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Abstract:

A common problem of kernel-based online algorithms, such as the kernel-
based Perceptron algorithm, is the amount of memory required to store
the online hypothesis, which may increase indefinitely as the algorithm
progresses. Furthermore, the computation load of such algorithms grows
linearly with the amount of memory used to store the hypothesis.

To attack these problems, most previous work focused on discarding part
of the instances in order to keep the memory bounded. We present a new
algorithm, in which the instances are not discarded, but projected onto the
space spanned by the previous online hypothesis. We call this algorithm
Projectron. While the memory size of the Projectron solution cannot be
predicted before training, we prove that its solution is guaranteed to be
bounded. We derive a relative mistake bound for the proposed algorithm,
and deduce from it a slightly different algorithm which outperforms the
Perceptron. We call this second algorithm Projectron++. We show that this
algorithm can be extended to handle the multiclass and the structured
output settings, resulting, as far as we know, the first online bounded
algorithm that can learn complex classification tasks. The method of
bounding the hypothesis representation can be applied to any
conservative online algorithms and to other online algorithms, as it is
demonstrated for ALMA2. Experimental results on various datasets show
the empirical advantage of our technique compared to various bounded
online algorithms, both in terms of memory and accuracy.
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1 Introduction

Kernel-based discriminative online algorithms have been shown to perform
very well on binary and multiclass classification problems [see, for example,
Freund and Schapire, 1999, Crammer and Singer, 2003, Kivinen et al., 2004,
Crammer et al., 2006]. Each of these algorithms works in rounds, where at
each round a new instance is provided. On rounds where the online algo-
rithm makes a prediction mistake or when the confidence in the prediction
is not sufficient, the algorithm adds the instance to a set of stored instances,
called support set. The online classification function is defined as a weighted
sum of kernel combination of the instances in the support set. It is clear that
if the problem is not linearly separable or the target hypothesis is changing
over time, the classification function will never stop being updated, and con-
sequently, the support set will grow unboundedly. This leads, eventually, to
a memory explosion, and it concretely limits the usage of these algorithms
for all those applications, such as autonomous agents, for example, where
data must be acquired continuously in time.

Several authors have tried to address this problem, mainly by bounding
a priori the size of the support set with a fixed value, called budget. The first
algorithm to overcome the unlimited growth of the support set was proposed
by Crammer et al. [2003], and refined by Weston et al. [2005]. In these
algorithms, once the size of the support set reaches the budget, an instance
from the support set that meets some criteria is removed, and replaced by
the new instance. The strategy is purely heuristic and no mistake bounds is
given. A similar strategy is also used in NORMA [Kivinen et al., 2004] and
SILK [Cheng et al., 2007]. The very first online algorithm to have a fixed
memory budget and a relative mistake bound is the Forgetron [Dekel et al.,
2007]. A stochastic algorithm that on average achieves similar performances,
and with a similar mistake bound was proposed by Cesa-Bianchi et al. [2006].
Opposed to all the previous work, the analysis presented in the last work
is within the probabilistic context, and all the bounds derived there are
in expectation. A different approach to address this problem for online
Gaussian Processes proposed in [Csaté and Opper, 2001], where, similar to
our approach, the instances are not discarded but rather projected onto the
space spanned by the instances from the support set. However, in that paper
no mistake bounds is derived and the there is no use of the hinge loss, which
may produce sparser solution. A recent work by Langford et al. [2008]
proposed a parameter that trades accuracy for sparseness in the weights
of online learning algorithms. Nevertheless, this approach cannot induce
sparsity for online algorithms with kernels.



In this paper we take a different route. While previous work focused on
discarding part of the instances in order to keep the support set bounded,
in this work the instances are not discarded. Either they are projected onto
the space spanned by the support set, or they are added to the support
set. By using this method, we show that the support set and, hence, the
online hypothesis, is guaranteed to be bounded, although we cannot predict
its size before training. Instead of using a budget parameter, representing
the maximum size of the support set, we introduce a parameter trading
accuracy for sparseness, depending on the needs of the task at hand. The
main advantage of this setup is that by using all training samples, we are
able to provide an online hypothesis with high online accuracy. Empirically,
as suggested by the experiments, the output hypotheses are represented with
relatively small number of instances, and have high accuracy.

We start with the most simple and intuitive kernel-based algorithm,
namely the kernel-based Perceptron. We modify the Perceptron algorithm
so that the number of stored samples needed to represent the online hypoth-
esis is always bounded. We call this new algorithm Projectron. The empir-
ical performance of the Projectron algorithm is on a par with the original
Perceptron algorithm. We present a relative mistake bound for the Projec-
tron algorithm, and deduce from it a new online bounded algorithm which
outperforms Perceptron, but still retains all of its advantages. We call this
second algorithm Projectron++. We then extend Projectron++ to the more
general cases of multiclass and structured output. As far as we know, this is
the first bounded multiclass and structured output online algorithm, with a
relative mistake bound!. Our technique for bounding the size of the support
set can be applied to any conservative kernel-based online algorithms and
to other online algorithms, as we demonstrate for ALMAy [Gentile, 2001].
Finally, we present some experiments with common datasets, which suggest
that Projectron is comparable to Perceptron in performance, but uses much
smaller support set. Moreover, experiments with Projectron++ shows that
it outperforms all other bounded algorithms, while uses the smallest sup-
port set. We also present experiments on the task of phoneme classification,
which is considered to be hard and with a relatively very high number of
support vectors. When comparing the Projectron++ algorithm with the
Passive-Aggressive multiclass algorithm [Crammer et al., 2006], it turns out
that the cumulative online error and the test error, after online-to-batch

'Note that converting the budget algorithms presented by other authors, such as the
Forgetron, to the multiclass or the structured output setting is not trivial, since these
algorithms are inherently binary in nature.



conversion, of both algorithms are comparable, although Projectron++ uses
much less supports.

