DA

Detection and Identification of Rare Audiovisual Cues

Insperata accident magis saepe quam quae speres.
(Things you do not expect happen more often than
things you do expect) Plautus (ca 200(B.C.)

Project no: 027787

DIRAC

Detection and Identification of Rare Audio-visual Cues
Integrated Project
IST - Priority 2

DELIVERABLE NO: D4.1
Evaluation of Localization Algorithm and Retrieval System

Date of deliverable: 31.12.2006
Actual submission date: 26.01.2007

Start date of project: 01.01.2006 Duration: 60 months

Organization name of lead contractor for this deliverable: IL-HUJI

Revision [1]

Project co-funded by the European Commission within the Sixth Framework Program (2002-

20006)

Dissemination Level

PU Public X

PP Restricted to other program participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission
Services)




Detection and Identification of Rare Audiovisual Cues

Insperata accident magis saepe quam quae speres.
(Things you do not expect happen more often than
things you do expect) Plautus (ca 200(B.C.)

D4.1 EVALUATION OF LOCALIZATION
ALGORITHM AND RETRIEVAL SYSTEM

The Hebrew University of Jerusalem (HUJI)

Abstract:

We present an efficient method for learning part-based object class models from
unsegmented images represented as sets of salient features. A model includes parts'
appearance, as well as location and scale relations between parts. The object class is
generatively modeled using a simple Bayesian network with a central hidden node
containing location and scale information, and nodes describing object parts. The
model's parameters, however, are optimized to reduce a loss function of the training
error, as in discriminative methods. We show how boosting techniques can be
extended to optimize the relational model proposed, with complexity linear in the
number of parts and the number of features per image. This efficiency allows our
method to learn relational models with many parts and features. The method has an
advantage over purely generative and purely discriminative approaches for learning
from sets of salient features, since generative method often use a small number of
parts and features, while discriminative methods tend to ignore geometrical relations
between parts. Experimental results are described, using some bench-mark data sets
and three sets of newly collected data, showing the relative merits of our method in
recognition and localization tasks.
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1. Introduction

One of the important organization principles of object recognition is the categorization of
objects into object classes. Categorization is a hard learning problem due to the large inner-
class variability of object classes, in addition to the “common” object recognition problems of
varying pose and illumination. Recently, there has been a growing interest in the task of
object class recognition [13, 12, 1, 29, 7, 21, 11, 16, 23, 8] which can be defined as follows:
given an image, determine whether the object of interest appears in the image. In many cases
the localization of the object in the image is also sought.

Following previous work [12, 37], we represent an object using a part-based model (see
illustration in Figure 1). Such models can capture the essence of most object classes, since
they represent both parts’ appearance and invariant relations of location and scale between the
parts. Part-based models are somewhat resistant to various sources of variability such as
within-class variance, partial occlusion and articulation, and they are potentially convenient
for indexing in a more complex system [24, 21].

Part-based approaches to object class recognition can be crudely divided into two types: (1)
’generative’ methods which compute class models [12, 21, 11, 10, 13, 16, 23] and (2)
’discriminative’ methods which do not compute class models [29, 28, 7, 31, 38, &]. In the
Generative approach, a probabilistic model of the object class is learnt by likelihood
maximization. Afterwards, the likelihood ratio test is used to classify new images. The main
advantage of this approach is the ability to naturally model relations between object parts. In
addition, domain knowledge can be incorporated into the model’s structure and priors.
Discriminative methods do not learn explicit class models, and instead they seek a
classification rule which discriminates object images from background images. The main
advantage of discriminative methods is the direct minimization of a classification-based error
function, which typically leads to superior classification results [27]. Additionally since these

methods do not explicitly model object classes, they are usually computationally efficient.

Figure 1: Dog image with our learnt part-based model drawn on top. Each circle represents a part in
the model. The parts relative location and scale are related to one another through a hidden center
(better viewed in color).

In our current work, we suggest to combine the two approaches in order to enjoy the benefits
of both worlds: the modeling power of the generative approach, with the accuracy and
efficiency of discriminative optimization. We motivate this idea in Section 2 using general
considerations, and as a solution to some problems encountered in related work. Our
argument relies on two basic claims. The first is that feature relations are powerful cues for
recognition, and perhaps indispensable cues for semantical recognition-related tasks like
object localization or part identification. Clearly relations can be more naturally incorporated
into an explicit generative model than an abstract discriminator. On the other hand, we argue
that generative learning procedures are inadequate in the specific context of learning from
unsegmented images, due essentially to computational and functional reasons. We therefore
propose to replace maximum-likelihood optimization in the generative learning, by the
discriminative optimization of the classifiers’ parameters. The initial description of the main
techniques and most of the recognition results has appeared in conference proceedings [4, 3].



Specifically, we suggest a novel learning method for classifiers based on a simple part based
model. The model, described in Section 3, is a ’star’-like Bayesian network, with a central
hidden node describing the objects location and scale. The location and scale of the different
parts depend only on the central hidden variable, and so the parts are conditionally
independent given this variable. Such a model allows us to represent part relations with low
inference computational complexity. Models of similar topology are implicitly or explicitly
considered in [24, 21, 16, 13]. While using a generative object model, we optimize its
parameters by minimizing a loss over the training error, as done in discriminative learning.
We show how a standard boosting approach can be naturally extended to learn such a model
with conditionally independent parts. Learning time is linear in the number of parts and the
number of feature extracted per image. Beyond this extension, we consider a wider family of
gradient descent optimization algorithms, of which the extended boosting is a special case.
Optimal performance is empirically achieved using algorithms from this family that are close
to the extended boosting, but not identical to it. The discriminative optimization methods are
discussed in Section 4.

Our experimental results are described in Section 5. We compare the recognition and
localization performance of our algorithm to several state-of-the-art methods, using the
benchmark data sets of [12] and [2]. In the recognition task, our performance is somewhere in
the middle. Our algorithm is usually better than generative methods which keep a 1-1 part-
feature correspondence [12, 13], since it is able to learn larger models with selective features.
It is also superior to plain boosting [29] which neglects spatial part relations. However, it is
outperformed by [8] which uses a clever mixture of interest detectors, and by [23] which
allows a part to be implemented by many image features. These two alternative techniques,
however, are inherently ill-suited for localization, given the fuzzy nature of location in their
class models. In the localization task we use techniques introduced by [11] to efficiently scan
the image and find the exact location of one or more object instances. Our localization
experiments are carried with the Caltech data [12] and a localization benchmark [2]. The
performance achieved is comparable to the best available methods.

In order to further investigate and challenge our method, we collected three more difficult
data sets containing images of chairs, dogs and humans, with matching backgrounds (we have
made this data publicly available online). We used these data sets to test the algorithm’s
performance under harder conditions, with high visual similarity between object and
background, and large pose and scale variability. We investigated the relative contribution of
the appearance, location and scale components of our model, and showed the importance of
incorporating location relations between object parts. In another experiment we checked the
contribution of using a large numbers of parts and features, and demonstrated their relative
merits. We experimented with a generic interest point detector [20], as well as with a
discriminative interest point detector [17]; our results show a small advantage for the latter.
Finally, we showed that the classifiers learnt perform well against new, unseen backgrounds.

