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Abstract: 
 

We present an efficient method for learning part-based object class models from 

unsegmented images represented as sets of salient features.  A model includes parts' 

appearance, as well as location and scale relations between parts. The object class is 

generatively modeled using a simple Bayesian network with a central hidden node 

containing location and scale information, and nodes describing object parts. The 

model's parameters, however, are optimized to reduce a loss function of the training 

error, as in discriminative methods. We show how boosting techniques can be 

extended to optimize the relational model proposed, with complexity linear in the 

number of parts and the number of features per image. This efficiency allows our 

method to learn relational models with many parts and features.  The method has an 

advantage over purely generative and purely discriminative approaches for learning 

from sets of salient features, since generative method often use a small number of 

parts and features, while discriminative methods tend to ignore geometrical relations 

between parts.  Experimental results are described, using some bench-mark data sets 

and three sets of newly collected data, showing the relative merits of our method in 

recognition and localization tasks. 
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1. Introduction 

One of the important organization principles of object recognition is the categorization of 

objects into object classes. Categorization is a hard learning problem due to the large inner-

class variability of object classes, in addition to the “common” object recognition problems of 

varying pose and illumination. Recently, there has been a growing interest in the task of 

object class recognition [13, 12, 1, 29, 7, 21, 11, 16, 23, 8] which can be defined as follows: 

given an image, determine whether the object of interest appears in the image. In many cases 

the localization of the object in the image is also sought.  

Following previous work [12, 37], we represent an object using a part-based model (see 

illustration in Figure 1). Such models can capture the essence of most object classes, since 

they represent both parts’ appearance and invariant relations of location and scale between the 

parts. Part-based models are somewhat resistant to various sources of variability such as 

within-class variance, partial occlusion and articulation, and they are potentially convenient 

for indexing in a more complex system [24, 21].  

Part-based approaches to object class recognition can be crudely divided into two types: (1) 

’generative’ methods which compute class models [12, 21, 11, 10, 13, 16, 23] and (2) 

’discriminative’ methods which do not compute class models [29, 28, 7, 31, 38, 8]. In the 

Generative approach, a probabilistic model of the object class is learnt by likelihood 

maximization. Afterwards, the likelihood ratio test is used to classify new images. The main 

advantage of this approach is the ability to naturally model relations between object parts. In 

addition, domain knowledge can be incorporated into the model’s structure and priors. 

Discriminative methods do not learn explicit class models, and instead they seek a 

classification rule which discriminates object images from background images. The main 

advantage of discriminative methods is the direct minimization of a classification-based error 

function, which typically leads to superior classification results [27]. Additionally since these 

methods do not explicitly model object classes, they are usually computationally efficient.  

 

Figure 1: Dog image with our learnt part-based model drawn on top. Each circle represents a part in 

the model. The parts relative location and scale are related to one another through a hidden center 

(better viewed in color).  

In our current work, we suggest to combine the two approaches in order to enjoy the benefits 

of both worlds: the modeling power of the generative approach, with the accuracy and 

efficiency of discriminative optimization. We motivate this idea in Section 2 using general 

considerations, and as a solution to some problems encountered in related work. Our 

argument relies on two basic claims. The first is that feature relations are powerful cues for 

recognition, and perhaps indispensable cues for semantical recognition-related tasks like 

object localization or part identification. Clearly relations can be more naturally incorporated 

into an explicit generative model than an abstract discriminator. On the other hand, we argue 

that generative learning procedures are inadequate in the specific context of learning from 

unsegmented images, due essentially to computational and functional reasons. We therefore 

propose to replace maximum-likelihood optimization in the generative learning, by the 

discriminative optimization of the classifiers’ parameters. The initial description of the main 

techniques and most of the recognition results has appeared in conference proceedings [4, 3].  
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Specifically, we suggest a novel learning method for classifiers based on a simple part based 

model. The model, described in Section 3, is a ’star’-like Bayesian network, with a central 

hidden node describing the objects location and scale. The location and scale of the different 

parts depend only on the central hidden variable, and so the parts are conditionally 

independent given this variable. Such a model allows us to represent part relations with low 

inference computational complexity. Models of similar topology are implicitly or explicitly 

considered in [24, 21, 16, 13]. While using a generative object model, we optimize its 

parameters by minimizing a loss over the training error, as done in discriminative learning. 

