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Abstract: 
 
Within the context of detection of incongruent events, an often overlooked aspect is 
how  a  system  should  react  to  the detection.   The  set  of  all  the possible  actions  is 
certainly  conditioned by  the  task at hand, and by  the  embodiment of  the artificial 
cognitive system under consideration. Still, a desirable action  that does not depend 
from these factors is to update the internal model and learn the new detected event. 
This calls for algorithms able  to  learn a new class from few  labeled samples, as  the 
data available for learning a rare event is, by definition, very little. 
 
In  this document we present an algorithm  for knowledge  transfer  that determines 
automatically on which known category to rely (from where to transfer), the degree 
of adaptation (how much to transfer) and if it is worth transferring something at all. 
A preliminary version of  the  algorithm has been presented  at  the British Machine 
Vision Conference in 2009. A generalized version of the method has been presented 
at the International Conference on Computer Vision and Pattern Recognition in 2010.  
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1. Introduction 

 
The  capability  to  recognize,  and  react  to,  rare  events  is  one  of  the key  features  of 
biological cognitive systems. In spite of its importance, the topic  is little researched. 
The DIRAC  framework defines  rareness as an  incongruence compared  to  the prior 
knowledge of the system. Concretely, this means organizing the prior knowledge in 
layers of general and specific classifiers. Whenever a specific classifier rejects, but its 
corresponding general classifier accepts, the system is in presence of an incongruent 
event.  
 
A still almost completely unexplored aspect of the framework is how to react to the 
detection of an incongruent event. Of course, this is largely influenced by the task at 
hand, and by the type of embodiment of the artificial system under consideration: the 
type of reactions that a camera might have are bound to be different from the type of 
actions a wheeled robot might take. Still, there is one action that is desirable for every 
system,  regardless  of  their  given  task  and  embodiment:  to  learn  the  detected 
incongruent event, so to be able to recognize it correctly if encountered again in the 
future. 
 
Here we propose a new transfer learning method as a suitable candidate for learning 
y newly detected  incongruent event. The method  is able  to  learn a new class  from 
few, even one single labeled example by exploiting optimally the prior knowledge of 
the system. This corresponds, in the DIRAC framework, to transfer from the general 
class that has accepted. 
 
We  focus  on  inductive  transfer  learning.  In  order  to  produce  a  model  with 
generalization capabilities, a  learning algorithm must have an  inductive bias – a set 
of assumptions about the true distribution of the training data. Our method is based 
on  Least  Square  SVM  and  consists  into  learning  a  new  task  via  adaptation.  Prior 
knowledge  is defined by  the  learned models, and  is  transferred constraining a new 
model to be close to a weighted set of pre‐trained models. 
 
A  first  version  of  the method,  allowing  transfer  learning  for  a  single  pre‐trained 
model, was presented at the British Machine Vision Conference in 2009. An extension 
of  the model, allowing  for  transfer  learning  from multiple pre‐trained models, was 
presented  at  the  International  Conference  on  Computer  Vision  and  Pattern 
Recognition  in 2010.  In  the  rest of  this document we provide  the  re‐prints of  these 
two publications. 
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Abstract

Learning a category from few examples is a challenging task for vision algorithms,
while psychological studies have shown that humans are able to generalise correctly
even from a single instance (one-shot learning). The most accredited hypothesis is that
humans are able to exploit prior knowledge when learning a new related category. This
paper presents an SVM-based model adaptation algorithm able to perform knowledge
transfer for a new category when very limited examples are available. Using a leave-
one-out estimate of the weighted error-rate the algorithm automatically decides from
where to transfer (on which known category to rely), how much to transfer (the degree
of adaptation) and if it is worth transferring something at all. Moreover a weighted
least-squares loss function takes optimally care of data unbalance between negative and
positive examples. Experiments presented on two different object category databases
show that the proposed method is able to exploit previous knowledge avoiding negative
transfer. The overall classification performance is increased compared to what would
be achieved by starting from scratch. Furthermore as the number of already learned
categories grows, the algorithm is able to learn a new category from one sample with
increasing precision, i.e. it is able to perform one-shot learning.

1 Introduction
A major goal in object categorisation is learning and recognising effectively thousands of
categories, as humans do [1]. To this end, a very promising trend is to develop methods for
learning from small samples by exploiting prior experience via knowledge transfer. The ba-
sic intuition is that, if a system has already learned N categories, learning the N +1th should
be easier, even from one or few training samples, because the algorithm can take advan-
tage of what was learned already [21]. When considering knowledge transfer approaches to
object categorisation, it is worth keeping in mind the following issues: (a) when to trans-
fer: while intuitively one might assume that prior knowledge is going to help in learning a
new category, this might not always be the case. Consider for instance a system that has
learned so far only different categories of animals (dogs, cats, ducks, dolphins etc). When
it starts to learn the new category “motorbike”, it is not obvious that the prior knowledge
is going to help much. The ideal knowledge transfer algorithm should be able to determine

c© 2009. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 TOMMASI, CAPUTO: THE MORE YOU KNOW, THE LESS YOU LEARN

automatically if it is worthwhile transferring knowledge or not; (b) from where to transfer:
we would expect that knowledge transfer will be more effective between similar categories.
For instance, when learning from few samples the category motorbike, it would help more
to transfer knowledge from models of other types of vehicles (cars, trucks, etc) rather than
from models of animals. This means having an algorithm able to measure quantitatively the
similarity between a new category and all the old ones stored in memory, and to use this
information for determining from where to transfer.

Several approaches have been proposed so far for transferring knowledge, spanning from
transferring model parameters [6, 7, 12, 19], to samples [10, 11, 14, 23], to general categor-
ical properties [8], using also information coming from unlabelled data [17, 18]. While all
of these approaches proved to work reasonably well in some domain, how to transfer is still
an open research question. We argue that an ideal algorithm should transfer knowledge so to
boost learning when only one/few samples are available (the so called “one-shot learning”
phenomenon). The one-shot learning effect should become stronger as the number of known
categories grows, because in that case it is most likely that the system has already learned a
category very similar to the one to be learned.

This paper presents an algorithm that addresses these issues. We take a discriminative
approach, and we cast the object categorisation problem in a Least Square-Support Vector
Machine (LS-SVM, [4]) framework. We build on recent work on LS-SVM-based model
adaptation [16], where a crucial requirement is having available many samples of the new
class. Here we extend the model in order to enable it to learn a new category even from
only one image. The resulting algorithm determines automatically from where to transfer
and how much to rely on the transferred knowledge. Also, thorough experiments on two
different databases show that, when the number of known categories grows, the performance
obtained by using only one training image increases dramatically, clearly showing a one-shot
learning effect.