In summary, the contributions of this paper are (1) new algorithm, called
Projecton, which is derived from the kernel-based Perceptron algorithm, em-
pirically performs the same, but has a bounded support set; (2) relative mis-
take bound for this algorithm; (3) another algorithm, called Projectron++,
based on the notion of large margin, which outperforms the Perceptron algo-
rithm and the proposed Projectron algorithm; (4) multiclass and structured
output Projectron++ online algorithm with a bounded support set; and (5)
extension of our technique to other online algorithms, exemplified in this
paper for ALMAs.

The rest of the paper is organized as follows: in Section 2 we state the
problem definition and the kernel-based Perceptron algorithm. Section 3 in-
troduces Projectron, along with its theoretical analysis. Next, in Section 4
we derived Projectron++. Section 5 presets the multiclass and structured
learning variant of Projectron++. In Section 6 we apply our technique for
another kernel-based online algorithm, ALMAy. Section 7 describes exper-
imental results of the algorithms presented on different datasets. Section 8
concludes the paper with a short discussion.

2 Problem Setting and the Kernel-Based Percep-
tron Algorithm

The basis of our study is the well known Perceptron algorithm [Rosenblatt,
1958, Freund and Schapire, 1999]. The Perceptron algorithm learns the
mapping f : X — R based on a set of examples 7 = {(x1,v1), (X2,%2), ...},
where x; € X is called an instance and y; € {—1,+1} is called a label.
We denote the prediction of the Perceptron algorithm as sign(f(x)) and we
interpret |f(x)| as the confidence in the prediction. We call the output f of
the Perceptron algorithm a hypothesis, and we denote the set of all attainable
hypotheses by H. In this paper we assume that H is a Reproducing Kernel
Hilbert Space (RKHS) with a positive definite kernel function & : X x X — R
implementing the inner product (-,-). The inner product is defined so that
it satisfies the reproducing property, (k(x,-), f(+)) = f(x).

The Perceptron algorithm is an online algorithm, where learning takes
place in rounds. At each round a new hypothesis function is estimated,
based on the previous one. We denote the hypothesis estimated after the
t-th round by f;. The algorithm starts with the zero hypothesis, fo = 0. At
each round ¢, an instance x; € X is presented to the algorithm, that predicts



Initialize: Sy =0, fo =0
Fort=1,2,...
Receive new instance x;
Predict g; = sign(fi—1(x¢))
Receive label y;
If yr # Gt
fr = fi—1 + yik(xy, ) (update the hypothesis)
Si=8_1Uxy (add instance x; to the support set)

Else
ft = fi—1
S =81

Figure 1: The kernel-based Perceptron Algorithm.

a label ¢, € {—1,41} by using the current function, §; = sign(fi(x¢)).
Then, the correct label g is revealed. If the prediction ¢, differs from the
correct label y;, it updates the hypothesis f; = fi—1 + yik(xy, ), otherwise
the hypothesis is left intact, f; = fi_1. The hypothesis f; can be written as
a kernel expansion according to the representer theorem [Scholkopf et al.,
2000],
fi(x) = Z ik (x,%) (1)
x; €St
where a; = y; and S; is defined to be the set of instances for which an update
of the hypothesis occurred, i.e., S; = {x;,0 < i < t|g; # y;}. The set S, is
called the support set. The Perceptron algorithm is summarized in Figure 1.
Although the Perceptron algorithm is a very simple algorithm, it pro-
duces an online hypothesis with a good performance. Our goal is to derive
and analyze a new algorithm, which outputs a hypothesis that attains almost
the same performance as the Perceptron hypothesis, but can be represented
by much less instances, that is, an online hypothesis that is “close” to the
Perceptron hypothesis but represented by a smaller support set. Recall that
the hypothesis f; is represented as a weighted sum over all the instances
in the support set. The size of this representation is the cardinality of the
support set, |Sy|.



3 The Projectron Algorithm

This section starts by deriving the Projectron algorithm, motivated by an
example of a finite dimensional kernel space. It continues with a description
of how to calculate the projected hypothesis and described some other com-
putational aspects of the algorithm. The section concludes with a theoretical
analysis of the algorithm.

3.1 Definition and Derivation

Let us first consider a finite dimensional RKHS H induced by a kernel such as
the polynomial kernel. Since H is finite dimensional, there is a finite number
of linearly independent hypotheses in this space. Hence, any hypothesis in
this space can be expressed using a finite number of examples. We can
modify Perceptron to use only one set of independent instances as follows.
On each round the algorithm receives an instance and predicts its label. On
a prediction mistake, we check if the instance x; can be spanned by the
support set, namely, for scalars d; € R,1 < i < |S;_1], not all zeros, such

that
k(xe,) = Y dik(xi,-) .

X»;ESt_l

If we can find such scalars, the instance is not added to the support set, but
instead, the coefficients {c;} in the expansion Eq. (1) are changed to reflect
the addition of this instance to the support set, that is, for every @

o = Yi + yed;.

On the other hand, if the instance and the support set are linearly inde-
pendent, the instance is added to the set with a; = y; as before. This
technique reduces the size of the support set without changing the hypoth-
esis. A similar approach was used by Downs et al. [2001] to simplify SVM
solutions.

Let us consider now the more elaborate case of an infinite dimensional
RKHS H induced by kernels such as the Gaussian kernel. In this case, it
is not possible to find a finite number of linearly independent vectors which
span the whole space, and hence there is no guarantee that the hypothesis
can be expressed by a finite number of instances. However, we can approx-
imate the concept of linear independence with a finite number of vectors
[Csaté and Opper, 2001, Engel et al., 2004, Orabona et al., 2007].