We show how a standard boosting approach can be naturally extended to learn such a model 

with conditionally independent parts. Learning time is linear in the number of parts and the 

number of feature extracted per image. Beyond this extension, we consider a wider family of 

gradient descent optimization algorithms, of which the extended boosting is a special case. 

Optimal performance is empirically achieved using algorithms from this family that are close 

to the extended boosting, but not identical to it. The discriminative optimization methods are 

discussed in Section 4.  

Our experimental results are described in Section 5. We compare the recognition and 

localization performance of our algorithm to several state-of-the-art methods, using the 

benchmark data sets of [12] and [2]. In the recognition task, our performance is somewhere in 

the middle. Our algorithm is usually better than generative methods which keep a 1-1 part-

feature correspondence [12, 13], since it is able to learn larger models with selective features. 

It is also superior to plain boosting [29] which neglects spatial part relations. However, it is 

outperformed by [8] which uses a clever mixture of interest detectors, and by [23] which 

allows a part to be implemented by many image features. These two alternative techniques, 

however, are inherently ill-suited for localization, given the fuzzy nature of location in their 

class models. In the localization task we use techniques introduced by [11] to efficiently scan 

the image and find the exact location of one or more object instances. Our localization 

experiments are carried with the Caltech data [12] and a localization benchmark [2]. The 

performance achieved is comparable to the best available methods.  

In order to further investigate and challenge our method, we collected three more difficult 

data sets containing images of chairs, dogs and humans, with matching backgrounds (we have 

made this data publicly available online). We used these data sets to test the algorithm’s 

performance under harder conditions, with high visual similarity between object and 

background, and large pose and scale variability. We investigated the relative contribution of 

the appearance, location and scale components of our model, and showed the importance of 

incorporating location relations between object parts. In another experiment we checked the 

contribution of using a large numbers of parts and features, and demonstrated their relative 

merits. We experimented with a generic interest point detector [20], as well as with a 

discriminative interest point detector [17]; our results show a small advantage for the latter. 

Finally, we showed that the classifiers learnt perform well against new, unseen backgrounds.  

 

2. Why Mix Discriminative Learning with Generative 

Modeling: Motivation and Related Work  

In this section we describe the main arguments for combining generative and discriminative 

methods in the context of learning from unsegmented images. In Section 2.1 we review the 

distinction between the generative and discriminative paradigms, and assess the relative 

merits of each approach in general. We next discuss the specific problem of learning from 

unsegmented images in Section 2.2, and characterize it as learning from unordered feature 

sets, rather than data vectors. In Section 2.3 we claim that relations between features, best 

represented in a generative framework, are useful in the context of learning from unordered 

sets, and are specifically important for semantical recognition-related tasks. In Section 2.4 we 

argue that generative maximum-likelihood learning is highly problematic in the context of 



 

6 

 

learning from unsegmented images. Specifically, we argue that such learning suffers from 

inherent computational problems, and that it is likely to exhibit deficient feature pruning 

characteristics. To solve these problems while keeping the important information of feature 

relations, we propose to combine the generative treatment of relations with discriminative 

learning techniques. In Section 2.5 we briefly review how feature relations are handled in 

related discriminative methods.  

2.1 Discriminative and generative learning  

Generative classifiers learn a model of the probability p(x|y) of input x given label y. They 

then predict the input labels by using Bayes rule to compute p(y|x) and choosing the most 

likely label. With 2 classes y ε {−1, 1}, the optimal decision rule is the log likelihood ratio 

test, based on the statistic:  

                                                   (1)  

where ν is a constant threshold. The models p(x|y = 1) and p(x|y = −1) are learnt in a 

maximum likelihood framework (or maximum-a-posteriori when a useful prior is available).  

Discriminative classifiers do not learn probabilistic class models. Instead, they learn a direct 

map from the input space X to the labels. The map’s parameters are chosen in a way that 

minimizes the training error, or a smooth loss function of it. With two labels, the classifier 

often takes the form sign(f(x)), with the interpretation that f(x) models the log likelihood ratio 

statistic.  