In the rest of the paper we review LS-SVM, describe the model adaptation method pre-
sented in [16] and derive our knowledge transfer approach (Section 2). Experiments showing
the power of our algorithm are presented in Section 3. We conclude with an overall discus-
sion and plans for future work.

2 The Knowledge Transfer Learning Approach
Let us suppose to have a category detection algorithm that has been trained so far to recognise
N categories. This concretely corresponds to define N functions f j(x)→{1,−1}, j = 1, ...,N
such that the image x is assigned to the jth category if and only if f j(x) = 1. When beginning
to learn the N + 1th category, the algorithm will have initially only one/few samples for
learning fN+1(x). Our goal is to exploit, whenever possible, the existing prior knowledge to
boost the learning of fN+1(x). In the following we will briefly review the LS-SVM theory
(Section 2.1) and how it can be used in a model adaptation framework [16] (Section 2.2).
Starting from this, we will show how it is possible to derive a knowledge transfer algorithm
able to determine automatically when and where from to transfer, with a one-shot learning
behaviour in presence of a rich prior knowledge (Section 2.3).

2.1 Least Square-Support Vector Machine
Let us assume to have a binary problem and a set of l samples {xi,yi}l

i=1 where xi ∈X ⊂
Rd is an input vector describing the ith sample and yi ∈ Y = {−1,1} is its label. The
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TOMMASI, CAPUTO: THE MORE YOU KNOW, THE LESS YOU LEARN 3

goal of the SVM classifier is to learn a linear model that assigns the correct label to an
unseen test sample [4]. This can be thought as learning a linear function f (x) = w ·φ(x)+b
where φ(x) maps the input samples to a high dimensional feature space, induced by a kernel
function K(x,x′) = φ(x) ·φ(x′). In LS-SVM the model parameters (w,b) are found solving
the following constrained optimisation problem [4]:

min
w,b

1
2
‖w‖2 +

C
2

l

∑
i=1

ξ
2
i subject to yi = w ·φ(xi)−b+ξi ∀ i ∈ {1, · · · , l}. (1)

The corresponding primal Lagrangian is [4]:

L =
1
2
‖w‖2 +

C
2

l

∑
i=1

ξ
2
i −

l

∑
i=1

αi{w ·φ(xi)+b+ξi− yi}, (2)

where ααα = (α1,α2, . . . ,αl) ∈ Rl is a vector of Lagrange multipliers. The optimality con-
ditions for the obtained problem define a system of linear equations that can be written
concisely in matrix form as [3]:[

K+ 1
C I 1

1T 0

][
ααα

b

]
=

[
y
0

]
(3)

where K is the kernel matrix. Let us call G the first left-hand side matrix in (3). It turns out
that the least-square optimisation problem can be solved by simply inverting G.

The accuracy of the model on test data is critically dependent on the choice of good
learning parameters (e.g. the kernel parameters and the regularization parameter C). This
choice can be based on a preliminary cross validation evaluating the leave-one-out error,
which is known to be approximately an unbiased estimator of the classifier generalisation
error [15]. LS-SVM allows to write the leave-one-out error r(−i)

i for the ith sample in closed
form [3]. Let [α(−i);b(−i)] represent the dual parameters of the LS-SVM when the ith sam-
ple is omitted during the leave-one-out cross validation procedure. It is shown that [3]:
[α(−i);b(−i)] = G−1

(−i)[y1, . . . ,yi−1,yi+1, . . . ,yl ,0]T , where G(−i) is the matrix obtained when

the ith sample is omitted in G. Using the block matrix invertion lemma we have [3]:

r(−i)
i =

αi

G−1
ii

. (4)

So without explicitly running cross validation experiments it is possible to define a criterion
error to maximise the LS-SVM model generalisation performance [3]:

ERR =
l

∑
i=1

Ψ{yir
(−i)
i −1} with Ψ{z}=

1
1+ exp{−10∗ z}

, (5)

the best learning parameters are those minimising this error.

2.2 Learning a new object category from many samples
Let us assume that we want to learn a new category from a set of labelled training data
{xi}i=1,m, taking advantage of what learned so far. Orabona et al. [16] proposes to start the
training with a known model and then refine it through adaptation. Adaptation is defined
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constraining a new model to be close to one of a set of pre-trained models. The proposed
method is mathematically formulated in the LS-SVM classification framework changing the
classical regularization term and defining the following optimisation problem [16]:

min
w,b

1
2
‖w−βw′‖2 +

C
2

l

∑
i=1

ξ
2
i subject to yi = w ·φ(xi)−b+ξi ∀ i ∈ {1, · · · , l} (6)

where w′ is the parameter describing the old model and β is a scaling factor necessary to
control the degree to which the new model is close to the old one. The optimal solution [16]:

w = βw′+
l

∑
i=1

αiφ(xi), (7)

is given by the sum of the pre-trained model scaled by the parameter β and a new model built
on the new data points. When β is 0 the obtained formula comes back to the original LS-
SVM formulation, that is without any adaptation to the previous data. To find the optimal β ,
the authors take advantage from the possibility of LS-SVM to write the leave-one-out error
in closed form. It turns out that it is still possible to do it for the modified formulation in (6)
obtaining:

r(−i)
i =

αi

G−1
ii
−β

α ′i
G−1

ii
(8)

where α ′i = G−1
(−i)[ŷ1, . . . , ŷi−1, ŷi+1, . . . , ŷl ,0]T and ŷi = (w′ · φ(xi)), i.e. ŷi is the prediction

of the old model on the ith sample. The obtained leave-one-out error depends on β , so for
each known model it is possible to find the best β producing the lowest criterion error ERR
(5). Moreover, comparing all the criterion errors, the lowest one identifies the best prior
knowledge model to use for adaptation.

We call this algorithm Adapt, it was proposed for learning adaptively grasping postures
for prosthetic hands [16] and seems very promising also for learning new object categories
with knowledge transfer. The model from where to transfer is chosen as the one producing
the lowest criterion error, and knowledge is transferred in the form of its model parameter
w′. The scaling factor β determines how much to transfer, again depending on the criterion
error evaluation. Note that all of this is learned automatically by the algorithm. A major
drawback is that when learning from less than 150 samples, results are unstable, due to the
high variance of the leave-one-out error technique when considering few samples. In the
next section we will show that we overcome this point by introducing weighting factors that
“rebalance” the problem and that makes it possible to use effectively this method even when
learning from one single image.