2. Why Mix Discriminative Learning with Generative
Modeling: Motivation and Related Work

In this section we describe the main arguments for combining generative and discriminative
methods in the context of learning from unsegmented images. In Section 2.1 we review the
distinction between the generative and discriminative paradigms, and assess the relative
merits of each approach in general. We next discuss the specific problem of learning from
unsegmented images in Section 2.2, and characterize it as learning from unordered feature
sets, rather than data vectors. In Section 2.3 we claim that relations between features, best
represented in a generative framework, are useful in the context of learning from unordered
sets, and are specifically important for semantical recognition-related tasks. In Section 2.4 we
argue that generative maximum-likelihood learning is highly problematic in the context of



learning from unsegmented images. Specifically, we argue that such learning suffers from
inherent computational problems, and that it is likely to exhibit deficient feature pruning
characteristics. To solve these problems while keeping the important information of feature
relations, we propose to combine the generative treatment of relations with discriminative
learning techniques. In Section 2.5 we briefly review how feature relations are handled in
related discriminative methods.

21 Discriminative and generative learning

Generative classifiers learn a model of the probability p(x|y) of input x given label y. They
then predict the input labels by using Bayes rule to compute p(y[x) and choosing the most
likely label. With 2 classes y € {—1, 1}, the optimal decision rule is the log likelihood ratio
test, based on the statistic:

log ;if"l-T"|:£-' = 1,"_ o
plzly = —-1) (1)
where Vv is a constant threshold. The models p(x|]y = 1) and p(x|]y = —1) are learnt in a

maximum likelihood framework (or maximum-a-posteriori when a useful prior is available).
Discriminative classifiers do not learn probabilistic class models. Instead, they learn a direct
map from the input space X to the labels. The map’s parameters are chosen in a way that
minimizes the training error, or a smooth loss function of it. With two labels, the classifier
often takes the form sign(f(x)), with the interpretation that f(x) models the log likelihood ratio
statistic.

There are several compelling arguments in the learning literature which indicate that
discriminative learning is preferable to generative learning in terms of classification
performance. Specifically, learning a direct map is considered an easier task than the reliable
estimation of p(x|y) [36]. When classifiers with the same functional form are learned in both
ways, it is known that the asymptotic error of a reasonable discriminative classifier is lower or
equal to the error achievable by a generative classifier [27]. In addition, discriminative
methods are often simpler and faster then their generative counterparts [35].

However, when we wish to design (or choose) the functional form of our classifier, generative
models can be very helpful. When building a model of p(x]y) we can use our prior knowledge
about the problem’s domain to guide our modeling decisions. We can make our assumptions
more explicit and gain semantic understanding of the model’s components. Specifically, the
generative framework readily allows for the modeling of parts relations, while providing us
with a rich toolbox of theory and algorithms for inference and relations learning.

It is plausible to expect that a carefully designed classifier, whose functional form is
determined by generative modeling, will give better performance than a classifier from an
arbitrary parametric family.

These considerations suggest that a hybrid path may be beneficial. More specifically, choose
the functional form of the classifier using a generative model of the data, then learn the
model’s parameters in a discriminative setting. While the arguments in favor of this idea as
presented so far are very general, we next claim that when learning from images in particular,
this idea can overcome several problems in current generative and discriminative approaches.

2.2 Learning from Feature Sets

Our primary problem is object class recognition from unaligned and unsegmented images,
which are binary labeled as to whether or not they contain an object from the class. A natural
view of this problem is as a binary classification problem, where the input is a set of features
rather than an ordered vector of features, as in standard learning problems. This is an
important distinction: vector representation implicitly assumes that measurements of the
’same’ quantities are made for all data instances and stored in corresponding indices of the
data vectors. The ’same’ features in different data vectors are assumed to have the same fixed,
simple relation with the class label (the same ’role’). Such implicit correspondence is often



hard to find in bottom up image representation, in particular when feature maps or local
descriptors sets are detected with interest point detectors.

Thus we adopt the view of image representation as a set of features. Each feature has a
location index, but unlike an element in a vector, its location does not imply a pre-determined
fixed ’role’ in the representation. Instead, only relations between locations are meaningful.
Such representations present a challenge to current learning theory and algorithms, which are
well developed primarily for vectorial input.

A second inherent problem arises because the relevant feature set representations usually
contain a large number of spurious features. The images are unsegmented, and therefore many
features may not represent the object of interest at all (but background information), while
many other features may duplicate each other. Thus feature pruning is an important part of the
learning problem.

2.3 Semantics and Part Relations

The lack of feature correspondence between images can be handled in two basic ways: either
try to establish correspondence, or give it up to begin with. Without correspondence, images
are typically represented by some statistical properties of the feature set, without assigning
roles to specific image features. A notable example is the feature histogram, used for example
in [7, 6, 32] and most of the methods in [9]. These approaches are relatively simple and in
some cases give excellent recognition results. In addition they tend to have good invariance
properties, as the use of invariant features directly gives invariant classifiers. Most of these
approaches do not consider feature relations, mainly because of their added complexity (an
exception is [32]). The main drawback of this framework is the complete lack of image
semantics. While good recognition rates can be achieved, further recognition related tasks like
localization or part identification cannot be done in this framework, as they require identifying
the role of specific features.

The alternative research choice, which we adopt in the current paper, seeks to identify and
correspond features with the same ’role’ in different images. This is done explicitly in some
generative modeling approaches [12, 13, 11, 21], using the notion of a probabilistically
modeled ’part’. The ’part’ is an entity with a fixed role (probabilistically modeled), and its
instantiation in each image is a single feature, to be chosen from the set of available image
features. Discriminative part based methods [29, 28, 1, 37], as well as some generative
models [23], use a more implicit ’part’ notion, and their degree of commitment to finding
semantically similar features in images varies. The important advantage of identifying parts
with fixed roles over the images is the ability to perform image understanding tasks beyond
mere recognition.

When looking in images for parts with fixed roles, feature relations (mainly location and scale
relations) provide a powerful, perhaps indispensable cue. Basing part identity on appearance
criteria alone is possible, and in [28, 31, 8] it leads to very good recognition results. However,
as reported in [28], the stability of correct part identification is low, and localization results
are mediocre. Specifically, it was found that typically less than 50% of the instantiating
features were actually located on the object. Instead, many features rely on the difference in
background context between object and non-object images. Conversely, good localization
results are reported for methods based on generative models [12, 13, 21]. In [1] a detection
task is considered in a discriminative framework. In order to achieve good localization, gross
part relations are introduced as additional features into the discriminative classifier.

3.4 Learning in Generative models

We now consider generative model learning when the input is a set of unsegmented images.
In this scenario, the model is learnt from a set of object images alone, and its parameters are
chosen to maximize the likelihood of the image set (sometimes under a certain prior over
models). We describe two inherent problems of this maximum likelihood approach. In

Section 2.4.1 we claim that such learning involves an essential tradeoff, where computational
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efficiency is traded for weaker modeling which allows repetitive parts. In Section 2.4.2 we
review how this problem is handled in some current generative models. In Section 2.4.3 we
maintain that generative learning is not well adjusted to feature pruning, and becomes
problematic when rich image representations are used.