There are several compelling arguments in the learning literature which indicate that 

discriminative learning is preferable to generative learning in terms of classification 

performance. Specifically, learning a direct map is considered an easier task than the reliable 

estimation of p(x|y) [36]. When classifiers with the same functional form are learned in both 

ways, it is known that the asymptotic error of a reasonable discriminative classifier is lower or 

equal to the error achievable by a generative classifier [27]. In addition, discriminative 

methods are often simpler and faster then their generative counterparts [35].  

However, when we wish to design (or choose) the functional form of our classifier, generative 

models can be very helpful. When building a model of p(x|y) we can use our prior knowledge 

about the problem’s domain to guide our modeling decisions. We can make our assumptions 

more explicit and gain semantic understanding of the model’s components. Specifically, the 

generative framework readily allows for the modeling of parts relations, while providing us 

with a rich toolbox of theory and algorithms for inference and relations learning.  

It is plausible to expect that a carefully designed classifier, whose functional form is 

determined by generative modeling, will give better performance than a classifier from an 

arbitrary parametric family.  

These considerations suggest that a hybrid path may be beneficial. More specifically, choose 

the functional form of the classifier using a generative model of the data, then learn the 

model’s parameters in a discriminative setting. While the arguments in favor of this idea as 

presented so far are very general, we next claim that when learning from images in particular, 

this idea can overcome several problems in current generative and discriminative approaches.  

2.2 Learning from Feature Sets  

Our primary problem is object class recognition from unaligned and unsegmented images, 

which are binary labeled as to whether or not they contain an object from the class. A natural 

view of this problem is as a binary classification problem, where the input is a set of features 

rather than an ordered vector of features, as in standard learning problems. This is an 

important distinction: vector representation implicitly assumes that measurements of the 

’same’ quantities are made for all data instances and stored in corresponding indices of the 

data vectors. The ’same’ features in different data vectors are assumed to have the same fixed, 

simple relation with the class label (the same ’role’). Such implicit correspondence is often 
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hard to find in bottom up image representation, in particular when feature maps or local 

descriptors sets are detected with interest point detectors.  

Thus we adopt the view of image representation as a set of features. Each feature has a 

location index, but unlike an element in a vector, its location does not imply a pre-determined 

fixed ’role’ in the representation. Instead, only relations between locations are meaningful. 

Such representations present a challenge to current learning theory and algorithms, which are 

well developed primarily for vectorial input.  

A second inherent problem arises because the relevant feature set representations usually 

contain a large number of spurious features. The images are unsegmented, and therefore many 

features may not represent the object of interest at all (but background information), while 

many other features may duplicate each other. Thus feature pruning is an important part of the 

learning problem.  

2.3 Semantics and Part Relations  

The lack of feature correspondence between images can be handled in two basic ways: either 

try to establish correspondence, or give it up to begin with. Without correspondence, images 

are typically represented by some statistical properties of the feature set, without assigning 

roles to specific image features. A notable example is the feature histogram, used for example 

in [7, 6, 32] and most of the methods in [9]. These approaches are relatively simple and in 

some cases give excellent recognition results. In addition they tend to have good invariance 

properties, as the use of invariant features directly gives invariant classifiers. Most of these 

approaches do not consider feature relations, mainly because of their added complexity (an 

exception is [32]). The main drawback of this framework is the complete lack of image 

semantics. While good recognition rates can be achieved, further recognition related tasks like 

localization or part identification cannot be done in this framework, as they require identifying 

the role of specific features.  

The alternative research choice, which we adopt in the current paper, seeks to identify and 

correspond features with the same ’role’ in different images. This is done explicitly in some 

generative modeling approaches [12, 13, 11, 21], using the notion of a probabilistically 

modeled ’part’. The ’part’ is an entity with a fixed role (probabilistically modeled), and its 

instantiation in each image is a single feature, to be chosen from the set of available image 

features. Discriminative part based methods [29, 28, 1, 37], as well as some generative 

models [23], use a more implicit ’part’ notion, and their degree of commitment to finding 

semantically similar features in images varies. The important advantage of identifying parts 

with fixed roles over the images is the ability to perform image understanding tasks beyond 

mere recognition.  