2.3 Learning a new object category from few samples

Suppose to have a training set with 1 positive and 20 negative examples, on the basis of
which we want to estimate from where to transfer, using the leave-one-out error. Making a
wrong prediction on one of the examples contributes for 1/20 of the total error independently
respect to the sign of its label. This is not good: we would like to be more tolerant on negative
examples due to their higher number, and strict on the positive one which is alone. In such
cases, to use effectively the criterion error, it is necessary to reweight the leave-one-out
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TOMMASI, CAPUTO: THE MORE YOU KNOW, THE LESS YOU LEARN 5

recognition of positive and negative examples. A way to do it is to modify the criterion error
to have a leave-one-out cross-validation estimate of the Weighted Error Rate (WERR) [3]:

WERR =
l

∑
i=1

ζiΨ{yir
(−i)
i −1} where ζi =

{ l
2l+ if yi = +1

l
2l− if yi =−1.

(9)

Here the function Ψ is the same as in (5) and l+ and l− represent the number of positive
and negative examples respectively. Introducing the weighting factors ζi is asymptotically
equivalent to re-sampling the data so that object and non-object samples are balanced [3]. If
we consider again a training set with 1 positive and 20 negative examples, the introduction
of the described weight makes the error on a negative example contribute for 1/40 of the total
while the error on the positive example contribute for 1/2. Let us identify with Adapt-W the
adaptation method described in the previous Section with ERR (5) substituted by WERR (9).

As already mentioned, the WERR helps in the selection of the best prior knowledge and
in defining its relevance for the new task. This means that it gives a contribution just on the
“final” part of the knowledge transfer method, but not while building the new adapted model.
To take care of the data unbalance also during this “initial” step, we propose to find the model
parameters (w,b) via minimisation of a regularised weighted least-square loss function [20]:

L =
1
2
‖w‖2 +

C
2

l

∑
i=1

ζi[yi−w ·φ(xi)−b]2. (10)

It introduces just a small variation in the LS-SVM solution: the optimal dual model parame-
ters (ααα,b) are defined by a modified system of linear equations [3]:[

K+ 1
C W 1

1T 0

][
ααα

b

]
=

[
y
0

]
(11)

where W = diag{ζ−1
1 ,ζ−1

2 , . . . ,ζ−1
l } and ζi are defined as in (9). Let’s call the obtained

variant LS-SVM-W.
Hence the model adaptation method can be changed to its weighted formulation:

min
w,b

1
2
‖w−βw′‖2 +

C
2

l

∑
i=1

ζiξ
2
i subject to yi = w ·φ(xi)−b+ξi ∀ i ∈ {1, · · · , l}. (12)

In this way the weighting factors ζi take into account that the proportion of positive and
negative examples in the training data are known not to be representative of the operational
class frequencies. More in detail, the ξi term represents the misclassification cost of the i-th
datum during training. Here, introducing a weight let the classification model to be built
balancing the contribution of penalties coming from different labelled examples. In the case
of 1 positive and 20 negative examples, the misfit ξi term is multiplied by a factor 1/40
for a negative sample and 1/2 for the positive one. Let’s call Adapt-2W the strategy which
combines together the weighted model adaptation technique (12) and the WERR (9). In this
way we define a new knowledge transfer method which allows to learn new visual categories
from few examples as shown by our experimental results.

3 Experiments
We present here three set of experiments, designed for studying the behaviour of our algo-
rithm when (a) it knows few categories, and none of them is very similar to the new one
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6 TOMMASI, CAPUTO: THE MORE YOU KNOW, THE LESS YOU LEARN

(unrelated categories, Section 3.2); (b) it knows few categories that are very similar to the
new one (related categories, Section 3.3), and (c) the number of known categories increases,
with a specific focus on the one-shot performance (Section 3.4). The experiments were run
on two subsets of two different object category databases: the Caltech-256 [9] and the IRMA
database used in the CLEF challenge 2008 [5]. In the rest of this Section we first describe
the experimental setup (Section 3.1), and then we report our findings for the three scenarios
described above.

3.1 Experimental setup
Our working assumption is to have N category detection models stored in memory, built
using standard SVM and looking for the optimal w′. We used the Gaussian kernel K(x,x′) =
exp(−γ‖x− x′‖2) [4] for all experiments; the parameters C and γ were chosen by cross-
validation. When the new N +1 object category comes, the system starts learning. The new
data consists of m images from a background dataset and an increasing number of instances
of the new category, from 1 to m. Each experiment is repeated on five different ordering of the
data, chosen randomly. Moreover, to get a reliable estimate of the adaptation performance on
all the considered categories, we used a leave-one-out approach, using in turn each class for
adaptive learning and considering all the remaining categories as prior knowledge. At each
step the performance is evaluated on an equal number of unseen background images and
instances of the new category. The parameters C and γ for the adaptive LS-SVM were chosen
as described above for the known categories, and only the scaling factor β was selected
through the leave-one-out cross validation estimate of WERR (9).

In the following we will compare the performance of Adapt-W to that of Adapt-2W.
Moreover we consider the performance of LS-SVM and LS-SVM-W trained only on the new
incoming data, which correspond respectively to (6) and (12) where β = 0. We do not
directly compare against Adapt [16], because it does not work on small training samples. We
now describe the experimental setup specific to the two chosen databases.

Caltech 256 setup We considered eight object categories from the Caltech-256 database
[9], namely bulldozer, car-side, firetruck, motorbike, schoolbus, snowmobile, dog and duck.
From the original dataset, for each category, we selected images where the object was clearly
visible and where it always had the same orientation. This resulted in datasets with a min-
imum of 33 images (schoolbus) and a maximum of 83 images (snowmobile). We used the
whole category clutter (827 images), randomly selecting a background class for each cate-
gory. As features we used the Pyramid Histograms of Oriented Gradients (PHOG) [2]. We
computed descriptors with orientation in the range [0,360] and we built a histogram with
K=8 bins. We considered L = 3 levels in forming the pyramid grid [2]. The resulting feature
vector has 680 elements.

IRMA setup The IRMA database1 is a collection of radiographs presenting a large num-
ber of rich classes defined according to a four-axis hierarchical code [13]. We decided to
work on the 2008 IRMA database version [5], just considering the third axis of the code: it
describes the anatomy, namely which part of the body is depicted, independently to the used
acquisition technique or direction. 23 classes with more than 100 images were selected from
various sub-levels of the third axis, 3 of them were used to define the background class2. As

1Available from http:\\phobos.imib.rwth-aachen.de\irma\datasets_en.php.
2213-nose area (242 images), 230-neuro area (365 images), 310-cervical spine (508 images), 320-thoracic spine

(279 images), 330-lumbar spine (540 images), 411-hand finger (325 images), 414- left hand (541 images), 415-right
hand (176 images), 421-left carpal joint (124 images), 441-left elbow (114 images), 442-right elbow (105 images),
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(a) (b)

(c)
Figure 1: (a) classification performance as a function of the number of object training im-
ages, when learning three unrelated categories. The results showed correspond to average
recognition rate over the three categories, considering each class-out experiment repeated 5
times. (b) average difference in classification performance ± standard deviation, obtained
by Adapt-2W with respect to Adapt-W. (c) for each class-out experiment, the histogram bars
represent the known categories recall on the test set, indicating the prior knowledge capabil-
ity in recognising the new object.

features we used the SIFT-based approach described in [22].