In particular let us assume that at round t of the algorithm there is a
prediction mistake and the mistaken instance x; should be added to the



support set, S;—1. Let H;—1 be an RKHS space which is the span of the
kernel images of the instances in the set S;—1. Formally,

Hi—1 = span ({k(x,-)|x € S;—1}) . (2)

Before adding the instance to the support, we construct two hypotheses:
a temporal hypothesis, f, using the function k(x¢,-), that is, f{ = fi—1 +
ytk(x¢, -), and a projected hypothesis, f/', that is the projection of f; onto the
space H;—1. That is, the projected hypothesis is a hypothesis from the space
‘H;—1 which is the closest to the temporal hypothesis. In the sequel we will
describe an efficient way to calculate the projected hypothesis. Denote by &;
the distance between the hypotheses, &; = f/' — f/. If the norm of distance
||0¢]| is below some threshold 7, we use the projected hypothesis as our next
hypothesis, i.e., f; = f/, otherwise we use the temporal hypothesis as our
next hypothesis, i.e., f; = f/. As we show in the following theorem, this
strategy assures that the maximum size of the support set is always finite,
regardless of the dimension of the RKHS H. Guided by these considerations
we can design a new Perceptron-like algorithm that projects the solution
onto the space spanned by the previous support vectors whenever possible.
We call this algorithm Projectron. The algorithm is given in Figure 2.

The parameter n plays an important role in our algorithm. If n is equal
to zero, we obtain exactly the same solution of the Perceptron algorithm. In
this case, however, the Projectron solution can still be sparser when some
of the instances are linearly dependent or when the kernel induces a finite
dimensional RKHS H. In case 7 is greater than zero we trade precision for
sparseness. Moreover, as shown in the next section, this implies a bounded
algorithmic complexity, namely, the memory and time requirements for each
step are bounded. We analyze the effect of n on the classification accuracy
in Subsection 3.3.

3.2 Practical Considerations

We now consider the problem of deriving the projected hypothesis f/' in a
Hilbert space H, induced by a kernel function k(- -). Recall that f/ is defined
as f; = ft + ytk(X¢, ). Denote by P,_1 f, the projection of f; € H onto the
subspace H;—1 € H. The projected hypothesis f/ is defined as f/' = P, f].
Schematically, this is depicted in Figure 3.

Expanding f; we have

fi=Pafi =P (fie1 + yik(xi, ) - (3)



Initialize: Sy =0, fo =0
Fort=1,2,...
Receive new instance x;
Predict ¢, = sign(fi—1(x¢))
Receive label g
If y # Gt
Set f] = fi—1 + yrk(xy, ) (temporal hypothesis)
Set f{' = f]/ projected onto the space H;_; (projected hypothesis)
Set & = f{' — f}

If |6 < m
fe=f
S =81
Else
fe=1F
S =8 1Uxyg (add x; to the support set)
Else
Jt = fi—1
S =381

Figure 2: The Projectron Algorithm.

The projection is a linear operator, hence

= fio1 +yePoak(xe, ) - (4)
Recall that 6, = f;' — f/. By substituting f;’ from Eq. (4) and f/ we have
o = f{' = fi = yePi1k(xe,-) — yih(xe,-) - (5)

The projection of f{ € H onto a subspace H;—1 C H is defined as the hypoth-
esis in H;—1 closest to f;. Hence, let ijest—l d;k(x;,-) be an hypothesis
in Hy—1, where d = (di, ..., ds,_,|) is a set of coefficients, with d; € R. The
closest hypothesis is the one for which it holds

2

0]l = min | > dik(x, ) = k(x| (6)

X;€ES:1

10




Expanding Eq. (6) we get

H(5t||2 = mdin Z djdik:(xj,xi) -2 Z djk(Xj,Xt) + k(Xt,Xt)
Xi,X;jE€St—1 X;€St—1
(7)
Let us define K;_; € RI=1¥¢~1 to be the matrix generated by the instances
in the support set S;_1, that is, {K;—1}; ; = k(x;,x;) for every x;,x; € S;—1.
Let us also define k; € Rf™! to be the vector whose i-th element is ki, =
k(x;,x¢). We have

16/ = m(}n (dTKt—ld —2d7k; + k(xy, xt)) . (8)

Solving Eq. (8), that is, applying the extremum conditions with respect to
d, we obtain
-1
d” =K, ki (9)

and, by substituting Eq. (9) into Eq. (8),
16417 = k(xe, x¢) — ki d* . (10)

Furthermore, by substituting Eq. (9) back into Eq. (4) we get

f=fioi+ e Z dj k(x;,) - (11)

X]'ESt_1

We have shown how to calculate both the distance ¢; and the projected
hypothesis f/’. In summary, one needs to compute d* according to Eq. (9),
plugs the result either into Eq. (10) and obtains &, or into Eq. (11) and
obtains the projected hypothesis.

In order to make the computation more tractable, we need an efficient
method to calculate the matrix inversion K; ! iteratively. A first method,
used by Cauwenberghs and Poggio [2000] for incremental training of SVMs,
directly updates the inverse matrix. An efficient way to do it, exploiting
the incremental nature of the approach, is to recursively update the inverse
matrix: after the addition of a new sample, K, ! hecomes

0
~1 : 1 d*
K, != K& : +[ } T -1 12
f o | T -1 ]! b
0 00

11



Figure 3: Geometrical interpretation of the projection of the hypothesis f/
onto the subspace H;_1.

where d* and ||&;]|? are already evaluated during the previous steps of the
algorithm, as given by Eq. (9) and Eq. (10). Thanks to this incremental eval-
uation, the time complexity of the linear independence check is O(|S;_1]?),
as one can easily see from Eq. (9). Note that the matrix K;_; can be safely
inverted since, by incremental construction, it is always full-rank. An alter-
native way to derive the inverse matrix is to use the Cholesky decomposition
of K;_1 and to update it recursively. This is known to be numerically more
stable than directly updating the inverse. In our experiments, however,
we found out that the method presented here is as stable as the Cholesky
decomposition.

Overall, the time complexity of the algorithm is O(|S|?), as describe
above, and the space complexity is O(|S;|?), due to the storage of the matrix
K, ! similar to the second-order Perceptron algorithm [Cesa-Bianchi et al.,
2005]. A summary of the derivation of f/’, the projection of f/ onto the
space spanned by S;_1 is describe in Figure 4.