When looking in images for parts with fixed roles, feature relations (mainly location and scale 

relations) provide a powerful, perhaps indispensable cue. Basing part identity on appearance 

criteria alone is possible, and in [28, 31, 8] it leads to very good recognition results. However, 

as reported in [28], the stability of correct part identification is low, and localization results 

are mediocre. Specifically, it was found that typically less than 50% of the instantiating 

features were actually located on the object. Instead, many features rely on the difference in 

background context between object and non-object images. Conversely, good localization 

results are reported for methods based on generative models [12, 13, 21]. In [1] a detection 

task is considered in a discriminative framework. In order to achieve good localization, gross 

part relations are introduced as additional features into the discriminative classifier.  

3.4 Learning in Generative models 

We now consider generative model learning when the input is a set of unsegmented images. 

In this scenario, the model is learnt from a set of object images alone, and its parameters are 

chosen to maximize the likelihood of the image set (sometimes under a certain prior over 

models). We describe two inherent problems of this maximum likelihood approach. In 

Section 2.4.1 we claim that such learning involves an essential tradeoff, where computational 
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efficiency is traded for weaker modeling which allows repetitive parts. In Section 2.4.2 we 

review how this problem is handled in some current generative models. In Section 2.4.3 we 

maintain that generative learning is not well adjusted to feature pruning, and becomes 

problematic when rich image representations are used.  
 

2.4.1  The computational problem  

Assume that the image is represented as a set of features (see Section 2.2), that our generative 

model incorporates part relations, and that we are committed to a notion of ’part’ instantiated 

by a single image feature, as discussed in Section 2.3. Likelihood evaluation and model 

learning under these conditions are hard. Denote the feature set of image I by F (I), and the 

number of features in F (I) by N. While the input is a feature set, the generative model 

typically specifies the likelihood P (V |M) for an ordered part vector V = (f1, .., fp ) of P parts. 

The problem of learning from unordered sets is tackled by considering all the possible vectors 

V that can be formed using the feature set. Legitimate part vectors should have no repeated 

features, and there are O(N 
P 

) such vectors. Thus, the image likelihood P (I|M) requires 

marginalization
1 

over all such vectors. Assuming uniform prior over these vectors, we have  

                               

Efficient likelihood computation in relational models is only possible via the decomposition 

of the joint probability using conditional independence assumptions, as done in graphical 

models. Such decomposition specifies the probability as a product of local terms, each 

depending on a small subset of parts. For a part vector V =(f1, .., fp )  

 

                             
 

where Sc C {1, .., P } are index subsets and V |
S 
= {fi : i ε S}. Using dynamic programming, 

inference and marginalization are exponential in the ’induced width’ g of the related graphical 

model, which is usually relatively low (note that for trees, g = 2 only).  

The summation in Eq. (2) does not lend itself easily to such simplifications, however. We 

therefore make the following approximation, in which part vectors with repetitive features are 

allowed  

           
This approximation is essential to making efficient marginalization possible. If feature 

repetition is not allowed, global dependence emerges between the features assigned to the 

different parts (as they cannot overlap). As a result we get global constraints, and efficient 

enumeration becomes impossible.  

The approximation in (4) may appear minor, which is indeed the case when a fixed, 

’reasonable’ part based model is applied to an image. In this case, typically, parts are 

characterized by different appearance and location models, and part vectors with repetitive 

parts have low insignificant probability. But during learning, approximation (4) brings about a 

serious problem: when vectors with feature repetitions are allowed, learning may result in 

models with many repetitive parts. In fact, standard maximum likelihood has a strong 

tendency to choose such models. This is because it can easily increase the likelihood by 

choosing the same parts with high likelihood, over and over again.  
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Figure 2: A “star” graphical model. peripheral nodes, shown in blue, are related only via a hidden 

central node. Such a model is used in our work, as well as in [13]. If (i) feature repetition is allowed (as 

in Eq. (4)), and (ii) model parameters are chosen to maximize the likelihood of the best object 

occurrence, then all the peripheral nodes are optimized to represent the same part.  

The intuition above can be made precise in the simple case in which a ’star’ model is used 

(see Figure 2) and the sum over all hypotheses is approximated by the single best features 

vector. In this extreme case, the maximal likelihood is achieved when all the peripheral parts 

models are identical. We specifically consider this model in Section 3 and prove the last 

statement in Appendix A. The proof doesn’t directly apply when a sum over all the feature 

vectors is used, but as this sum is usually dominated by only a few vectors, part repetition is 

likely to occur in this case too.  

