equality 16 is due to the definition of the residual. RS, Equality 17 is due to the statistical independence of
f € Fand any g € G. From the above argument and the optimality of g* we know that both the false negative
and false postive of g* are smaller then any other g, hence the components specifying the false negative and false
positive differences, between g and g*, are positive, thus mulitplying each of them by a bigger number increases
their sum as in 8. Equality 19 is due to the definition of the error as the sum of the false positive and false
negative.[]

In the following we show that for a group of tasks and transformations maintaining the optimality-preservation
property the optimal transformation with respect to the unified task and a single set of transformations G is optimal

also when considering each of the tasks separately and adding a transformation from JF. For this we shall denote:

- gM =argming.g Erfa (hog), the optimal transformation with respect to the task a;, representing the union

of tasks in 1;.

- g = argmin ErPy ([ho g]”iﬁ ), #i € |7;|. the optimal transformation which is shared among all of the

geGi_
tasks in 7; (from lemma 3 we know _q,:I exists).

- f = arg ming. r ErPi(hoglo f),%i € |T;|. the optimal transformation which is specific to each of the tasks
in 7;.

Lemma8 Under the transformation independence assumption between g and flivi € |Z7|, and g'and flivi e
|72,

|7l |7
3B (o)) = 3B (o )

|2 [T || [Tl

@ZRQEFIIF—ZRQJ(I 42!1,' i(hog) — ZE i(hog™), Vg € Gi_1
i=1

i=1
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>

Proof

T3l , om0 7|

ZR—‘IBW ZRgf < Zb? i(hog) ZETH;(h og™), Vg G =

i=1 i=1

|7i| L ’

Zb‘ i(hog*)+ RS <N " Erfi(hog) + R g€ Gy & (20)

i=1

|'r| kd

wa i(hog™o ff) <) Erfi(hogo ff),¥ge Gy = (21)
i=1

|T:| |7

D Erfi(hog™off) <Y Erfli(hog o f¥) @2)

i=1 i=1

[T |71

Zb‘ i(hog™o fli) Zb’r (hog o fl) e (23)

IT:I |:ﬁ

> Erfi(hogto fh) Z Erfi([ho gl ) <3 (24)

i=1

|73 |T|

Z Erfi([hog]., ) = Zb‘rﬁi([h 0 g'r) (25)

20 < 21 due to lemma 6. 21 = 22 due to lemma 4. 22 = 2l and 22 = 23 from the optimality of
g' . 23 = 24 is derived from the definition of f% and the definition of E7"([h]~,). 24 & 25 otherwise
from the definition of kP ([Rh]_,.) we’ll get that Zml Erfi([ho g™ ) < zl‘ﬁl ErPi(h o g o 1), thus
lel Erfi(lno g p) < ZlTl Erfi(lnog ]Nf ) which will contradict the optimality of g .C]

5.44 Cascade Optimality

Now we are ready to state the following two assumptions under-which the optimal transformation g' € G;_; for

each of the tasks in 7; is the same as the optimal transformation g® € G;_1 for task a; .

Assumption 1
- g% and f" are transformation-independent i € |T;).

- g' and f% are transformation-independent ‘7i € |7j|.

Assumption 2 Vi € |7}, fl has the optimality-preservation property with respect to a distribution F,, the

underline hypothesis fz and family of transformations G.
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Theorem 1 Under assumptions | and 2:

arg min £ (h o g) = arg min Er™ ([h o Gy ), T ET
9551 9551
Proof From assumption 2 we can deduce that:
|71 . | T % [T |7
DORTE Y RISy Brfi(hog) =) Erfi(hog™),Yg € Giy
=1 i=1 i=1 i=1

putting this together with assumption | we know from lemma 8 that:

[T |7

Z Erfi([ho ~g) = Z Erfi(lho gz]mﬁ)

thus for g* = argmin Erfa (h o g) also attains minimum for the sum over the error of all tasks in 77,

g=G -1
thus:

|3
g™ = argminy " Erfi([ho gl.,)
g9eGi—1

Thus, from equation ( 6) above we can deduce that:

g* = argmin ErPi([hog|., ),Vi € 7.0
geGr_1 '

We note, that there might be more then one transformation achieving the minimum.

5.5. Multi-Task Cascade ERM

In the previous section we showed that the optimal transformation of a task can be found by considering a
group of tasks together, in case this group is invariant with respect to this transformation. This implies a learning
scenario were searching for the optimal invariance of a single task can be done by considering the group of tasks
sharing this invariance, thus leveraging the bigger sample size from all the group. Till now we discussed the
optimal solution, now we shell extend this framework to the case where we cannot guarantee optimality of the
solution. For this we will need to extend our assumptions so that we can derive that a near optimal solution for the
group of tasks considered together is also near optimal for each of the tasks considered separately, thus permitting
a derivation of an ERM approach.

Firstly, instead of considering the transformation-independance only for the optimal choice of transformations,
we will assume transformation-independance between f'% € F, the optimal transformation for task [; € 77, and
any transformation g € G;_1.