3.3 Analysis

We now analyze the theoretical aspects of the proposed algorithm. First,
we present a theorem which states that the size of the support set of the
Projectron algorithm is bounded.

Theorem 1 Let k : X x X — R be a continuous Mercer kernel, with X
a compact subset of a Banach space. Then, for any training sequence T =
{(xi,yi)},i=1,--- ,00 and for any n > 0, the size of the support set of the
Projectron algorithm is finite.

12



Input: new instance xy, Kt__ll, and the support set S;_1
- Set k; = (k:(xl,xt),k(xQ,xt), e k(x‘gt_”,xt))

Solve d* = K, ! k;

Set ||5t||2 = k’(Xt,Xt) — kfd*

The projected hypothesis is f/' = fi—1 + ijestﬂ d k(xj, )
- Kernel inverse matrix for the next round

0

-1 : 1 d*
K_lz Kt—l : + |: :| d*T -1
: AL )

Output: the projected hypothesis f/’, the measure §; and the kernel
inverse matrix K;!.

Figure 4: Calculation of the projected hypothesis f/'.

Proof The proof of this theorem goes along the same lines as the proof
of Theorem 3.1 in [Engel et al., 2004]. From the Mercer theorem it follows
that there exists a mapping ¢ : X — H’, where H’ is an Hilbert space,
k(x,x") = (¢(x), #(x)) and ¢ is continuous. Given that ¢ is continuous and
that X is compact, we obtain that ¢(X) is compact. From the definition of
0 in Eq. (6) we get
2
16:]% = min > dik(xg,) — k(x| < min ||d;k(x;, ) — k(xt, )17
X;ES:—1 7

(13)
= min [[d;6(x;) - o ()| (14)

for any 1 < j <|S;—1|. Recall that ||| is less than or equal to n, hence from
the definition of packing numbers [Cucker and Zhou, 2007, Definition 5.17],
we get that the maximum size of the support set in the Projectron algorithm
is bounded by the packing number at scale 7 of ¢(X’). This number, in turn,
is bounded by the covering number at scale /2, and it is finite because the

13



set is compact [Cucker and Zhou, 2007, Preposition 5.18]. [

Note that this theorem guarantees that the size of the support set is bounded,
however it does not state that the size of the support set is fixed or that it
can be estimated before training.

The next theorem provides a mistake bound. The main idea is to bound
the maximum number of mistakes of the algorithm, relatively to the any
hypothesis g € H, even chosen in hindsight. First, we define the loss with a
margin v € R of the hypothesis g on the example (x, ;) as

E’Y(g(xt)? yt) = maX{O’ Y= ytg(xt)}a (15)

and we define the cumulative loss, D, of g on the first T" examples as

T
Dy = t(9(xe) y2) (16)
t=1

Before stating the bound, we present a lemma that will be used in the rest
of our proofs. We will use its first statement to bound the scalar product
between a projected sample and the competitor, and its second statement to
derive the scalar product between the current hypothesis and the projected
sample.

Lemma 1 Let (X,7) be an example, with x € X and y € {+1,—1}. Denote
by f(-) an hypothesis in 'H, and denote q(-) any function in H, then the
following holds for any T > 0

gr(fra) = ™y = 7l (f(%), 9) = 7l fI - llg = k()] - (17)

Moreover, if f(-) can be written as Y ;- cik(x4,+) with a; € R and x; €
X,i=1,---,m, and q(-) is the projection of k(x,-) onto the space spanned
by k(xi,-),i=1,---,m, then

gr(fa) = 97 f(%) (18)

Proof The first inequality comes from an application of the Cauchy-Schwarz
inequality and the definition of the hinge loss in (15). The second equality
follows from the fact that (f,q — k(%,-)) = 0, because f(-) is orthogonal to
the difference between k(X,-) and its projection onto the space where f(-)
lives. |

With these definitions at hand, we can state the following bound for Pro-
jectron.

14



Theorem 2 Let (x1,41), -, (X1, yr) be a sequence of instance-label pairs
where x; € X, yp € {—1,4+1}, and k(x,x;) < 1 for all t. Assume that
the Projectron algorithm is run with n > 0, then the number of prediction
mistakes it makes on the sequence is bounded by

lgll* + 2D
1 —21||g]

where g is an arbitrary function in H, such that ||g|| < %

Proof Define the relative progress in each round as Ay = || fi_1—g||>— || fi —
g||>. We bound the progress from above and below. On rounds where there
is no mistake A; equals 0. On rounds where there is a mistake there are two
possible updates: either f; = fi—1+y Pi—1k(x¢,-) or fr = fi—1+yk(x¢, ). In
the following we start bounding the progress from below, when the update
is of the former type. In particular we set ¢(-) = P,_1k(x¢,-) in Lemma 1
and use 0; = yi Pi—1k(x¢, ) — yek(xy, ) from Eq. (5)

A= || ficr — gl = Ife — 9l1* = 27w (g — frm1, Proak(xs, ) — 72| Pem1ke(xe, ) ||

> 7 (2 — 201 (g(xt), ye) — el Pecr k(e )12 = 21l - 162]] — 2ft—1(Xt)) :
(19)

Moreover, on every projection update |0/ < n and using the theorem as-
sumption ||P—1k(xy,)|| < 1 we then have

Ay ZTt(Q —201(g(xt), ) — 7 — 2llgll — 2ft71(xt)) :

We can further bound A; by noting that on every prediction mistake f;_1(x;) <
0. Overall we have

| fr—1 — 9||2 = fe — 9H2 > T (2 —201(9(x¢),y¢) — ¢ — 277”9”) . (20)

When there is an update without projection, in the same way it can be
derived that

I fier =gl = I1fe —glI* > 7 (2 =201 (g(xt), yt) — Tt) :

hence the bound in (20) holds in both cases.