Thus, in conclusion, we see that in the ideal generative framework, one needs to choose 

between computational efficiency and the risk of part duplication. One way to escape this 

dilemma is by dropping the requirement that a part is instantiated in a single image feature, as 

done in [23]. This, however, leads to a vaguer ’part’ notion, with lower semantic value. The 

alternative we suggest here keeps the ’part’ notion intact, and gives up generative 

optimization instead.  

2.4.2 How is the Computational Problem Handled: Related Work  

Several recent approaches use generative modeling for object class recognition [12, 10, 13, 

19, 11, 23]. In [12, 10, 19] a full relational model is used. The probability P ((f1, .., fp )|M) in 

this model cannot be decomposed into the product of local terms, due to the complex 

probabilistic dependencies between all of the model’s parts (in graphical models terminology 

the model is a single large clique). As a result, both learning and recognition are exponential 

in the number of model parts, which limits the number of parts that can be used (up to 7 in 

[12], 4 in [10], 3 in [19]), and the number of features per image (N = 30, 20,up to 100 

respectively). In [13] a decomposable model is proposed with a ’star’-like topology. This 

reduces the complexity of recognition (i.e., the likelihood evaluation of an existing model) 

significantly. However, learning remains essentially exponential, in order to avoid part 

repetition in the learnt model.  

In contrast, the problem (as well as the feature pruning problem, discussed in the next section) 

is completely avoided in the case of learning from segmented images, as done in [11]. Here 

the input is a set of object images, with manually segmented parts and manual part 

correspondence between images. In this case learning is reduced to standard maximum 

likelihood estimation of vectorial data. As stated above, Loeff et al. [23] avoid the 

computational problem by allowing for each part to be implemented in many image features.  

2.4.3 Feature Pruning  

We argued in Section 2.2 that feature pruning is necessary when learning from images. P , the 

number of parts in the model, is often much smaller than the number of features per image N. 

This is usually not the case in classical applications of generative modeling, in which data is 

typically described as a relatively small feature vector.  
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When P <<N, maximum likelihood chooses to model only parts with high likelihood -often 

parts which are highly repetitive in images, with repetitive relations. This optimization policy 

has a number of drawbacks. On the one hand, it introduces a preference for simple parts, as 

these tend to have low variability through images, which gives rise to high likelihood scores. 

It also introduces preference for features which are frequent in natural images, whether they 

belong to the object or not. On the other hand, there is no explicit preference for 

discriminative parts, nor any preference for feature diversity. As a result, certain aspects of 

the object may be extensively described, while others are neglected. The problem may be 

intuitively summarized by stating that generative methods can describe the data, but they 

cannot choose what to describe. Additional task related signal, external to the data, is needed, 

and is most readily provided by labels.  

In [12, 10], initial feature pruning is obtained by using the Kadir and Bradey detector [20], 

which finds relatively diverse, high entropy regions in the image. Explicit preference is given 

to features with large scale, which tend to be more discriminative. In addition, they limit the 

number of features per image (N = 20, 30). To some extent, the burden of feature pruning is 

placed on the pre-learning feature detection mechanisms. However, with such a small number 

of features per image, objects do not always get sufficient coverage. In fact, learning is very 

sensitive to the fine tuning of the feature pruning mechanism.  

In [13], where a ’star’-like decomposable model is used, more parts and features are used in 

the generative learning experiments. Surprisingly, the results do not show obvious 

improvement. Increasing the number of parts P and features Nf does not typically reduce the 

error rates, since many of the additional features turn out to be irrelevant, which makes 

feature pruning harder. In Section 5 we investigate the impact that P and Nf have on 

performance for models similar to those used by [13], but optimized discriminatively. In our 

experiments extra information (increased Nf) and modeling power (increased P) clearly lead 

to better performance.  

2.5 Relations in Discriminative Methods  

Many part based object class recognition methods are mostly discriminative [29, 37, 34, 1, 8]. 