3.2 Experiments on unrelated categories

In the first set of experiments we considered three visually different categories to understand
if the adaptation model is negatively affected by transferring from unrelated tasks. We chose
schoolbus, dog and duck from the described dataset and from each category we selected
randomly 36 images for training (18 object and 18 background instances) and 30 images
for testing (15 object and 15 background instances). Results are showed in Figure 1(a): we
see that the Adapt-W and LS-SVM curves are almost identical as well as Adapt-2W and LS-
SVM-W: if the WERR evaluation does not indicate any of the known classes as helpful, both
adaptation methods perform roughly as the corresponding non adaptative methods. More-
over we see that Adapt-2W performs better than Adapt-W: Figure 1(b) shows that Adapt-2W
has an improvement of up to 14% in recognition rate for less than 10 object images com-
pared to Adapt-W. The two methods asymptotically coincide. Figure 1(c) shows, for each
category, the average recall of the known classes on the test set. These results can give an
intuition about the reliability of the known categories for the new task. It is clear that in each
case there is very few useful information stored in memory.

463-right humero-scapular joint (146 images), 610-right breast (144 images), 620-left breast (155 images), 914-left
foot(146 images), 915-right foot (139 images), 921-left ankle joint (192 images), 922-right ankle joint (229 images),
942-left knee (231 images), 943-right knee (222 images). Three classes used for background: 700-abdomen (219
images), 800-pelvis (263 images), 500-chest (4611 images).
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(a) (b)

(c)
Figure 2: (a) classification performance as a function of the number of object training images
when learning three related categories. The results showed correspond to average recogni-
tion rate over the three categories, considering each class-out experiment repeated 5 times.
(b) average difference in classification performance ± standard deviation obtained by the
Adapt-2W method with respect to Adapt-W. (c) for each class-out experiment, the histogram
bars represent the known categories recall on the test set, indicating the prior knowledge
capability in recognising the new object.

3.3 Experiments on related categories

In the second set of experiments we considered three visually related categories, all belong-
ing to the Caltech-256 general class “motorized transportation” [9]. We chose car, firetruck
and motorbike from the described dataset and from each we selected randomly 36 images
for training (18 object and 18 background instances) and 30 images for testing (15 object
and 15 background instances). From Figure 2(a) we can see that adaptation produces clearly
better results than starting from scratch. Moreover the difference in recognition rate showed
in Figure 2(b) indicate that by using Adapt-2W we have an improvement in recognition rate
of up to 9% for less than 4 object images in the training set, compared to using Adapt-W. Fi-
nally, Figure 2(c) shows for each category the average recall of the prior knowledge classes.
This indicate that in each case there is at least one good known reliable category to use for
adaptation. The same set of experiments was repeated considering all the six visually related
categories in our dataset (bulldozer, car, firetruck, motorbike, schoolbus and snowmobile)
from the Caltech-256 general class “motorized transportation” [9]. The obtained results are
similar to what showed on three categories: using Adapt-2W we have better results (up to
5% in recognition rate) for less than 5 object images in the training set, compared to using
Adapt-W, while the two methods asymptotically coincide. Moreover it is possible to no-
tice that the one-shot learning performance is improved respect to the three class case. For
Adapt-2W the recognition rate using only one object instance in the training set goes from
76% for three categories to 79% for six categories.
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(a) (b) (c)
Figure 3: (a) one-shot learning performance of the Adapt-2W and corresponding LS-SVM-W,
varying the total number of categories. (b) classification performance as a function of the
number of training images when learning on 20 object categories. The results correspond
to average recognition rate over the 20 categories, considering each class-out experiment
repeated 5 times. (c) average classification performance difference obtained by the Adapt-
2W method with respect to LS-SVM-W. The error bars denote ± standard deviation with
respect to the average values.

3.4 Experiments on an increasing number of categories
All the experimental results showed till here asses the higher performance of the Adapt-2W
respect to the Adapt-W method. For this reason we decided to use just the first approach
for the experiments on the IRMA database. Here we study how performance varies when
the number of known categories grows. We are especially interested in monitoring how the
method behaves when learning from one single image. We randomly selected from each
category 100 instances for training and 100 instances for testing (for both the sets, 50 object
and 50 background images). Five sets of experiments were run considering 3/5/7/10 and
15 classes plus a final one with all the 20 categories. We started extracting three categories
through random selection and then we went on adding new ones till covering the whole 20
class dataset. Figure 3(a) shows the obtained recognition rate results for Adapt-2W and the
corresponding LS-SVM-W when only one object image is used for training. We expect that
the overall performance of the knowledge transfer method will increase along with the num-
ber of stored models, since there is a larger probability to find a matching pre-trained model.
This intuition is confirmed by the increasing trend in the one-shot learning recognition rate.
This trend is quite fast at the beginning passing from 3 (57% recognition rate) to 5 (72%
recognition rate) and 7 (85% recognition rate) categories and then becomes slower from 10
(86% recognition rate) to 20 categories (both for 15 and 20 classes the one-shot learning
rate is 87%). We show in Figure 3(b) the 20 categories results and in 3(c) the correspond-
ing difference in performance when using the adaptation method with respect to learning
form scratch. As one can see, adaptation uniformly obtains a better performance showing an
asymptotic gain of about 2.5%.

4 Conclusions and Future work

We presented an SVM-based method for learning object categories from few examples us-
ing knowledge transfer. The algorithm decides automatically from where and how much to
transfer, adapting the known model to the incoming data. The reliability of prior knowledge
for the new task is evaluated by estimating its generalisation error so to weight properly pos-
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itive and negative examples in the training set. Moreover the model adaptation is appropri-
ately designed to balance the possible misfit of object and non-object instances. Experiments
show that the proposed method improves the learning performance when useful information
is stored in memory, while it never affects it negatively when the known categories are very
different from the new one. When the number of known categories increases, the perfor-
mance of the model improves remarkably, showing a one-shot learning behaviour. In the
future we plan to run experiments to understand more deeply the algorithm capabilities and
to compare with the results presented in [8]. Moreover, we would like to extend the method
to multiple cues, and to hierarchical categorisation, with the aim to reduce the computational
complexity of the algorithm for large number of known categories.
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Abstract

Learning object categories from small samples is a chal-
lenging problem, where machine learning tools can in gen-
eral provide very few guarantees. Exploiting prior knowl-
edge may be useful to reproduce the human capability of
recognizing objects even from only one single view. This
paper presents an SVM-based model adaptation algorithm
able to select and weight appropriately prior knowledge
coming from different categories. The method relies on the
solution of a convex optimization problem which ensures to
have the minimal leave-one-out error on the training set.
Experiments on a subset of the Caltech-256 database show
that the proposed method produces better results than both
choosing one single prior model, and transferring from all
previous experience in a flat uninformative way.