2.41  The computational problem

Assume that the image is represented as a set of features (see Section 2.2), that our generative
model incorporates part relations, and that we are committed to a notion of ’part’ instantiated
by a single image feature, as discussed in Section 2.3. Likelihood evaluation and model
learning under these conditions are hard. Denote the feature set of image I by F (I), and the
number of features in F (I) by N. While the input is a feature set, the generative model
typically specifies the likelihood P (V [M) for an ordered part vector V = (f1, .., fp ) of P parts.
The problem of learning from unordered sets is tackled by considering all the possible vectors
V that can be formed using the feature set. Legitimate part vectors should have no repeated

P
features, and there are O(N ) such vectors. Thus, the image likelihood P (I|]M) requires

1
marginalization over all such vectors. Assuming uniform prior over these vectors, we have

P(I|M) = > P(VIM) (2)
"‘:(xl,..,x?)GF(I)P
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Efficient likelihood computation in relational models is only possible via the decomposition
of the joint probability using conditional independence assumptions, as done in graphical
models. Such decomposition specifies the probability as a product of local terms, each
depending on a small subset of parts. For a part vector V =(fl, .., fp )

PV =[] 2e(V]s,) (3)

where Sc C {1, .., P } are index subsets and V | = {fi : i € S}. Using dynamic programming,
inference and marginalization are exponential in the *induced width’ g of the related graphical
model, which is usually relatively low (note that for trees, g =2 only).
The summation in Eq. (2) does not lend itself easily to such simplifications, however. We
therefore make the following approximation, in which part vectors with repetitive features are
allowed

P(I|IM) = Z TTve(vis) = z TTve(Vls.) (4)

(w1, xp)eF(I)T @ (zi,ap)eF(I)F <

ziFEx; for iFj

This approximation is essential to making efficient marginalization possible. If feature
repetition is not allowed, global dependence emerges between the features assigned to the
different parts (as they cannot overlap). As a result we get global constraints, and efficient
enumeration becomes impossible.

The approximation in (4) may appear minor, which is indeed the case when a fixed,
’reasonable’ part based model is applied to an image. In this case, typically, parts are
characterized by different appearance and location models, and part vectors with repetitive
parts have low insignificant probability. But during learning, approximation (4) brings about a
serious problem: when vectors with feature repetitions are allowed, learning may result in
models with many repetitive parts. In fact, standard maximum likelihood has a strong
tendency to choose such models. This is because it can easily increase the likelihood by
choosing the same parts with high likelihood, over and over again.



Figure 2: A “star” graphical model. peripheral nodes, shown in blue, are related only via a hidden
central node. Such a model is used in our work, as well as in [13]. If (i) feature repetition is allowed (as
in Eq. (4)), and (ii) model parameters are chosen to maximize the likelihood of the best object
occurrence, then all the peripheral nodes are optimized to represent the same part.

The intuition above can be made precise in the simple case in which a ’star’ model is used
(see Figure 2) and the sum over all hypotheses is approximated by the single best features
vector. In this extreme case, the maximal likelihood is achieved when all the peripheral parts
models are identical. We specifically consider this model in Section 3 and prove the last
statement in Appendix A. The proof doesn’t directly apply when a sum over all the feature
vectors is used, but as this sum is usually dominated by only a few vectors, part repetition is
likely to occur in this case too.

Thus, in conclusion, we see that in the ideal generative framework, one needs to choose
between computational efficiency and the risk of part duplication. One way to escape this
dilemma is by dropping the requirement that a part is instantiated in a single image feature, as
done in [23]. This, however, leads to a vaguer ’part’ notion, with lower semantic value. The
alternative we suggest here keeps the ’part’ notion intact, and gives up generative
optimization instead.

2.4.2 How is the Computational Problem Handled: Related Work

Several recent approaches use generative modeling for object class recognition [12, 10, 13,
19, 11, 23]. In [12, 10, 19] a full relational model is used. The probability P ((fl, .., fp )]M) in
this model cannot be decomposed into the product of local terms, due to the complex
probabilistic dependencies between all of the model’s parts (in graphical models terminology
the model is a single large clique). As a result, both learning and recognition are exponential
in the number of model parts, which limits the number of parts that can be used (up to 7 in
[12], 4 in [10], 3 in [19]), and the number of features per image (N = 30, 20,up to 100
respectively). In [13] a decomposable model is proposed with a ’star’-like topology. This
reduces the complexity of recognition (i.e., the likelihood evaluation of an existing model)
significantly. However, learning remains essentially exponential, in order to avoid part
repetition in the learnt model.

In contrast, the problem (as well as the feature pruning problem, discussed in the next section)
is completely avoided in the case of learning from segmented images, as done in [11]. Here
the input is a set of object images, with manually segmented parts and manual part
correspondence between images. In this case learning is reduced to standard maximum
likelihood estimation of vectorial data. As stated above, Loeff et al. [23] avoid the
computational problem by allowing for each part to be implemented in many image features.

2.4.3 Feature Pruning

We argued in Section 2.2 that feature pruning is necessary when learning from images. P , the
number of parts in the model, is often much smaller than the number of features per image N.
This is usually not the case in classical applications of generative modeling, in which data is
typically described as a relatively small feature vector.



When P <<N, maximum likelihood chooses to model only parts with high likelihood -often
parts which are highly repetitive in images, with repetitive relations. This optimization policy
has a number of drawbacks. On the one hand, it introduces a preference for simple parts, as
these tend to have low variability through images, which gives rise to high likelihood scores.
It also introduces preference for features which are frequent in natural images, whether they
belong to the object or not. On the other hand, there is no explicit preference for
discriminative parts, nor any preference for feature diversity. As a result, certain aspects of
the object may be extensively described, while others are neglected. The problem may be
intuitively summarized by stating that generative methods can describe the data, but they
cannot choose what to describe. Additional task related signal, external to the data, is needed,
and is most readily provided by labels.

In [12, 10], initial feature pruning is obtained by using the Kadir and Bradey detector [20],
which finds relatively diverse, high entropy regions in the image. Explicit preference is given
to features with large scale, which tend to be more discriminative. In addition, they limit the
number of features per image (N = 20, 30). To some extent, the burden of feature pruning is
placed on the pre-learning feature detection mechanisms. However, with such a small number
of features per image, objects do not always get sufficient coverage. In fact, learning is very
sensitive to the fine tuning of the feature pruning mechanism.

In [13], where a ’star’-like decomposable model is used, more parts and features are used in
the generative learning experiments. Surprisingly, the results do not show obvious
improvement. Increasing the number of parts P and features Nf does not typically reduce the
error rates, since many of the additional features turn out to be irrelevant, which makes
feature pruning harder. In Section 5 we investigate the impact that P and Nf have on
performance for models similar to those used by [13], but optimized discriminatively. In our
experiments extra information (increased Nf) and modeling power (increased P) clearly lead
to better performance.