In most of these methods, spatial relations between parts are not considered at all. While some 

of these systems exhibit state-of-the-art recognition performance, they are usually lacking in 

further, more semantical tasks as localization and part identification, as described in Section 

2.3. In the ’fragment based’ approach of [37, 34] relations are not used, but when the same 

approach is applied to segmentation, which requires richer semantics, fragment relations are 

incorporated [5].  

One way to incorporate part relations into a discriminative setting is used by the object 

detection system of [1]. The task is localization, and it requires the exact correspondence and 

the identification of parts. To achieve this, qualitative location relations between fragment 

features are also considered as features, creating a very large and sparse feature vector. 

Discriminative learning in this very high dimensional space is then done using a specific 

feature-efficient learning algorithm. The relational features in this scheme are highly 

qualitative (for example, ’fragment a in to the left and bottom of fragment b’). Another 

problem with this approach is that supervised learning from high dimensional sparse vectors 

is a hard problem, often requiring dimensionality reduction to enable efficient learning.  

In this context, our main contribution may be the design of a relatively simple and efficient 

technique for the introduction of relational information into the discriminative framework of 

boosting. As such, our work is related to the purely discriminative techniques used in [29, 28]. 

In spirit, our work has some resemblance to the work of [33], in which relational context 

information is incorporated into a boosting process. However, the techniques we use and the 

task we consider are quite different.  
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2.6 Similar Approaches to the Generative Discriminative Combination 

In our work, the generative-discriminative combination is aimed at solving a very specific 

problem: how to allow the efficient learning of part-based models with spatial part relations. 

But when viewed more broadly, it is an instance of a more general recent trend, trying to 

combine the representation advantage of generative models with the accuracy and goal-

oriented nature of discriminative ones. In many cases, the combination is done by 

concatenating an initial generative stage, which provides the representation, with a second 

discriminative stage for the actual classification. In Holub et al. [19] and Fritz et al. [16], 

generative methods (previously presented in [12] and [21] respectively) are augmented with a 

discriminant SVM-based second stage. This approach is shown to considerably enhance 

recognition [19] and localization results [16]. In these two examples the generative models 

include spatial relations. Other approaches use a similar 2-stage procedure for a bag-of-

features model [22, 8], and obtain excellent recognition results. In these approaches the set of 

object image features is represented using a Gaussian mixture model, followed by a 

discriminative procedure which selects informative Gaussian components and uses them for 

classification.  

In [18], Holub et al. present an object recognition method which, like our proposed scheme, 

relies on discriminative optimization of a generative model based classifier. However, the 

proposed discriminative optimization does not solve the computational problem described in 

Section 2.4.1, and learning is even slower than the parallel generative learning procedure. The 

models learnt are hence limited to 3-4 parts. Note that the 2-stage methods described above 

[19, 16] do not solve the computational problem either. Specifically, the method of [19] is 

also limited to 3-4 parts in practice, and the method of [16] learns from segmented or highly 

aligned images.  

 

3. The generative model  

We represent an input image using a set of local descriptors obtained using an interest point 

detector. Some details regarding this process are given in Section 3.1. We then define a 

classifier over such sets of features using a generative object model. The model and the 

resulting classifier are described in Sections 3.2 and 3.3 respectively.  

3.1 Feature extraction and representation  

Our feature extraction and representation scheme mostly follows the scheme used in [12]. 

Initially, images were rescaled to have a uniform horizontal length of 200 pixels. We 

experimented with two feature detectors:  

(1) Kadir & Brady (KB) [20], and (2) Gao & Vasconcellos (GV) [17]
 

. The KB detector is a 

generic detector. It searches for circular regions of various scales, that correspond to the 

maxima of an entropy based score in scale space. The GV detector is a discriminative saliency 

detector, which searches for features that permit optimal discrimination between the object 

class and the background class. Given a set of labeled images from two classes, the algorithm 

finds a set of discriminative filters based on the principle of Maximal Marginal Diversity 

(MMD). It then identifies circular salient regions at various scales by pooling together the 

responses of the discriminative filters.  