1. Introduction
The ability to learn from few samples is a hallmark of hu-

man intelligence. We rapidly and reliably learn many kinds
of regularities and this enables us to make inductive infer-
ence even from only small amount of data [1].

Although current state of the art categorization methods
reach impressive results on difficult datasets [6], they don’t
handle well small training sets. Without additional infor-
mation, learning from few examples always reduces to an
ill-posed optimization problem. A possible solution is ex-
ploiting prior knowledge, a strategy known in the literature
as learning to learn, knowledge transfer or transfer learn-
ing. The basic intuition is that, if a system has already
learned k categories, learning the k + 1 should be easier,
even from one or few training samples [21]. Besides boost-
ing the learning process, knowledge transfer can give three
other advantages ([19], see Figure 1): (1) higher start: the
initial performance is higher (one-shot learning); (2) higher
slope: performance grows faster, and (3) higher asymptote:

Figure 1. Three ways in which transfer might improve learning
[19].

the final performance is better.
The contribution of this paper is a method for learning

object categories from few examples. We focus on three
key issues for knowledge transfer: how to transfer, what to
transfer and when to transfer [16]. We propose a discrim-
inative method based on Least Square Support Vector Ma-
chine (LS-SVM)[20] (how to transfer) that learns the new
class through adaptation. We define the prior knowledge as
the hyperplanes of the classifiers w′j, j = 1, · · · , k of the
k classes already learned (what to transfer). Hence knowl-
edge transfer is equivalent to constrain the hyperplanes w
of the k + 1 new category to be close to those of a sub-set
of the k classes. This strategy is in between the choice of
transferring acritically from all previously learned models
[7] and transferring from one single model [22]. We learn
the sub-set of classes from where to transfer, and how much
to transfer from each of them, via the Leave One Out (LOO)
error on the training set. Determining how much to transfer
helps avoiding negative transfer. Therefore, in case of non-
informative prior knowledge, transfer might be disregarded
completely (when to transfer).

Experiments on various subsets of the Caltech-256 [12]
database show that our approach consistently reproduces
the curve depicted in Figure 1 with a higher start, and higher
slope compared to what is obtained by not exploiting prior
knowledge, and to current state of the art knowledge tran-



sfer approaches [22, 7]. Furthermore, when the number k
of known classes grows, our algorithm presents a one-shot
learning behaviour.

The rest of the paper is organized as follows: we give an
overview of previous work in Section 2. Section 3 describes
LS-SVM and the knowledge transfer algorithm in [22], on
which we build. Section 4 describes our new algorithm and
discusses its properties. Experimental results are reported
in Section 5. We conclude with an overall discussion and
pointing out possible avenues for future research.

2. Related Work
Several authors addressed in the past the issues of what,

how and when to transfer. We review below the most promi-
nent approaches.

What to Transfer. We can find three answers to this
question in the literature (see [16] for a survey). The first is
the instance-transfer approach: although the source domain
data cannot be reused directly, there are certain parts of
them that can still be considered together with a few labelled
data in the target domain. A second solution is defined
by transferring feature representations. It means learning
a common feature structure, e.g. a kernel in SVM-based
approaches, from different domains that can bridge related
tasks. The third strategy can be described as parameter-
transfer approach. It assumes that the source task and the
target tasks share some parameters of their model or priors.

How to Transfer. Wu and Dietterich transferred source
training examples either as support vectors or as constraints
(or both) and demonstrated improved image classification
by SVMs [24]. Fei-Fei et al. proposed a Bayesian trans-
fer learning approach for object recognition [7] that learns
a common prior over visual classifier parameters. Zweig et
al. [25] investigated transfer learning with a method based
on combining object classifiers from different hierarchical
levels into a single classifier. Using discriminative (maxi-
mum margin) object models, Fink developed a method that
learns distance metrics from related problems [9]. Quattoni
et al. [17] proposed to use knowledge transfer in an unsu-
pervised setting learning a representation based on kernel
distances to available unlabelled data.

When to Transfer. Works focusing on when to trans-
fer evaluate the limit of transfer learning power. Rosenstain
et al. [18] showed empirically that if two tasks are dissim-
ilar, then the transferring hurts the performance on the tar-
get task. Ideally, a transfer method should produce positive
transfer between appropriately related tasks while avoiding
negative transfer when the tasks are not a good match. How-
ever it might be easier to avoid negative transfer if, given
multiple source tasks, one transfers from several or all of
them.

Research on knowledge transfer is still in its infancy,
especially applied to object recognition. Although there

are many publication in this area, given the slightly dif-
ferent tasks defined in each paper, none of them compare
against the others. Moreover there is not an official testbed
database, nor a standard experimental setup. In this work
we propose a reproducible experimental setting that can be
used in the future to test new knowledge transfer algorithms
and we benchmark our algorithm against two other methods
in literature [22, 7]. We address three open problems of [8]:
(1) The possibility that a sophisticated multimodal prior is
beneficial in learning; (2) if it is easier to learn new cate-
gories which are similar to some of the “prior” categories;
(3) if exist another point of view besides the Bayesian one
that allows to incorporate prior knowledge. We present
a discriminative method which exploits a combination of
multiple visual features and selects automatically the most
useful prior knowledge models to use when learning a new
category.

3. Problem Statement

Consider the following scenario. We have k visual cat-
egories and a classifier trained to distinguish each of them
from background. This corresponds to define k functions
fj(x) → {1,−1}, j = 1, ..., k such that the image x is as-
signed to the jth category if and only if fj(x) = 1. Now
suppose that we want to learn a new k + 1 category from
just one or few instances, plus some background examples.
To obtain fk+1 we can train using only the available data, or
we can take advantage of what already learned. In the fol-
lowing we briefly review the LS-SVM theory and how it can
be used in a model adaptation framework [15]. We review
how this approach can be formulated to derive a knowledge
transfer algorithm that exploits prior knowledge from only
one of the k classes [22] (Section 3.1). The contribution of
this paper is how to extend this method to exploit all the
suitable prior knowledge. The used strategy is presented in
Section 4.