We sum over t on both sides. Let 7+ be an indicator function for a
mistake on the ¢-th round, that is, 74 is 1 if there is a mistake on round ¢
and 0 otherwise, hence it can be upper bounded by 1. The left hand side of

15



the equation is a telescopic sum, hence it collapses to ||.fo — g/|* — || fr — g%,
which can be upper bounded by | g||?, using the fact that fo = 0 and that
|l fr — gl is non-negative. Finally, we have

lgl” +2Dy > M (1 = 2n|g]}) ,

where M is the number of mistakes. [ |

The next theorem states a worst-case mistake bound using the difference
of scalar products, instead of norms, as a measure of progress. The proof of
the theorem is given in the appendix.

Theorem 3 Let (x1,41), -, (X7, y1) be a sequence of instance-label pairs
where x; € X, y € {—1,4+1}, and k(x¢,x¢) < 1 for all t. Assume that
Projectron is run with n > 0, then the number of prediction mistakes it
makes on the sequence is bounded by

2
L (sl it am)
A= nlgl? i

where g is an arbitrary function in H, such that ||g|| < %

The last theorem suggests that the performance of the Projectron algo-
rithm is slightly worse than that of the Perceptron algorithm. Specifically, if
we set 7 = 0, we recover the best known bound for the Perceptron algorithm
[see for example Gentile, 2003]. Hence the degradation in the performance
of Projectron compared to Perceptron are related to W. Empirically,
the Projectron algorithm and the Perceptron algorithm perform in a similar

way, with a wide range of settings of 7.

4 The Projectron+-+ Algorithm

The proof of Theorem 2 suggests how to improve the Projectron algorithm to
go beyond the performance of the Perceptron algorithm, while maintaining
a bounded support set. We can change the Projectron algorithm so that
an update takes place not only if there is a prediction mistake, but also
when the confidence of the prediction is low. We refer to this latter case
as a margin error, that is, 0 < y.fi—1(x;) < 1. This strategy is known to
improve the classification rate but also increases the size of the support set
[Crammer et al., 2006]. A possible solution to this obstacle is not to update

16



on every round a margin error occurs, but only when there is a margin error
and the new instance can be projected onto the support set. Hence, the
update on margin error rounds would be in the general form

ft = fio1 +ymPi—1k(xy, ) , (21)

with 0 < 73 < 1. The last constraint comes from the proof of Theorem 2
where we upper bound 7 by 1. Note that setting 7 to 0 is equivalent to
leave the hypothesis unchanged.

Let us denote the following progress on round ¢ by 3;

B =1 (2 = 1el| Peak(xe, )1* = 2018e - llg]l = 2fe1(x0)) - (22)

In particular it is easy to see from Eq. (19) that the progress on margin error
round ¢, without considering the loss term, is at least 3; for 0 < 7 < 1,
and it is equal to 0 when there is no update. Whenever this progress is
non-negative the worst-case number of mistakes decreases, hopefully along
with the classification error rate of the algorithm. With this modification we
expect better performance, that is, fewer mistakes, but without any increase
of the support set size. We can even expect solutions with a smaller support
set, since new instances can be added to the support set only if misclassified,
hence having less mistakes should result in a smaller support set. We name
this algorithm Projectron++-. The following theorem states a mistake bound
for Projectron++4, and guides us how to choose 7.

Theorem 4 Let (x1,y1), -, (X7, yr) be a sequence of instance-label pairs
where x¢ € X, y € {—1,+1}, and k(x,x¢) < 1 for all t. Let g be an
arbitrary function in H. Assume that Projectron++ is run with n > 0, then
the number of prediction mistakes it makes on the sequence is bounded by

2
191" 4 2D1 = > tr0<y, s () <13 Pt
1 —2n|lg]| ’

where g is an arbitrary function in H, such that ||g|| < %, B¢ 1s defined in
(22) and

p<nemn{HlertI g |

2 1
[ P1k(xs, )

Proof The proof is similar to the proof of Theorem 2, where the difference is
that during margin error rounds we update the solution only if a projection
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with positive relative progress is possible. In these rounds we bound the
progress with

B = (2= mil|Prmtk(xe, )|* = 208 - llgll — 2fi1(x0))

= 7 (&(ft—l(Xt),yt) — || P k(xe, )|)? — ||5nt!>

where the first inequality comes from the hypothesis ||g|| < % Hence the
progress is positive if

_ 201 (fr—1(xt),yt) — %t

T [Pk (e )P

Constraining 7; to be less than or equal to 1 we have the update rule in the
theorem. Hence the mistake bound can be derived as in Theorem 2. [ |

Tt

The theorem gives us some freedom for the choice of 7;. Experimentally
we have observed that we obtain the best performance if the update is done
with the following rule

o a(feea (%), ye) 261(ft—1(xt)7yt)_%
”‘mm{m_lk<xt,->||2’ 1Pk )2 [

The added term in the minimum comes from ignoring the term —2 and

in finding the maximum of the quadratic equation. Notice that the term
| P_1k(x¢, -)||? in the last equation can be practically computed as k; d*, as
can be derived from the same techniques presented in Subsection 3.2.

We note in passing that, the condition whether x; can be projected onto
H;—1 on margin error may stated as ¢1(fi—1(x¢),y) > ”g—;”. This means that
if the loss is relatively large, the progress is also large and the algorithm can
afford “wasting” a bit of it for the sake of projecting.

The algorithm is summarized in Figure 2. The performance of the Pro-
jectron++ algorithm, the Projectron algorithm and several other bounded
online algorithms are compared and reported in Section 7.

5 Extension to Multiclass and Structured Output

In this section we extend Projectron—++ to the multiclass and the structured
output setting (note that Projectron can be generalized in a similar way).
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We start by presenting the more complex decision problem, namely the
structured output, and then we derive the multiclass decision problem as a
private case.