2.5 Relations in Discriminative Methods

Many part based object class recognition methods are mostly discriminative [29, 37, 34, 1, §].
In most of these methods, spatial relations between parts are not considered at all. While some
of these systems exhibit state-of-the-art recognition performance, they are usually lacking in
further, more semantical tasks as localization and part identification, as described in Section
2.3. In the ’fragment based’ approach of [37, 34] relations are not used, but when the same
approach is applied to segmentation, which requires richer semantics, fragment relations are
incorporated [5].

One way to incorporate part relations into a discriminative setting is used by the object
detection system of [1]. The task is localization, and it requires the exact correspondence and
the identification of parts. To achieve this, qualitative location relations between fragment
features are also considered as features, creating a very large and sparse feature vector.
Discriminative learning in this very high dimensional space is then done using a specific
feature-efficient learning algorithm. The relational features in this scheme are highly
qualitative (for example, *fragment a in to the left and bottom of fragment b’). Another
problem with this approach is that supervised learning from high dimensional sparse vectors
is a hard problem, often requiring dimensionality reduction to enable efficient learning.

In this context, our main contribution may be the design of a relatively simple and efficient
technique for the introduction of relational information into the discriminative framework of
boosting. As such, our work is related to the purely discriminative techniques used in [29, 28].
In spirit, our work has some resemblance to the work of [33], in which relational context
information is incorporated into a boosting process. However, the techniques we use and the

task we consider are quite different.
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2.6 Similar Approaches to the Generative Discriminative Combination

In our work, the generative-discriminative combination is aimed at solving a very specific
problem: how to allow the efficient learning of part-based models with spatial part relations.
But when viewed more broadly, it is an instance of a more general recent trend, trying to
combine the representation advantage of generative models with the accuracy and goal-
oriented nature of discriminative ones. In many cases, the combination is done by
concatenating an initial generative stage, which provides the representation, with a second
discriminative stage for the actual classification. In Holub et al. [19] and Fritz et al. [16],
generative methods (previously presented in [12] and [21] respectively) are augmented with a
discriminant SVM-based second stage. This approach is shown to considerably enhance
recognition [19] and localization results [16]. In these two examples the generative models
include spatial relations. Other approaches use a similar 2-stage procedure for a bag-of-
features model [22, 8], and obtain excellent recognition results. In these approaches the set of
object image features is represented using a Gaussian mixture model, followed by a
discriminative procedure which selects informative Gaussian components and uses them for
classification.

In [18], Holub et al. present an object recognition method which, like our proposed scheme,
relies on discriminative optimization of a generative model based classifier. However, the
proposed discriminative optimization does not solve the computational problem described in
Section 2.4.1, and learning is even slower than the parallel generative learning procedure. The
models learnt are hence limited to 3-4 parts. Note that the 2-stage methods described above
[19, 16] do not solve the computational problem either. Specifically, the method of [19] is
also limited to 3-4 parts in practice, and the method of [16] learns from segmented or highly
aligned images.

3. The generative model

We represent an input image using a set of local descriptors obtained using an interest point
detector. Some details regarding this process are given in Section 3.1. We then define a
classifier over such sets of features using a generative object model. The model and the
resulting classifier are described in Sections 3.2 and 3.3 respectively.

3.1 Feature extraction and representation

Our feature extraction and representation scheme mostly follows the scheme used in [12].
Initially, images were rescaled to have a uniform horizontal length of 200 pixels. We
experimented with two feature detectors:

(1) Kadir & Brady (KB) [20], and (2) Gao & Vasconcellos (GV) [17]. The KB detector is a
generic detector. It searches for circular regions of various scales, that correspond to the
maxima of an entropy based score in scale space. The GV detector is a discriminative saliency
detector, which searches for features that permit optimal discrimination between the object
class and the background class. Given a set of labeled images from two classes, the algorithm
finds a set of discriminative filters based on the principle of Maximal Marginal Diversity
(MMD). It then identifies circular salient regions at various scales by pooling together the
responses of the discriminative filters.

Both detectors produce an initial set of thousands of salient candidates for a typical image
(see example in Figure 3a). As in [12], we multiply the saliency score of each candidate patch
by its scale, thus creating a preference for large image patches, which are usually more
informative. A set of Nf high scoring features with limited overlap is then chosen using an
iterative greedy procedure. By varying the amount of overlap allowed between selected
features we can vary the number of patches chosen: in our experiments we varied Nf between
13 and 513. After their initial detection, selected regions are cropped from the image and
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scaled down to 11x 11 pixel patches. The patches are then normalized to have zero mean and
variance of 1. Finally the patches are represented using their first 15 DCT coefficients (not
including the DC).

Figure 3: a) Output of the KB interest point (or feature) detector, marked with green circles. b) A
Bayesian network specifying the dependencies between the hidden variables Cl ,Cs and the parts scales
and locations Xlk ,Xsk for k=1, .., P . The part appearance variables Xa*are independent, and so they do
not appear in this network.

To complete the representation, we concatenate 3 additional dimensions to each feature,
corresponding to the x and y image coordinates of the patch, and its scale respectively.
Therefore each image I is represented using an unordered set F (I) of 18 dimensional vectors.
Since our suggested algorithm’s runtime is only linear in the number of image features, we
can represent each image using a large number of features, typically in the order of several
hundred features per image.

3.2 Model Structure

We consider a part-based model, where each part in a specific image li corresponds to a
patch feature from F (li). Denote the appearance, location and scale components of each
vector x € F (l) by xa, xi and xs respectively (with dimensions 15,2,1), where x =[xa,xi,xs]. We
can assume that the appearance of different parts is independent, but this is obviously not the
case with the parts’ scale and location. However, once we align the object instances with
respect to location and scale, the assumption of part location and scale independence
becomes reasonable. Thus we introduce a 3-dimensional hidden variable C =(Ci,Cs), which
fixes the location of the object and its scale. Our assumption is that the location and scale of
different parts is conditionally independent given the hidden variable C, and so the joint
distribution decomposes according to the graph in Figure 3b.
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It follows that for a model with P parts, the joint probability of {X"_}'E=1 and C' takes the form

P P
p({X* =y, ClO) = p(C1©) [ p(x*C.6%) = p(C|0) [] p(XEI05)p(XF|CL Cu, 8F)P(XEICL, 8F) (5)
E=1 k=1

We assume uniform probability for €' and Gaussian conditional distribution for X, X;, X, as follows:

P(XZl65) = G(XFus xh) (6)
Xk -0
23
P(XE|C.,05) = G(log(XF) - log(C.)|uf, of)

PXFIG.C..08) = G ek s =F)

Hi s 2o )

where G(-|pr, ¥) denotes the Gaussian density with mean p and covariance matrix . We index the model
components a,l.s as 1,2, 3 respectively, and denote the log of these probabilities by LG(x;|C.u;, Z;) for
j=1,2,3

3.2 A model based classifier

As discussed in Section 2.4.1, the likelihood P(I|M) is given by averaging over all the possible part vectors
that can be assembled from the feature set F'(J) (see Eq. (2)). In our case, we should also average over all
the poasible values for the hidden variable €. Thus