3.1. LS-SVM Adaptation Method: learning from
small samples

Suppose to have a binary problem and a set of l samples
{xi, yi}li=1 where xi ∈ X ⊂ Rd is an input vector de-
scribing the ith sample and yi ∈ Y = {−1, 1} is its label.
We want to learn a linear function f(x) = w · φ(x) + b
which assigns the correct label to an unseen test sample x.
φ(x) is used to map the input samples to a high dimensional
feature space, induced by a kernel function K(x,x′) =
φ(x) · φ(x′). In LS-SVM the model parameters (w, b) are
found by solving the following optimisation problem:

min
w,b

1
2
‖w‖2 +

C

2

l∑
i=1

[yi −w · φ(xi)− b]2 . (1)



It can be shown [20] that the optimal w is expressed by
w =

∑l
i=1 αiφ(xi), and (ααα, b) are found solving[

K + 1
C I 1

1T 0

] [
ααα
b

]
=
[

y
0

]
, (2)

where K is the kernel matrix. Let us call G the first term in
left-hand side of (2). The least-square optimisation problem
can be solved by simply inverting G. Another advantage of
the LS-SVM formulation is that it gives the possibility to
write the LOO error in closed form [4]. The LOO error is
an unbiased estimator of the classifier generalization error
and can be used for model selection.

Slightly changing the classical LS-SVM regularization
term, it is possible to define a learning method based on
adaptation [15]. The idea is to constrain a new model to be
close to one of a set of pre-trained models:

min
w,b

1
2
‖w − βw′‖2 +

C

2

l∑
i=1

[yi −w · φ(xi)− b]2, (3)

where w′ is the parameter describing the old model and β
is a scaling factor in (0, 1) necessary to control the degree
to which the new model is close to the old one. The LOO
error in the modified formulation is:

r
(−i)
i =

αi

G−1
ii

− β α′i
G−1

ii

, (4)

where α′i = G−1
(−i)[ŷ1, . . . , ŷi−1, ŷi+1, . . . , ŷl, 0]T , G(−i) is

the matrix obtained when the ith sample is omitted in G and
ŷi = (w′ · φ(xi)), i.e. ŷi is the prediction of the old model
on the ith sample. r(−i)

i is then used to obtain an estimate
of the Weighted Error Rate (WER) [4]:

WER =
l∑

i=1

ζiΨ{yir
(−i)
i − 1} (5)

with Ψ{z} =
1

1 + exp{−10 ∗ z}
(6)

and ζi =
{

l
2l+ if yi = +1

l
2l− if yi = −1 .

(7)

Here l+ and l− represent the number of positive and neg-
ative examples respectively. Introducing the weighting fac-
tors ζi is asymptotically equivalent to re-sampling the data
so that object and non-object examples are balanced [4].
Hence, without explicitly running cross validation expe-
riments, the best learning parameters which maximise the
LS-SVM model generalisation performance can be found as
those minimising WER. Since r(−i)

i depends on β, for each
known model it is possible to find the best β producing the
lowest WER. Then, comparing all the criterion errors, the

lowest one will identify the best prior knowledge model to
use for adaptation.

To further increase robustness to unbalanced distribu-
tions of the data, the model parameters (w, b) can be found
via minimisation of a regularised weighted least-square loss
function [20]:

min
w,b

1
2
‖w‖2 +

C

2

l∑
i=1

ζi[yi −w · φ(xi)− b]2. (8)

This introduces just a small variation in the LS-SVM solu-
tion: the optimal model parameters (ααα, b) are defined by a
modified system of linear equations [4]:[

K + 1
C W 1

1T 0

] [
ααα
b

]
=
[

y
0

]
, (9)

where W = diag{ζ−1
1 , ζ−1

2 , . . . , ζ−1
l } and ζi are defined

as in (7). Hence the model adaptation method changes to its
weighted formulation [22]:

min
w,b

1
2
‖w−βw′‖2 +

C

2

l∑
i=1

ζi[yi−w ·φ(xi)− b]2 . (10)

In this way the weighting factors ζi take into account that
the proportion of positive and negative examples in the
training data are known not to be representative of the oper-
ational class frequencies. In particular they help to balance
the contribution of the sets of positive and negative exam-
ples to the data misfit term [22].

Experiments show that this method is able to learn new
visual categories from few examples. However, the algo-
rithm can choose only one prior known model. As we
will show in Section 5, this is not always the best solution.
Moreover this approach can suffer for instability in time, i.e.
when the number of training images increases.

4. Multi Model Knowledge Transfer

Consider the following situation. Suppose to be given
the task to learn from few examples the class motorbike,
having already learned the categories bicycle, car, dog and
cat. We would expect to achieve better results by transfer-
ring from bicycle and car, rather than transferring from bi-
cycle or car. Also, we would expect better results compared
to transferring equally from all known categories, as cat and
dog might induce negative transfer.

This kind of scenario motivates us to design a knowledge
transfer algorithm able to find autonomously the best sub-
set of known models from where to transfer. In the rest of
the Section we define the new model (Section 4.1) and we
discuss its properties (Section 4.2).



4.1. Multi Model Knowledge Transfer: Definition

We start from Equation (10) and we rewrite it substitut-
ing the single coefficient β with a vector βββ containing as
many elements as the number of prior models, k:

min
w,b

1
2

∥∥∥∥∥∥w −
k∑

j=1

βjw′j

∥∥∥∥∥∥
2

+
C

2

l∑
i=1

ζi(yi−w ·φ(xi)− b)2 .

(11)
Here βββ has to be chosen in the unitary ball, i.e. ‖βββ‖2 ≤ 1.
It is similar to the regularization term used in LS-SVM in
Equation (1), and it is a natural generalization of the original
constraint 0 ≤ β ≤ 1. This term is necessary to avoid
overfitting problems. They can happen when the number of
known models is large compared to the number of training
samples. With this new formulation the optimal solution is

w =
k∑

j=1

βjw′j +
l∑

i=1

αiφ(xi) . (12)

Hence w is expressed as a weighted sum of the pre-trained
models scaled by the parameters βj , plus the new model
built on the incoming training data.

To find the optimal βββ we use again the possibility of LS-
SVM to write the LOO error in closed form:

r
(−i)
i = yi − ỹi =

αi

G−1
ii

−
k∑

j=1

βj

α′i(j)

G−1
ii

, (13)

where α′i(j) = G−1
(−i)[ŷ

j
1, . . . , ŷ

j
i−1, ŷ

j
i+1, . . . , ŷ

j
l , 0]T , ŷj

i =
(w′j · φ(xi)) and ỹ is the LOO prediction. By multiplying
everything by yi we obtain:

yiỹi = 1− yi

 αi

G−1
ii

−
k∑

j=1

βj

α′i(j)

G−1
ii

 . (14)

The best values of βj are those minimizing the LOO error,
i.e. the values producing positive values for yiỹi, for each
i. However minimizing directly the sign of those quantities
would result in a non-convex formulation with many local
minima. We propose instead the following loss function:

loss(yi, ỹi) = ζi max [1− yiỹi, 0]

= max

yiζi

 αi

G−1
ii

−
k∑

j=1

βj

α′i(j)

G−1
ii

 , 0

 . (15)

This loss function is similar to the hinge loss used in Sup-
port Vector Machines. It is a convex upper bound to the
LOO misclassification loss and favours solution in which ỹi

has a value of 1, beside having the same sign of yi. More-
over it has a smoothing effect, similar to the function in (6).