In structured output decision problems the set of possible labels has a
unique and defined structure, such as trees, graphs and sequences [Collins,
2000, Taskar et al., 2003, Tsochantaridis et al., 2004]. Denote the set of
all labels as Y = {1,...,k}. Each instance is associated with a label from
Y. Generally, in structured output problems there may be dependencies
between the instance and the label, as well as between labels. Hence, to
capture these dependencies, the input and the output pairs are represented
in a common feature representation. The learning task is therefore defined
as finding a function f : X x Y — R such that

/
_ 2
Yy = argmax f(xe,y) (23)

Let us generalize the definition of the RKHS H introduced in Section 2 to the
case of structured learning. A kernel function in this setting should reflect
the dependencies between the instances and the labels, hence we define the
structured kernel function as a function on the domain of the instances and
the labels, namely, k° : (X x ¥)2 — R. This kernel function induces the
RKHS H®, where the inner product in this space is defined such that it
satisfies the reproducing property, (k°((x,y),-), f) = f(x,¥).

As in the binary classification algorithm presented earlier, the structured
output online algorithm receives instances in a sequential order. Upon re-
celving an instance, x, € X, the algorithm predicts a label, y;, according
to Eq. (23). After making its prediction, the algorithm receives the correct
label, y;. We define the loss suffered by the algorithm on round ¢ for the
example (x¢,y;) as

eg(fv Xt yt) = maX{077 - f(Xt7 yt) + max f(xtv yé)} (24)
Y 7Yt

Note that sometimes it is useful to define v as a function v : Y x Y — R
describing the discrepancy between the predicted label and the true label.
Our algorithm can handle such a label cost function, but we will not discuss
this issue here [see Crammer et al., 2006, for further details]. As in the binary
case, on rounds where there is a prediction mistake, y; # y;, or where there
is a margin mistake, f(x¢,y1) — f(x¢,y;) < 7, the algorithm updates the
hypothesis f;—1 by adding to it either 7 (k((x¢, yt), ) — k((x¢,v3),)) or its
projection, where 0 < 74 < 1 and will be define shortly.
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The analysis of the structured output Projectron++ algorithm is similar
to the one provided for the binary case. We can easily obtain the general-
ization of Lemma 1 as follows

Lemma 2 Let (x,7y) be an example, with X € X and § € ). Denote by f(-)
an hypothesis in H°. Let q(-) € H® then the following holds for any T > 0,
y e yY:

T(f.q) =y — 7 (£,%9) =TIl [la— (B, 9),) — k((%,9), )] - (25)

Moreover if f(-) can be written as > - aik((xi,vi),+) with a; € R and
x; € Xyi=1,---,m, and q is the projection of k((X,7),) — k((x,'),-) in
the space spanned by k((xi,yi),-),i = 1,--- ,m, we have that

m(f,q) = 7f(%,9) (26)

Define the cumulative loss D*$ for the structured output classification
problem as

T
DS = ng(f(xt)a Yt)- (27)
t=1
We can now derive the following mistake bound

Theorem 5 Let (x1,y1), -, (X7, yr) be a sequence of instance-label pairs
where x4 € X, yr € Y, and k((x¢,y),-) < 0.5 for allt andy € Y. Let g be
an arbitrary function in HS. Assume that Projectron++ is run with n > 0,
then the number of prediction mistakes it makes on the sequence is bounded
by
H9H2 + QDf - Z{t:0<ytft,1(xt)<1} Bt
1— 21|l ’

where g is an arbitrary function in M, such as ||g|| < 2—117, B¢ is defined in
(22) and

205 (f_1(x , _ %
O<7‘t§min{ T (fr—1(xt), ) }7

2
, 1

||l

where a = Pr_1k((x¢,yt), ) — Pi—1k((x¢, y1), -).

As in Theorem 4 there is some freedom in the choice of 7, and again we set

it to i 6
Tt = min {€§(ft1(xt)ayt) 207 (fe—1(x¢), ye) — ¢ } |

n
1
lalf> lal? ’
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In the multiclass decision problem case, the kernel k((x1, 1), (X2,¥2)) is
simplified to 0,4, k(x1,%2), where d,,, is the Kronecker delta. This corre-
sponds to use a different prototype for each class. This simplifies the pro-
jection step, in fact k((x¢,y:),-) can be projected only on the functions in
St—1 belonging to yy, being zero the scalar product with the other functions.
So instead of storing a single matrix Kt__ll, we need to store m matrices,
where m is the number of classes, each one with the inverse matrix of the
Gram matrix of the functions of one class. This gives us a computational
and memory gain. To see this suppose that we have m classes, each with n
vectors in the support set. Storing a single matrix means having a spatial
and algorithmic complexity of O(m?n?) (cf. Section 3), while in the sec-
ond case the complexity is O(mn?). We use this method in the multiclass
experiments presented in Section 7.

6 Bounding Other Online Algorithms

It is possible to apply the technique in the basis of the Projectron algorithm
to any conservative online algorithm. A conservative online algorithm is an
algorithm that updates its hypothesis only on rounds on which they made
a prediction error. By applying Lemma 1 to a conservative algorithm, we
can have a bounded version of it with worst case mistake bounds. As in the
previous proofs, the idea is to use Lemma 1 to bound the scalar product of
the competitor and the projected function. In this way we have an additional
term that is subtracted from the margin v of the competitor.