P

P
M)=K, H P(z*|C,8%) (7)
ZC: (.z_:l,..,.t"z:)EF‘(f)P k=1

' 2z foriz]

for some constant .
In order to allow efficient likelihood assessment we make the following approximations

P
K, Z Z H P(z*|C,0%) (8)

P(IM) =
C (zl,..oP)cF(I)P k=1
P

= Ko max P(zF|C, 8%) ()

Cuzt,. aP)eF ()7 ol ‘
P

= Kymax max P(z|C,0%) (10

°oe :cI;Il“EF(” (=] ¢ )

Approximation (8) above was discussed earlier in a more general context (see Eq. (4)), and it is necessary
in order to eliminate the global dependency between parts. In approximation (9), averages are replaced
by the likelihood of the best feature vector and best hidden . This approximation is compelling since
natural images rarely have two different likely object interpretations. In addition., working with the best
single vector uniquely identifies the object’s location and scale, as well as the object’s parts. Such unique
identification is required for most semantical tasks beyond mere recognition. Finally, the approximated
likelihood is decomposed into separate maxima over €' and the different parts in Eq. (10).
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The decomposition of the maximum achieved in Eq. (10) is the key to the efficient likelihood computation.
We discretize the hidden variable € and consider only a finite grid of locations and scales, with a total of
N. possible values. Using this decomposition the maximum over the N, - N fP argnments can be computed
in O(N.N;P) operations. However, we cannot optimizing the parameters of such a model by likelihood
maximization. Sinece feature repetition is allowed, the ML solution will choose the same (best) part p times,
as shown in Appendix A.

The natural generative classifier is based on the comparison of the LRT statistic to a constant threshold,
and it therefore requires a model of the background in addition to the object model. Modeling general
backgrounds is clearly difficult, due to the diversity of objects and scenes that do not share simple common
features. We therefore approximate the background likelihood by a constant. Our LRT based classifier thus
becomes

P

_ TR " g i 1 ok 1)
fil)=log P(I|M) —log(I|BG) — v = max g 1521&()}) log p(z|C.8%) —v (11)
for some constant v.

4 Discriminative optimization
Given a set of labeled images {I;, _u,:};'il. we wish to find a classifier f(I) of the functional form given in
Eq. (11), which minimizes the exponential loss

N
L(f) = Y exp(-uf (1)) (12)
=1

This is the same loss minimized by the the Adaboost algorithm [22]. Its main advantage in our context
ia that it allows for the determination of the classifier threshold using a closed form formula, as will be
described in Section 4.1.

We have considered two possible techniques for the optimization of the loss in Eq. (12): Boosting and
gradient descent. In the boosting context, we view the log probability of a part

max log p(z|C,6%)
zeF(TI)

as a weak hypothesis of a specific functional form. However, the classifier form we use in (Eq. (11)) is
rather different from the traditional classifiers built by boosting, which typically have the form f(I) =
Zle oRR(I). Specifically, the classifier (11) does not include part weights a®, it has an extra threshold
parameter v, and it involves a maximization over €', which depends on all the 'weak’ hypotheses. The third
point is the most problematic, as it requires optimizing over parts with internal dependencies, which is much
harder than optimization over independent parts as in standard hoosting.

In order to simplify the presentation, we assume in Section 4.1 a simplified model with no spatial relations
between the parts, and show how the problems of parts weights and threshold parameters are coped with, with
minor changes to the standard hoosting framework. In Section 4.2 we consider the problem of dependent
parts, and show how boosting can be naturally extended to handle classifiers as in Eq. (11), despite the
dependencies between parts due to the hidden variable C'. Finally we consider the optimization from a more
general viewpoint of gradient descent in Section 4.3. This allows us to introduce several enhancements to
the pure boosting technique.

4.1 Boosting of a probabilistic model

Let us consider a simplified model with parts appearance only (see Eq. (6)). We show how such a classifier
can be represented as a sum of weighted 'weak’ hypotheses in Section 4.1.1. We then derive the boosting

14



algorithm as an approximate gradient descent in Section 4.1.2. This derivation is slightly simpler than
similar derivations in the literature, and provides the basis for our treatment of related parts, introduced in
Section 4.2. In Section 4.1.3 we show how the threshold parameter in our classifier can be readily optimized.

4.1.1 Functional form of the classifier
When there are no relations between parts, the classifier (11) takes the following form

r
(1) = max log p(z,|8%) — v (13)
1) ;xep(n 8 P(Ta|6a) iy

r
This classifier is easily represented as a sum of weak hypotheses f{I) = 3 h*(I) where
k=1

¥ (1) = max log Gxa)8F) — v* (14)
aeF(I)

and v = Z‘f:l v®. Weak hypotheses in this form can be viewed as soft classifiers.
We next represent the classifier in an equivalent functional form in which the covariance scale is trans-

r
formed to part weight. Now f(I}) = 3. o®h*®(I') where h*(T) takes the form
k=1
() = Hzalns, Ta) — v, || = 5)
hE(I) s logG(zalng, ) —v*,  |Eg] =1 (15)
The equivalence of these forms is shown in Appendix B.

4.1.2 Boosting as approximate gradient descent

Boosting is a common method which learns a classifier of the form f(z) = Y0_, ofh¥(z) in a greedy
fashion. Several papers [12, 15] have presented boosting as a greedy gradient descent of some loss function.
In particular, the work of [15] has shown that the Adaboost algorithm [29, 22] can be viewed as a greedy
gradient descent of the exp loss in Eq. (12), in L? function space. In [12] Adaboost is derived nsing a second
order Taylor approximation of the exp loss, which leads to repetitive least square regression problems. We
suggest here another variation of the derivation, similar to [12] but slightly simpler. All three approaches
lead to an identical algorithm (the discrete Adaboost [29]) when the weak learners are binary with the range
{+1,—1}. For weak learners with a continuous output, our approach and the approach of [15] culminates in
the same algorithm, e.g. Adaboost with confidence intervals [22]. However, our approach is simpler, and is
later used to derive a boosting version for a model with dependent parts.

Specifically, we derive Adaboost by considering the first order Taylor expansion of the exp loss function.
In what follows and thronghout this paper, we use superscripts to indicate the boosting round in which a
quantity is measured. At the p'th boosting round, we wish to extend the classifier f by f#(z) = &~ (z) +
aPhP(z). We first assume that o is infinitesimally small, and look for an appropriate weak hvpothesis
hP(X). Since o is small, we can approximate Eq. (12) using the first order Taylor expansion.

To begin with, we differentiate L(f) w.r.t. o

dL(f) _
da?

exp(—u; iz )y b (5] (16)

N
i=1

We denote w; = exp(—; f(z;)), and derive the following Taylor expansion

N
L(f?) = L(f*7) — o ) wf "y hP(2s) (17)
i=1
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Assuming o > 0, the steepest descent of L(f) is obtained for some weak hypothesis i* which maximizes
the weighted correlation score

N
S(h? () = S wh ™ yhP(x;) (18)
=1
This maximization is done by a weak learner, getting as input the weights {u.'f_l :":1 and the labeled data

points. After the determination of h?{x), the coefficient a? is determined by the direct optimization of the
loss in Eq. (12). This can be done in closed form only for binary weak hypotheses with output in the range
of {1,—1}. In the general case numeric methods are employed, such as line search [22].