Finally, the objective function is:

J =
l∑

i=1

loss(yi, ỹi) s.t. ‖βββ‖2 ≤ 1 . (16)

Notice that this formulation is equivalent to the more com-
mon optimization problem (1/2)‖βββ‖22 + CJ for a proper
choice of C [5]. By minimizing J we can find the best val-
ues of βj to weight the known prior models in the transfer
learning process. The scaling factors ζi are introduced in
the loss function to take care of the data unbalance between
positive and negative samples in the training set, as in [22].

We implement the optimization process using a simple
projected sub-gradient descent algorithm, where at each it-
eration βββ is projected onto the l2-sphere, ‖βββ‖2 ≤ 1.

4.2. Multi Model Knowledge Transfer: Properties

The main advantage of our approach is the ability to
transfer from multiple prior model, instead of choosing just
one. At the same time, the knowledge is not transfered in
a flat, uninformative way, but we evaluate the importance
of each model and their interaction. The loss used is convex
and the constraint in (16) is convex too, hence the minimizer
of (16) is unique. This is opposed to the formulation pro-
posed in [22], where (7) is non-convex. This means that the
algorithm in [22] can have many local minima.

An important property of this new formulation is also
its “stability”. Stability here means that the behaviour of
the algorithm does not change much if a point is removed
or added. This notion is closely related to the LOO error,
which is exactly calculated measuring the performance of
the model every time a point is removed. Recent works
have shown that a stable algorithm has a better general-
ization ability [3]. The algorithm in [22] can choose only
one model at each time step, to be used to transfer knowl-
edge. This means that everytime the algorithm “changes its
mind”, i.e. it chooses a different prior model on two consec-
utive time steps, the behaviour of the algorithm will change
completely. On the other hand, our method selects more
than one prior model at each time step, so we expect that
differences between steps in the vector βββ will be small. The
regularization is also important in this sense [3]. In Section
5.2 we show empirically that this is true.

From a computational point of view the current algo-
rithm’s runtime is O(l3 + kl2), with l the number of train-
ing samples (of the order of 10 images) and k the number
of known prior models. The first term is related to inverting
G, while the second term is the computational complexity
of (13). We match the complexity of a plain SVM, which
in the worst case is known to be O(l3) [13], and is the
standard out-of-the-shelf classification method commonly
used on datasets with more than 103 images. The computa-
tional complexity of each step of the projected sub-gradient



descent is O(kl) and it is extremely fast. For instance,
our MATLAB implementation takes just half a second with
l = 12 and k = 3.

5. Experiments
We present here three sets of experiments designed to

illustrate how our algorithm performs (a) when the prior
knowledge is related/unrelated to the new class (Section
5.2) (b) when prior knowledge increases (Section 5.3) (c)
compared to the current state of the art [7, 8] (Section 5.4)
We first describe the experimental setup (Section 5.1) and
then we report our findings in the three scenarios described
above.

5.1. Experimental Setting

Our working assumption is to have k category models
stored in memory, built using LS-SVM. We used the Gaus-
sian kernel K(x,x′) = exp(−γ‖x − x′‖2) for all our ex-
periments; the parameters C and γ were chosen by cross-
validation. When the new k+1 category comes, the system
starts learning.

All experiments are run on subsets of the Caltech-256
database [12]. We selected in total 41 classes + background
class, obtaining a data set with a fair amount of clutter and
scale variation. We didn’t perform any image selection
or preprocessing. The training data consists of m images
from the background dataset and an increasing number of
instances of the new category from 1 tom. The test set con-
sists of 100 images, half from the background and half from
the new category. Images are chosen randomly by split-
ting each class into two disjoint sets: m training images are
drawn randomly for the first, a set of 50 are taken from the
second. As we focus on learning from small samples, we
varied m from 1 to 6, repeating the experiments 10 times
for each value and using different sets of training and test
images. To get a reliable estimate of the performance on
all the categories, we used a leave-one-class-out approach,
considering in turn each class for adaptive learning and us-
ing all the rest as prior knowledge.

We used the pre-computed features of [10] which the au-
thors made available on their website1. Specifically, we
used four different image descriptors: PHOG Shape De-
scriptors [2], Appearance Descriptors [14], Region Covari-
ance [23] and Local Binary Patterns. All of the image de-
scriptors were computed in a spatial pyramid, we consid-
ered just the first level (i.e. informations extracted from the
whole image) and combined the features using the average
kernel.

In the following we will compare the performance of our
Multi Model Knowledge Transfer aglorithm (Multi-KT) to

1 http://www.vision.ee.ethz.ch/˜pgehler/
projects/iccv09/

that obtained with a flat average mixture of prior knowl-
edge (Average-KT) and to the method presented in [22]
that we call here Single-KT.We also benchmark all the re-
sults against No Adapt. This corresponds to learn from
scratch using weighted-LS-SVM, i.e. solving the optimiza-
tion problem in Equation (10) with β = 0. The significance
of the comparisons are evaluated through the sign test [11].

5.2. Related/Unrelated Prior Knowledge

In the first set of experiments we considered different
groups of related and unrelated categories. The goal is to
study how Multi-KT chooses the reliable prior knowledge,
and its impact on performance.
Related Classes. We considered two sets of 6 classes
belonging respectively to the Caltech-256 general classes
“transportation, ground, motorized” ( bulldozer, firetruck,
motorbikes, schoolbus, snowmobile, car-side) and “food
edibles” (cake, hamburger, hot-dog, ice-cream-cone,
spaghetti, sushi). Figure 2(a)-(d) show the respective classi-
fication results. In both cases we see that all KT algorithms
obtain an impressive advantage over starting from scratch.
As Figure 2(c)-(f) shows, Multi-KT performs clearly better
than Single-KT, with (p < 0.02) for less than four images
in both cases. This confirms the intuition that it pays off
to transfer from multiple sources, as opposed to one, when
they all bring useful information. There is no significant
difference in accuracy between Multi-KT and Average-KT
(Figure 2(b)-(e)). This suggests that, when all prior knowl-
edge is useful, learning the weights does not give a real ad-
vantage over a flat average.
Mixed Classes. To consider what happens in a more con-
fused situation, we selected the following 10 classes: dog,
horse, zebra, helicopter, fighter-jet, motorbikes, car-side,
dolphin, goose and cactus. The classification results in Fig-
ure 2(g) show that here Multi-KT performs better both than
Average-KT and than Single-KT (Figure 2(h)-(i), in both
cases p < 0.02 for less than four images). This experiment
illustrates very clearly the power of our approach: when the
prior knowledge is partially related to the new class, trans-
ferring from only one model does not exploit fully previous
experience. At the same time, using acritically all the prior
knowledge induces partial negative transfer behaviours, that
affect the overall performance. Notice that the situation of
knowledge transfer from a mixture of related and unrelated
classes is the most common.