The technique presented here can be applied to other online kernel-based
algorithms. As an example, we apply our technique to ALMAs [Gentile,
2001]. Again we define two hypotheses: a temporal hypothesis f/, which is
the hypothesis of ALMA, after its update rule, and a projected hypothesis,
which is the hypothesis f/ projected on the set H;—1 as defined in Eq. (2).
Define the projection error 6; as &; = f/ — f{. The modified ALMA, al-
gorithm uses the projected hypothesis f// whenever the projection error is
smaller than a parameter 7, otherwise it uses the temporal hypothesis fy.
We can state the following bound

Theorem 6 Let (x1,41), -, (X7, yr) be a sequence of instance-label pairs
where x; € X, yp € {—1,41}, and k(x¢,%¢) < 1 for all t. Let a, B and C
€ RT satisfy the equation

C?+2(1—a)BC =1.
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Assume ALMAs(a;B,C) projects every time the projection error & is less
than n > 0, then the number of prediction mistakes it makes on the sequence
18 bounded by

Dy p* |t P
—— oyt D, + p?
v-n o 2 4 y-n

where g is an arbitrary function in H, such that ||g|]] < 1, v > n and p =
1
C2(y=n)%"
Proof The proof follows the original proof presented in [Gentile, 2001].
Specifically, according to Lemma 1, one can replace the relation y; (g, k(x¢,-)) >

v = Uy (g(x¢), ye) with yi(g, P—1k(x¢,-)) > v —n — £y (g(x¢), y), and further
substitutes v with v —n. |

7 Experimental Results

In this section we present experimental results that demonstrate the effec-
tiveness of the Projectron algorithm and the Projectron++ algorithm. We
compare both algorithms to the Perceptron algorithm, the Forgetron algo-
rithm [Dekel et al., 2007] and the Randomized Budget Perceptron (RBP)
algorithm [Cesa-Bianchi et al., 2006]. For Forgetron, we choose the state-
of-the-art “self-tuned” variant, which outperforms all its other variants. We
used the PA-I variant of the Passive-Aggressive algorithm [Crammer et al.,
2006] as a baseline algorithm, as it gives an upper bound to the classification
performance of the Projectron++ algorithm.

We tested the algorithms on several standard machine learning datasets?:
a9a, ijennl, news20.binary, SensIT Vehicle (combined), usps, mnist and a
synthetic dataset. The synthetic dataset is built in the same way as in [Dekel
et al., 2007]. It is composed of 10000 samples taken from two separate bi-
dimensional Gaussian distributions. The means of the positive and negative
samples are (1,1) and (—1,—1), respectively, while the covariance matrix
for both is diagonal matrix with (0.2,2) as its diagonal. Then the labels
are flipped with a probability of 0.1 to introduce noise. The list of the
datasets, their charateristics and the kernels used are given in Table 1. The
parameters of the kernels were selected to have the best performance with
the Perceptron and were used for all the other algorithms to have a fair
comparison. The C parameter of PA-I was set to 1, to have an update

2Downloaded from http://www.sie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Table 1: Datasets used in the experiments

’ Dataset \ # of samples \ # of features \ # classes \ Kernel \ Parameters ‘

a9a 32561 123 2 | Gaussian 0.04

ijennl 49990 22 2 | Gaussian 8
news20.binary 19996 1355191 2 | Linear -

SensIT Vehicle 78823 100 2 | Gaussian 0.125
Synthetic 10000 2 2 | Gaussian 1

mnist 60000 780 10 | Polynomial | 7

usps 7291 256 10 | Polynomial | 13

timit (subset) ~ 150000 351 39 | Gaussian 80

similar to Perceptron and Projectron. All the experiments were performed
over five different permutations of the training set.

Experiments with one setting of 7. In the first set experiments we
compared the online average number of mistakes and the support set size
of all algorithms. Both Forgetron and RBP works by discarding vectors
from the support set, if the size of the support set reached the budget size,
B. Hence for a fair comparison, we set 17 to some value and selected the
budget size of Forgetron and of RBP to be equal to the final size of the
support set of Projectron. In particular in Figure 6 we set n = 0.1 in
Projectron and ended up with a support set of size 793, hence B = 793. In
Figure 6(a) the average online error rate for all algorithms on the Adult9
dataset is plotted. Note that Projectron closely tracks Perceptron. On the
other hand Forgetron and RBP stop improving after reaching the support
set size B, around 3400 samples. Moreover, due to its theoretically derived
formulation, Projectron++ achieves better results than Perceptron, even if
being bounded.

Figure 6(b) shows the growth of the support set as a function of the
number of samples. While for the PA-I and the Perceptron the growth is
clearly linear, it is sub-linear for Projectron and Projectron+-: they will
reach a maximum size and then they will stop growing, as stated in Theo-
rem 1. Another important consideration is that Projectron++ outperforms
Projectron both with respect to the size of the support set and number of
mistakes. The same behaviour can be seen in Figure 7, for the synthetic
database. Here the gain in performance of Projectron+-+ over Perceptron,
Forgetron and RBP is even bigger.

Experiments with a range of values for 1 - Binary. To analyze
in more detail the behavior of our algorithms we decided to run other tests
using a range of values of 1. For each value we obtain a different size of
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the support set and a different number of mistakes. We have used these
data to plot a curve corresponding to percentage of number of mistakes as a
function of the support set size. The same curve was plotted for Forgetron
and RBP, where the budget size selected as describe before. In this way
we compared the algorithms along the continuous range of budget sizes,
displaying the trade-off for each of them between sparseness and accuracy.
For the remaining experiments we have chosen not to show the performance
of Projectron, for it was always outperformed by Projectron++.

In Figure 8 we show the performance of the algorithms on different binary
datasets: (a) ijennl, (b) a9a, (c) news20.binary, and (d) SensIT Vehicle
(combined). Given that Projectron++ used a different support set size each
permutation of the training samples, we plotted five curves related to five
permutations. RBP and Forgetron have fixed budget size set in advance,
hence for these algorithm we just plotted standard deviation bars. In all the
experiments Projectron++ outperforms Forgetron and RBP, given they all
have the same support set size. It can be noticed that there is always a point
in all the graphs where the performance of Projectron++ is better than
Perceptron, still with a smaller support set. In particular Projectron+-+
gets closer to the classification rate of the PA-I, without paying the price
of a larger support set. Note that the performance of Projectron+-+ is
consistently better than RBP and Forgetron, regardless of the kernel used,
and in particular, on the database news20.binary, being a text classification
task with linear kernel. In this task the samples are almost orthogonal one
to the others, so a projection is hard. Nevertheless Projectron++ succeeded
in obtaining better performance. The reason is probably due to the margin
updates, done without increasing the size of the solution. Note that a similar
modification would not be trivial in Forgetron and in RBP, because the
proofs of their mistake bounds strongly depend on the rate of growth of the
norm of the solution.