4.1.3 Threshold optimization

Maximizing the linear approximation (17) can be problematic when unbounded weak hypotheses are used.
In particular, optimizing this eriterion w.r.t to the threshold parameter in hypotheses of the form (14) is
ill-posed. Substituting (14) into eriterion (17), we get the following expression to optimize:

N

Sh) = wiyi( max log Grs|p,. X, ) — v/) (19)

(k) ; (max log G(ailpug, X,) —v) )
= 04/ Z w; — Z w; v

ity =—1 wwi=1

where C' is independent of 7. If 3>~ w; — 3 w; # 0, S(h) can be increased indefinitely by sending v to
trwi=—1 =1
+oc or —oo. Such a choice of v clearly doesn't improve the original (exact) loss (12).
The optimization of the threshold should therefore be done by considering (12) direetly. It is based on
the following lemma:

Lemma 1. Consider a function f: I — R. We wish to minimize the loss (12) of the function f=f-v
where v is a constant. Assume that there are both labels +1 and —1 in the data set.

1. An optimal vt exists and is given by

N

> exp(f(L))

vt = %log {4;«,:'\.":—1} (20)
> exp(—f(L)
{iui=1}
2. The optimal f* = f — v* satisfies
N N
Do oexpl=fI)) =Y, ep(fl) (21)
{twi=1} {tyi=—1}
3. The optimal loss L(f —v*) is
1
N N 2
2| ) exp(—f(L)- Y exp(f(L)) (22)
{iyi=1} {imi=—1}
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The lemma is proved by direct differentiation of the loss w.r.t i, as sketched in Appendix C.

We use this lemma to determine the threshold after each round of boosting, when f?(I) = fP=1(I) +
aPh?(I). Eq. (20) gives a closed form solution for v onee hP({) and a® have been chosen. Eq. (22) gives the
optimal score obtained, and it is useful when efficient numeric search for o is required. Finally, property
(21) implies that after threshold update, the coefficient of v in Eq. (19) is nullified (the slope of the linear
approximation is 0 at the optitmim). Hence optimizing the threshold before round p assures that the score
S(h?) does not depend on 7. We optimize the threshold in our algorithm during initialization, and after
every boosting round (see Algorithm 1). The weak learner can therefore effectively ignore this parameter
when choosing a candidate hypothesis.

4.2 Relational model Boosting

We now extend the boosting framework to handle dependent parts in a relational model of the form (11).
We introduce part weights into the classifier by applying the transformation described in Eq. (15) to the
three model ingredient deseribed in Eq. (6), i.e. appearance, location and scale. The three new weights are
summmed into a single part weight, leading to the following classifier form

P
Py ) kpkor oo _ o
fLIJ—méo;;a h*(I,C) —v (23)
where for k=1,.., P
Ky v ok \
hE5(I,C) = Ilglpaf})g (I,C) (24)
3 A}L
k(F ¢ ] T
gt(I,C) = ——— LGz |e, ], E)
N I
=5 = 1, AM>0 i=1,2,3

In this parametrization o® is the sum of component weights and A;/ Ej:‘l A; measures the relative

weights of the appearance, location and seale. Thus, given an image [, the computation of f requires the
computation of the accumulated log-likelihood and its hidden center optimizer, denoted as follows

»
0iI,cy = Y a*hk(1,0) (25)
k=1
¢ = argmaxli(I,C)

c

In order to allow tractable maximization over C, we discretize it and consider only a finite grid of locations
and scales with N, possible values. Under these conditions, the computation of Il and C* amounts to
standard MAP message passing, requiring O(PN;N.) operations.

Our suggested hoosting method is presented in Algorithm 1. We derive it by replicating the derivation
of standard boosting in Eq. (16)-(18). For f of the form (23), the derivative of L(f) w.r.t. o, is now

dL(f) 2 _ _
dc;g‘ =— Z w;y:h? (I;, CF ) (26)
i=1
and using the Taylor expansion (17) we get
N
L(fr) = L(f*-Y) — 0@y _wl'yhP (L, 17 ) (27)
i=1
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Algorithm 1 Relational model boosting
Given {(I;, %)}, . w € {-1,1} , initialize:

Hii,c)=0 i=1,.,N, ¢in a predefined prid
o FElwi=—1}

v=zlogZr =1

w; =exp( y;-v ) i=1,.,N

w; = wi/ YL, w;

Fork=1,..F
1. Use a weak learner to find a part hypothesis h*(7, ') which maximizes

N

S(h) = Z wyy; M1, CF)
i=1
(see text for special treatment of round 1).
2. Find optimal o by minimizing
N N
> en(=f2(1)) Y, exn(F°(L)
{Z:ui=1} {ii=—1}

where f°(I) = max (1, C) + ak®(I,C)).
Update Il and the optimal center C'*
H(i,c) = (i, c) + aFh(i,c)
[f°(L:), C}] = max, argmax (i, ¢)

3. Update f(I;) and the weights {w; 1,

n
¥ exp(£U1:))

v=1log | %~
Y exp(—fUL))
{iryi=1}

flly =" L)—v

w; = exp(—y: f(1;))
1 N
w; = wy/ E{;:I w;

Output the final hypothesis f(I) = Ele aphy(I)—v

. o TR . S SN
In analogy with the criterion (18), the weak learner should now get as input {w? L¢ i 1}13:1 and try
to maximize the score

N
S(h?) = Z w?f kP (I, CFP L) (28)
=1

This task is not essentially harder than the weak learner’s task in standard boosting, since the weak learner
‘assumes’ that the value of the hidden variable €' is known and set to its optimal value according to the
previous hypotheses. In the first baosting round, when C'**~! is not yet defined, we only train the appearance
component of the hypothesis. The relational components of this part are set to have low weights and default
values.
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Choosing of after the hypothesis A?(1. C') has been chosen is more demanding than in standard boosting.
Specifically, o should be c¢hosen to minimize

L(max [1P~Y(1.C) + a®h?(1,C)] —v*) (29)

Since the optimal value of ¢ depends on P, its inference should be repeated whenever a different value is
considered for P (although the messages h¥(f, ') can be computed only once). After finding the maxinnim
over (U, the loss with the optimal threshold can be computed using Eq. (22). The search for the optimal
af can be done using any line search algorithm, and we implement it using gradient descent as described in
Section 4.3.

4.3  Gradient descent

In this section we combine the relational boosting from Section 4.2 with elements from a more general
gradient descent perspective. In Section 4.3.1 we deseribe our implementation of Algorithm 1, in which the
weak learner and the part weight optimization are gradient based. In Section 4.3.2 we suggest to supplement
Algorithm 1 with feedback elements in the spirit of more traditional gradient descent algorithms. Algorithm 2
presents the resulting algorithm for part optimization.