We can also compare Multi-KT to Single-KT in terms of
stability. Let us consider the unique β used by Single-KT as
an element of the βββ vector where all the remaining elements
are zero. There are 6 steps in time corresponding to a new
positive sample entering the training set. For each couple of
subsequent steps we calculated the difference between the
obtained βββ vectors of Single-KT. We did the same with the
βββ vectors produced by the Multi-KT algorithm. Figure 3

 http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/
 http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/


(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 2. (a-d-g) Classification performance as a function of the number of object training images, when learning respectively one out
of six related categories “transportation, ground, motorized”, “food, edibles”, and one out of ten mixed categories. The results shown
correspond to average recognition rate over the categories, considering each class-out experiment repeated 10 times; (b-e-h) average
difference in classification performance± standard deviation, obtained by Multi-KT with respect to Average-KT; (c-f-i) average difference
in classification performance ± standard deviation, obtained by Multi-KT with respect to Single-KT.

shows the average norm of these differences. It is evident
that choosing a combination of the prior known models for
transfer learning is more stable (lower average variations in
the βββ vectors) than relying on just a single known category.

5.3. Increasing Prior Knowledge

Here we studied how performance varies when the num-
ber of known category grows. We are especially interested
in how Multi-KT behaves when learning from a single pos-
itive image (one-shot learning). We selected 302 classes,

2“transportation, ground, motorized”:car-side, fire-truck, motorbike;
“animal,land”: dog, horse, zebra; “animal,water”: goldfish, dolphin,
killer-whale; “transportation, water”: canoe, kayak, speed-boat; “music,

extracting 3 visually related classes from 10 general cat-
egories of Caltech-256. We run six set of experiments,
considering 3/5/7/10/15/20 categories plus a final one with
all the 30 categories. We first extracted three categories
through random selection and then we went on adding new
ones till covering the whole 30 class dataset. We repeated
the experiments three times: Figure 4(a) shows the average
recognition rate and the corresponding standard deviations
when training only on one object image. We expect that
the overall performance will increase along with the num-

stringed”: electric-guitar, harp, mandolin; “food, containers”: beer-mug,
coffee-mug, teapot; “transportation, air”: airplanes, helicopter, fighter-jet;
“animals, air”’: duck, goose, swan; “plants”: bonsai, cactus, fern; “struc-
tures, buildings”: light-house, windmill, smokestack.



(a) (b)
Figure 4. (a) One-shot learning performance of Multi-KT, Average-KT and Single-KT respect to No Adapt when varying the number of
prior known categories; (b) classification performance as a function of the number of training images when learning on 30 object categories.
The results correspond to average recognition rate over the 30 categories (each class out repeated 10 times), we run this experiment 3 times,
the error bars denote ± standard deviation.

Figure 3. Norm of the differences between two βββ vectors corre-
spondent to two subsequent steps in time. The norms are averaged
both on the classes and on the splits. These results are obtained
considering 10 randomly chosen classes.

ber of stored models, since there is a larger probability to
have stored useful prior knowledge. This intuition is con-
firmed by the increasing accuracy of the one-shot learning
for Multi-KT. Average-KT shows a decreasing behaviour,
indicating that as the prior knowledge grows, the number of
unrelated classes in memory usually outnumbers the related
one. The performance of Single-KT is more or less constant
except for an evident jump in performance passing from 3
to 5 categories. Finally, Figure 4(b) shows the average clas-
sification results in case of 30 categories. It is evident here
that, when learning from few samples (≤ 4), Multi-KT out-
performs both Average-KT and Single-KT. These results,
jointly with those reported in the previous section, make
us conclude that Multi-KT is the most effective knowledge
transfer algorithm, compared to Average-KT and Single-KT.

5.4. Comparison with previous work

The most famous one-shot learning algorithm in the
computer vision literature is [7, 8], where the authors ex-
tract a “general knowledge” from previously learned cate-
gories. Their approach makes no assumptions on the reli-
ability of prior knowledge, which is always considered as

Figure 5. Classification performance as a function of the number
of object training images, when learning one out of four unrelated
categories. The results showed correspond to average recognition
rate over the four categories, considering each class-out experi-
ment repeated 10 times.

an average of all the known classes. To compare against
this method, we repeated the four classes experiment pre-
sented in [7]. Unfortunately it was not possible to repro-
duce exactly their experimental setting, as the features used
are no more available3, and the algorithm was not publicly
released. We opted therefore for benchmarking our results
against those reported in Table 1 in [7].

We considered the classes faces, motorbikes, leopards
(originally spotted-cats) and airplanes. The average recog-
nition rate over the categories as a function of the number of
object training images is shown in Figure 5. Table 1 com-
pares the results of Multi-KT and Single-KT to that reported
in [7] considering also the best one-shot result per class.
This analysis confirms that our method performs better than
Single-KT, and it obtains results comparable to [7].

6. Conclusions
We presented an SVM-based method for learning ob-

ject categories from few examples. The algorithm trans-
fers prior knowledge selecting a subset of the known classes

3L. Fei Fei, personal communication.



Algorithm
Error Rate Best Rec. Rate

Remarks(%) on 5 (%) on 1
pos. images pos. image

Multi-KT 8-29 airplanes: 90.8
+6 backgr.

images

Single-KT [22] 10-29 airplanes: 88.1
+6 backgr.

images
[7] 8-22 faces: 82.0

Table 1. Comparison between our Multi-KT algorithm, Single-KT
[22], and the Bayesian One-Shot learning method presented in
[7]. Since both Multi-KT and Single-KT are a discriminative ap-
proaches, besides the positive samples we need few background
images in the training set.

and weighting them appropriately. It decides automatically
from where and how much to transfer, adapting the old
models to the incoming data and solving a convex optimiza-
tion problem which minimizes an estimate of the general-
ization error. Experiments show that it outperforms both the
results obtained in [22] and those produced using an average
of all the previous experience. This last choice can induce
negative transfer, in particular when the number of known
category increases. On the contrary, when prior knowledge
grows our method shows a one-shot learning behaviour. By
using the features provided in [10] and making available our
code4 we are offering to the community a reproducible ex-
perimental setting that can be used in the future to test new
knowledge transfer algorithms. By using several features
we also showed that the behaviour of the method is not af-
fected by the feature’s choice. Future work will investigate
ways to reduce the computational complexity of the algo-
rithm for large number of known categories and analyze its
asymptotical behaviour when the number of training sam-
ples increases.
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