Secondly, the optimality-preservation assumption needs to be extended, adding a lower bound to the difference
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of residuals . Thus, the improvement achieved by adding the transformation to a non optimal invariance is close
to the improvement when adding a transformation to an optimal invariance.
In order to extend our cascaded approach from two levels to the L levels in the hierarchy, we extend the

assumptions to the whole hierarchy. For this we will denote:

- fli=argminpcg Erfi(hog o f),Vie [1.|T;

Jfori=0..L -1

- gM = argmingg | Erfai(hog),forl=1.L—1

Cascade assumptions: for! =0..L — 1 and k € H'~! the chosen hypothesis for Pa;_1:

1. Vg€ Gy and fli,%i € |T;

, are independent with respect to [z , hence:

hogo fi(x)=hog(x) ho fli(z)

T ay fl; T I; T 1 i 1,
2. | S R — T Rer| < SO Erfi(ho g) — Erfi(ho g™), Vg € Giy

For simplicity, in the following we shall refer to the strong form of assumptions 1,2 declared above as transformation-
independance and optimality-preservation respectively.

We can now analyze the bound of the error of an hypothesis composed of some original hypothesis, /2, a shared
invariance learnt via an ERM process, ¢°, and the optimal transformation for each task, f%, given the hypothesis-

hog®.

- . . P
Theorem 2 Letd = VC — dzm([h]mq_l), h* = arg milhepm. Lrt=r(h) and h° € [h]mGJ_1 be the output
of a standard ERM algorithm trained on task a;, with m® samples. Then for every € and ¢ > 0, if m® >

co(Llogt + 2logl), with probability greater then (1 — ),

|7 ||

Z E?‘Hi([h"]mﬂ) < Z b‘rﬁé([h*]mﬁj + 2¢

i=1

Proof We note that from the above definition of g, A* = hog™ , we shall also write 2° as the original hypothesis
h and the chosen transformation g° € G;_4 such that h* = k o g°. We know that for a standard ERM algorithm,
with probability greater then (1 — §)-

Erfsi(hog®) < ErPu(hog®) te (26)

From Lemma 5 we can write-

|7 |7
Erfi(hog®) < ZE?‘P’E(h og™)+e
i=1

i=1

D4.15 250f 28 DIRAC 027787



=0

>

Detection and Identification of Rare Audiovisual Cues

Insperata accident magis saepe quam quae speres.
(Things you do not expect happen more often than
things you do expect) Plautus (ca 200(B.C.))

From the fransformation-independance assumption and Lemma 6 we can write-

T3] T3] i ||

Zbr ([hog®] ZR-‘T <Zbr ([hog™] ZRQ"J’“" @27

where fF%: € F; are the optimal transformations for all I; € 77, given hypothesis h o g*. and f% € F; are the
optimal transformations for all I; € 7}, given hypothesis h o g°.

From the strong form of the optimality-preservation assumption we know that-

|| (O |
DR N R <Y Briti(hog®) — BrPu(hog™) (28)
i—=1 i=1 i=1

as {74 € F; are the optimal transformations for all [; € 7;, given hypothesis & o g™ we get that '7i-
Rg‘-'fh”i < Rg‘if’i (29

From 26, 28 and 29 we can write-

[T [T

e Z Rro ~ > ReL (30)
i=1

Putting together 27 and 30-

|| |7
ZE ([hog’luy) <D Erfti([hog™]., )+ 2€ (31)

i=1

O
Now we are ready to propose CMT-ERM (Cascaded MT-ERM) paradigm, extending the two stage cascaded
approach to an L stage cascade. In this approach each stage searches for an invariance which is shared by all tasks

grouped into a level in the hierarchy.

Definition 7 Given H, n tasks hierarchically decomposed by {7;, 7;}£  and their sequence of labeled sample
sets, S, .., Sy, the CMT-ERM paradigm works as follows:

1. H° = H.
2. forl =0..L

a. Pick h € H' that minimizes £ (h)

HI+1 o [h]’\-'g,

=

3. output /° the single hypothesis in [h] . as the learner’s hypothesis.

D4.15 26 of 28 DIRAC 027787



=0

>

Detection and Identification of Rare Audiovisual Cues

Insperata accident magis saepe quam quae speres.
(Things you do not expect happen more often than
things you do expect) Plautus (ca 200(B.C.))

In the first iteration we choose an hypothesis and not a transformation as in the remaining stages, in order to
apply the same analysis we consider i € HY the chosen hypothesis for Pag, define G the set of transformations
for which [h],\,c_L = H" and g% € G_ as the identity transformation. We will also define H ! = H” and Pa_,
as the same task as Pag, thus h is also the chosen hypothesis for Pa_ 4. We note, that as we don’t actually search
over [h]mc_1 but rather H”, G_ need not exist and can be considered just as a notation for writing each hypothesis
hcHYash' =hog'.

6. Appendix
6.1. Finding Equivalence Sets

In this section we present an algorithm for finding all equivalencies between sets within a given group of sets
S. Each set s' were ¢ € S, contains several elements from a finite set P, thus s! C P. Two sets are said to be
equivalent if they are identical in the elements that they contain. The output of the algorithm is a grouping Ep of
the sets into maximal equivalence sets. Thus, EL € Ep < vu,v € EL u = v and "/E%,,E{:. cBEi#j<
7u € Eg, and v € Ei, u # v. The elements in each set in the input are assumed to be sorted according to
some predefined ordering of P. Given such sorted sets equivalence can be found simply by a sequential pass over
all elements in each sets, each time comparing the k’th element in all sets of size k or bigger. Sets which are

equivalent will be identical on all clements. An efficient implementation has runtime of O(|P| + 3. |s'|).
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Algorithm 2 Find Equivalence
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