4.3.1 Gradient-based implementation

Current boosting-based object recognition approaches use a version of what we call “selection-based” wealk
learners [2, 19, 14]. The weak hypotheses family is finite, and hypotheses are based on a predefined feature
set [19] or on the set of features extracted from the training images [2, 14]. The weak learner computes the
weighted correlation for all the possible hvpotheses and returns the hest scoring one. Weak learners of this
type, considered in the current paper, sample features from object images {exhaustive search is too expensive
computationally); they build part hypotheses based on the feature and the current estimate of the hidden
center C'* in the feature’s image. However, as a single feature cannot reliably determine the relative weights
of the different part components (the covariance scale of appearance, location and scale), several values of
these parameters are considered for each feature.

As an alternative, we have considered a second type of weak learners, which we call “gradient-based”. A
“oradient-based” weak learner uses a hypothesis supplied by the selection learner as its starting point, and
tries to improve its score nsing gradient ascent. Unlike the selection based weak learner, the gradient-based
weak learner is not limited to parts based on natural image features, as it searches in the continuum of all
possible part models. The relevant gradient is the derivative of the score S(h?) w.r.t the part parameters,
given by the weighted sum

d8(RP) e g dRA(ILCEEY) N L APl Ot al :
— =2 Wl — =) wf e (30)

i=1 i=1
where »}'" is the best part candidate in image i

’ . -1
x]? = argmax gP(1;, C)"7)
.z:EF'(J’.‘)

Since the gradient depends on the best part candidates according to the current model, the gradient dynamics
iterates between gradient steps in the parameters #7 and the re-computation of the best part candidates
{x!PHY | Pseudo code is given in Step 1 of Algorithm 2.

We also use gradient descent dynamics to implement the line search for the optimal part weight o®. This
search method is based on slow, gradual changes in the value of a®, and hence it allows us to experiment with
a feedback mechanizm (see Section 4.3.2). The gradient of the loss w.r.t af is given in Eq. (26). Notice that
the gradient depends on {7}, and {w;}" . and both are functions of aP. Hence the gradient dynamics

=1
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in this case iterates hetween gradient steps of oF, inference of {C} Y, and updates of {w; }iL,. This loop

is instantiated in Step 3 of Algorithm 2. The loop must be preceded by the computation of the messages
hii, c) in Step 2.

4.3.2 Gradient-based extension

When the determination of both #° and of are gradient based, the hoosting optimization at round p es-
sentially makes a specific control choice for a unified gradient descent algorithm which optimizes of and
&7 together. A more traditional gradient descent algorithm can be constructed by 1) differentiating L{f)
directly instead of using its Taylor approximation, and 2) iterating small gradient steps on both a® and 67
in a single loop, instead of two separate loops as suggested by boosting. In hoosting, the optimization of
g7 is done before setting o and there is no feedback between them. Such feedback is plausible in our case,
since any change in of may induce changes in C'* for some images, and can therefore change the optimal
part model of AP (I, C').
We considered the update steps required for gradient descent of the exact loss (12), without the Taylor
approximation implied by the hoosting strategy. The gradient of o” (Eq. (26)) and its treatment remain the
same, as of was optimized w.r.t the exact loss in the boosting strategy as well. The gradient w.r.t 7 is

i N riT. _r_'-P
dL(]) Y u? dh? (1, C)

I (31)
der ST g 1)

i=1

‘While this expression is very similar to (30), there is a subtle difference between them. In Eq. (31) w; and
! are no longer constant as they were in (30], but depend on #7 and af. Exact gradient descent therefore
requires the re-computation of w;, C; at each gradient iteration, which is computationally expensive.

We have experimented in the continuum between the 'hoosting’ and the 'gradient descent’ flavors using
Algorithm 2, which encloses the optimization loops of A7 and o in a third feedback’ loop. Setting the
outer loop counter K to 1 we get the boosting flavor, i.e., Algorithm 2 implements an inner loop step in
Algorithm 1. Setting Ky to some large value and Kz = 1. K3 = 1, we get exact gradient descent flavor.
We found that a good trade-off between complexity and performance is achieved with a version which is
rather close to hoosting, but still repeats the optimization of a® and h® several times to allow mutual cross-
talk during the estimation of these parameters. Thus, our final optimization algorithm involves repeated,
sequential calls of Algorithm 2.

5 Experimental results

We tested our algorithm in recognition tasks nsing the Caltech datasets [20], which are publicly available®, as
well as three more challenging data sets we have collected specifically for this evaluation. The former are nsed
as a common benchmark, while the latter are desgigned to measure the performance limits of the algorithm
by challenging it with fairly hard conditions. Localization performance was evaluated using a commmon
benchmark for this task [23]*. The Datasets are described in Section 5.1. In Seetion 5.2 we discuss the
various algorithm parameters. Recognition results are presented in Section 5.3. In Section 5.4 we report the
results of additional experiments, studying the contribution to recognition performance of several modeling
factors in isolation. Finally, we report localization results in Section 5.5.

5.1 Datasets

‘We compare our recognition results with other methods using the Caltech datasets. Four datasets are used:
Motorcycles {800 images), Cars rear (800), Airplanes (800) and Faces (435). These datasets contain relatively
small variance in scale and location. and the background images do not contain objects similar to the class

Shttp:/ /www.robots.cx.ac.uk /v gg /data
dhttp:/ fwww.pascal-network.org /challenges/ VOC /£ UTUC
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Algorithm 2 Optimization of part p

Imput : F(I;), v; . w;, CF i=1,..,N
”U. CJ i=1,..N, K e= 1....;\"6
initialize weak hvpothesis using a selection learner :
Choose 8 = X, ;. 8; j=1,..3 . a=0
Set [h(i,Cf), 2" (i)] = max, arg max g(z, C})
TeF(1:)

3
where g{z,¢) = Y —gi-'%LGfxﬂc.;:j.Ej)
YT AT \ J

Loop over 1,2,3 K iterations

1. Loop over a.b K5 iterations (# optimization)

(a) Update weak hypothesis parameters

6 =0+ L, wiu G

a6
(b) Update best part candidates for all images

[2(i,C7).x}] = max, argmax g{x, C} )
e F (1)

2. Compute for alli,¢  h{i,e) = zgﬂﬁﬁ)g(x.c)

3. Loop over a,b,c Ky iterations (o optimization)
(a) Updatea: a=a+7 z:’zl wyyh(i, CF)
(b) Update hidden center for all images
[f°(1:), C}] = max, argmax [1(i, ¢} + ah(i, c)
(c) Update f(I;) and the weights
N
E  exp(f(1))

tiwi=—1}

v=glog | H——
Y exp(—fO(1)
o=t}

flL)y =) —v
w = exp(—u f(1)) . ws = w;/ S w;
Set lP(i,c) = l(i,c) + ahli,c)

Return 8, w;, CFUP(i,c) i=1,.N e=1,.. N,

it

objects. In order to test recognition performance under harder conditions, we compiled 3 new datasets with
matching backgrounds.® These datasets contain images of Chairs (800 images), Dogs (500) and Humans
(593), and are briefly described below. Our localization experiments were carried using the UIUC cars side
data set[23]. The training set here is composed of 550 cars images and 500 background images. The test set
includes 170 images, containing altogether 200 cars, with ground truth bounding hoxes.