Both detectors produce an initial set of thousands of salient candidates for a typical image 

(see example in Figure 3a). As in [12], we multiply the saliency score of each candidate patch 

by its scale, thus creating a preference for large image patches, which are usually more 

informative. A set of Nf high scoring features with limited overlap is then chosen using an 

iterative greedy procedure. By varying the amount of overlap allowed between selected 

features we can vary the number of patches chosen: in our experiments we varied Nf between 

13 and 513. After their initial detection, selected regions are cropped from the image and 



 

12 

 

scaled down to 11× 11 pixel patches. The patches are then normalized to have zero mean and 

variance of 1. Finally the patches are represented using their first 15 DCT coefficients (not 

including the DC).  
 

 

 
a) b)  

Figure 3: a) Output of the KB interest point (or feature) detector, marked with green circles. b) A 

Bayesian network specifying the dependencies between the hidden variables Cl ,Cs and the parts scales 

and locations Xl
k 
,Xs

k 
for k =1, .., P . The part appearance variables Xa

k 
are independent, and so they do 

not appear in this network.  

To complete the representation, we concatenate 3 additional dimensions to each feature, 

corresponding to the x and y image coordinates of the patch, and its scale respectively. 

Therefore each image I is represented using an unordered set F (I) of 18 dimensional vectors. 

Since our suggested algorithm’s runtime is only linear in the number of image features, we 

can represent each image using a large number of features, typically in the order of several 

hundred features per image.  

3.2 Model Structure  

We consider a part-based model, where each part in a specific image Ii corresponds to a 

patch feature from F (Ii). Denote the appearance, location and scale components of each 

vector x ε F (I) by xa, xl and xs respectively (with dimensions 15,2,1), where x =[xa,xl,xs]. We 

can assume that the appearance of different parts is independent, but this is obviously not the 

case with the parts’ scale and location. However, once we align the object instances with 

respect to location and scale, the assumption of part location and scale independence 

becomes reasonable. Thus we introduce a 3-dimensional hidden variable C =(Cl,Cs), which 

fixes the location of the object and its scale. Our assumption is that the location and scale of 

different parts is conditionally independent given the hidden variable C, and so the joint 

distribution decomposes according to the graph in Figure 3b.  
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6 Discussion  

We have presented a method for object class recognition and localization, based on 

discriminative optimization of a relational generative model. The method combines the 

natural treatment of spatial part relations, typical to generative classifiers, with the efficiency 

and pruning ability of discriminative methods. Efficient, scalable learning is achieved by 

extending boosting techniques to a simple relational model with conditionally dependent 

parts. In a recognition task, our method compares favorably with several purely generative or 

purely discriminative systems recently proposed. In a localization task its performance is 

comparable to the best available method.  

While our recognition results are good, [28, 31] report better results obtained using 

discriminative methods which ignore geometric relations and focus instead on feature 

representation. Specifically, in [28] segmentation based features are used, while in [31] 

features are based on flexible exhaustive search of ’code book’ patches. The recognition 

performance of these approaches relies on better feature extraction and representation, 

compared with our simple combination of interest point detection and DCT-based 
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representation. We regard the advances offered by these methods as orthogonal to our main 

contribution, i.e. the efficient incorporation of geometrical relations. In future research, well 

combine these advantages, combining better part appearance models and better feature 

extraction techniques with the relational boosting technique suggested here. 
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The complexity of our suggested learning technique is linear in the number of parts and 

features per image, but it may still be quite expensive. Specifically, the inference complexity 

of the hidden center C is O(NcNf P ) where Nc is the number of considered center locations, 

and this inference is carried for each image many times during learning. This limits us to a 

relatively crude grid of possible center locations in the learning process, and hence limits the 

accuracy of the location model learnt. A possible remedy is to consider less exhaustive 

methods for inferring the optimal hidden center, based on part voting or mean shift mode 

estimation, as done in [21]. Such ’heuristic’ inference solutions may offer enhanced 

scalability and a more biologically plausible recognition mechanism.  

Finally, leaving technical details aside, we regard this work as a contribution to an important 

debate in learning from unprocessed images, regarding the choice of generative vs. 

discriminative modeling. We demonstrated that combining generative relational modeling 

with discriminative optimization can be fruitful and lead to more scalable learning. However, 

this combination is not free of problems. Our technical problems with covariance matrix 

learning and the tendency of our technique to produce ’exaggerated’ models are two 

examples. The method proposed here is a step towards the required balance between the 

descriptive power of generative models and the task relatedness enforced by discriminative 

optimization.  
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