Experiments with a range of values for n - Multiclass. We have
also considered multiclass datasets, using the multiclass version of Projec-
tron++. Due to the fact that there are no other bounded online algorithms
with a mistake bound for multiclass, we have simply extended RBP to mul-
ticlass, discarding a vector at random from the solution each time a new in-
stance added. We name it Multiclass Random Budget Perceptron (MRBP).
It should be possible to prove a mistake bound for this algorithm, extending
the proof in [Cesa-Bianchi et al., 2006]. In Figure 9 we show the results for
Perceptron, Passive-Aggressive, Projectron++ and MRBP trained on (a)
USPS, and (b) MNIST datasets. The results confirm the findings found for
the binary case.
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The last dataset used in our experiments is a corpus of continuous natural
speech for the task of phoneme classification. The data we used is a subset
of the TIMIT acoustic-phonetic dataset, which is a phonetically transcribed
corpus of high quality continuous speech spoken by North American speakers
[Lemel et al., 1986]. The features were generated from nine adjacent vectors
of Mel-Frequency Cepstrum Coefficients (MFCC) along with their first and
the second derivatives. The TIMIT corpus is divided into a training set
and a test set in such a way that no speakers from the training set appear
in the test set (speaker independent). We randomly selected 500 training
utterances from the training set. The average online errors are shown in
Figure 10 (a). We also tested the performance of the algorithm on the
proposed TIMIT core test set composed of 192 utterances, the result are
in Figure 10 (b). We did that by using online-to-batch conversion [Cesa-
Bianchi et al., 2004] to have a bounded batch solution. We did not test the
performance of MRBP on the test set because for this algorithm the online-
to-batch conversion does not produce a bounded solution. We compare the
batch solution to online-to-batch conversion of PA-I solution. The results
of Projectron++ are comparable to that of PA-I, while the former uses
smaller support set. The result also suggests that the batch solution is
stable comparing to the value of n, as the difference in performance on test
set is minor.

8 Discussion

This paper presented two different versions of a bounded online learning
algorithm. The algorithms depend on a parameter that allows to trade
accuracy for sparseness of the solution. The size of the solution is always
guaranteed to be bounded, albeit unknown before the training begins, there-
fore it solves the memory explosion problem of the Perceptron and similar
algorithms. Although the size of the support set cannot be determined be-
fore training, practically, for a given target accuracy, the size of the support
set of Projectron or Projectron—++ is much smaller than that of other budget
algorithms such as Forgetron and RBP.

The first algorithm, the Projectron algorithm, is based on the Percep-
tron algorithm. While the empirical performance of Projectron is compa-
rable to that of Perceptron, but with the advantage of a bounded solution.
The second algorithm, Projectron++, introduces the notion of large margin
and hence it always outperforms the Perceptron algorithm, while assuring
a bounded solution. The experimental results suggest that Projectron++
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outperforms other online bounded algorithms such as Forgetron and RBP,
with the smallest hypothesis size.

These are two unique advantages of Projectron and Projectron++4. First,
these algorithm can be extended to the multiclass and the structured output
settings. Second, a standard online-to-batch conversion can be applied to
the online bounded solution of these algorithm, resulted a batch bounded
solution. The major drawback of these algorithms is their time and space
complexity, which is quadratic in the size of the support set. Trying to
overcome this acute problem is left for future work.

Appendix

Proof of Theorem 3 We proceed as in [Shalev-Shwartz and Singer, 2005,
bounding the quantity (fr, g) from above and below. Remembering that we

update only during errors round, taking into account that || P.—1k(xy, )||2 <
|k (xt,)||? = k(x¢,x¢) < 1 and (18), we have

12l = 1 fr—1l* + | Pr—1k(xr, )II* + 2y (fr—1, Proik(xr, )

= || fr—ll® + | Pr—ik(xr, )|* + 2yr fr1(xr) < |l fr|? +1< M .
(28)

Hence we have that

(fr.9) < Ifzllllgl < lglvM (29)

For the lower bound we set ¢(-) = P_1k(x¢,-) in Lemma 1 and proceed
analogously as in (19)

(fr,9) = (fr—1 + yrPr— 1k‘(XT, ),9) > (fr—1,9) + 1 —i(g(x7), yr) — nllgll

> M(1 —nllgl)) Zfl : (30)

Putting together (28) and (30) we have
M1 =nlgll) = llgllvM — Dy <0

and solving for M concludes the proof. |
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Initialize: Sy =0, fo =0
Fort=1,2,...
Receive new instance x;
Predict g, = sign(fi—1(xt))
Receive label y;
If y. # yy (prediction error)
Set fi = fi—1 + yek(x¢, )
Set f{' = Pi_1f
Set & = f' — f}

If o]l <

fi= 4t

S =81
Else

fe=f

S =8 1Uxy

Else If y, = g, and yfi—1(x;) <1 (margin error)
Set (St = Pt_lk(xt, ) — k(Xt,'
If 01 (feo1(xe), ye) > %

)
o Ja ) ) 21 Ge) ) -5
Set 7 = min { [T LA ey Ll

N —

check if the x; can be projected onto Hi_1)

Set fi = fi1 +ymPr1k(xy, )
St =811

Else
Jt = fim1
S =81

Else
Jt = ft—1
S =81

Figure 5: The Projectron++ Algorithm.
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Figure 8: Average online error for the different algorithms as a function of
the size of the support set on different binary datasets.
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USPS - Polynomial Kernel MNIST - Polynomial Kernel
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Figure 9: Average online error for the different algorithms as a function of
the size of the support set on different multiclass datasets.
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Figure 10: Average online error (a) and test error (b) for the different algo-
rithms as a function of the size of the support set on a subset of the TIMIT
dataset.
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