In the Chairs and Dogs datasets, the ohjects are seen roughly from the same pose, but ineclude large
inner class variability, as well as some variability in location and scale. For the Chairs dataset we compiled a
background dataset of Furniture which contained images of tables, beds and bookeases (200,200,100 images
respectively). When possible (for tables and beds), images were aligned to a viewpoint isomorphic to the
viewpoint of the chairs. As background for the Dogs dataset, we compiled two animal datasets: 'Easy

5The datasets are available at http://www.cs.huji.ac.il/~aharonbh/.
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Figure 4: Images from the Chairs, Dogs and Humans datasets and their corresponding backgrounds. Object images appear
on the left, background images on the right. In the second row, the two leftmost background images are of "easy animals’ and
next are two 'hard animals’ images. In the third row, the two leftmost object images belong to the easier image subset. The
next two images are hard due to the person’s scale and pose.

Animals’ contains 500 images of animals not similar to Dogs; Hard Animals’ contains 250 images from the
'Easy Animals’ dataset, and an additional set of 250 images of four-legged animals (such as horses and goats)
in a pose isomorphic to the Dops.

The Humans dataset was designed to include large variability in location, scale and pose. The data
contains images of 25 different people. Each person was photographed in 4 different scales (each 1.5 times
larger than its predecessor), at various locations and with several articulated poses of the hands and legs.
For each person there are several images in which s/he is partially oceluded. For this dataset we created
a background dataset of 593 images. showing the sites in which the Humans images were taken. Figure 4
shows several images from our datasets.

5.2 Algorithm parameters

We have run a series of preliminary experiments, in order to tune the weak learners’ parameters and compare
the results when using selection-based vs. gradient-based weak learners. The parameters of the selection
hased weak learner include the number of image patches it samples, and the number of location/seale models
used for each sampled patch. The parameters of the gradient based learner include the step size and stop
condition. The gradient based learner is not limited to hypotheses based on object images, and in many
cases it chooses exapggerated appearance and location models for the part in order to enhance discriminative
power. In the exagperated appearance models, the brightness contrast is enhanced and the mean patch looks
almost like a Black&White mask (see examples in Figure 5b). This tendency for exaggerated appearance
model is enhanced when the weight of the location model is relatively wealk.

In exaggerated location models, parts are modeled as being much farther from the center than thev are
in real objects. An example is given in Figure 7, showing a chair model where the tip of the chair’s leg is
located below its mean location in most images. Still, in most cases gradient based learners give lower error
rates than their purely selection-based competitors. Some examples are given in Table 5a. We hence used
gradient based learners in the rest of the recognition experiments.

We have also experimented with the learning of covariance matrices for the appearance and location
models. To guarantee positive definiteness, we have implemented gradient dynamics for the square root
of the covariance matrix. However, we have still observed too much over-fitting in the estimation of the
covariance matrices in our experiments. These additional degrees of freedom tended not to improve the
test results, while achieving lower training error. The problem was ever more serious with the appearance
covariance matrix, where we have sometimes observed reduced performance, and the emergence of unstable
models with covariance matrices close to singular. As a result, in the following experiments we fix the
covariance matrices to /. We only learn the covariance scale, which in our model determines the part and
component weight parameters.

In the recognition experiments reported in Section 5.3, we constructed models with up to 60 parts using
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Data Name | Selection | Gradient
Learner Learner
Motorhikes 7.2 6.9
Clars Rear 6.8 2.3
Alirplanes 14.2 10.3
Faces 7.0 8.35
a)

Figure 5. a) Comparison of error rates obtained by selection-based and gradient based weak learners on the Caltech data
sets. The results presented were obtained for object models without a location component, i.e. the models are not relational and
classification is based on part appearance alone. b) Examples of parts from motorcycle models learnt using the selection-based
learner (top) and the gradient-based learner (bottom). The images present reconstructions from the 15 DCT coefficients of the
mean appearance vector. The parts presented correspond to motorcycles seat (left) and wheel (right). Clearly, the parts learnt
by the gradient learner have much sharper contrasts.

Algorithm 2, with control parameters of Ky = 60, Ko = 100, K3 = 4. Each image was represented using
at most Ny = 200 features (KB detector) or Ny = 240 features (GV detector). The hidden center location
values were an equally spaced grid of 6 = 6 positions over the image. The hidden scale center had a single
value, or 3 different values with a ratio of 0.63 between successive scales, resulting in a total of N, = 36, 108
values respectively. We randomly selected half of the images from each dataset for training and used the
remaining half for testing.

For the localization experiments reported in Section 5.5 we changed several important parameters of the
learning process. Model accuracy is more important for this task, and we therefore learn smaller models with
P = 40 parts, but using a finer location grid of 10 x 10 possible locations (N = 100) and N; = 400 features
extracted per image. As noted above, the dynamics of the gradient-based location model tends to produce
‘exaggerated’ models, in which parts are located too far from the objects center. This tendency dramatically
reduces the utility of the model for localization. We therefore eliminated the gradient location dynamics in
this context, and modified only the part appearance using gradient descent. We found experimentally that
increasing the weight of the location component uniformly for all the parts improves the localization results
considerably. In the experiments reported below, we multiply the location component weights A¥ k=1, P
(see Eq. (?? for their definition) by a constant factor of 10. Probabilistically, this amounts to smaller
location covariance and hence to stricter demands on the accuracy of parts relative locations. Finally, parts
without location component (when the location component weight is 0) are ignore; these parts do not convey
localization information, and therefore add irrelevant 'noise’ to the MAP score.

5.3 Recognition results

As a general remark, we note that our algorithm tends to learn models in which most features have clear
semantics in terms of object’s parts. Examples of learnt models can be seen in Figures 6-7. In the dog
example we can clearly identify parts that correspond to the head, back, legs (both front and back), and the
hip. Typically 40 — 50 out of the 60 parts are similar in quality to the ones shown. The location models are
gross, and sometimes exaggerated, but clearly useful. Analysis of the part models shows that in many cases,
a distingnished object part (e.g a wheel in the motorcyele model, or an eye in the face model) is modeled
using a number of model parts (12 for the wheel, 10 for the eye) with certain internal variation. In this sense
our model seems to describe each object part using a mixture model.

In Table 1 we compare our results to those obtained by a purely generative approach [20]% and a purely
discriminative one [2]7 using the Caltech dataset. Both methods learn from an unordered set of local
descriptors, obtained using an interest point detector. Following [20], the motorbikes, airplanes and faces

SNote that the results reported in [20] {except for the cars data base) were achieved using manually scale-normalized images,
while our method did not rely on any such rescaling,

"In [1], this approach was reported to give better results using segmentation based features. We did not include these results
since we wanted to compare the different learning algorithms using similar features. see also discussion in Section 6
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Figure G: 5 parts from a dog model with 60 parts. The top left drawing shows the modeled locations of the 5 parts. Each
part’s mean location is surrounded by the 1 std line. The cyan cross indicates the location of the hidden 'center’. The top
right pictures show dog test images with the model implementation found. All these dogs were successfully identified except
for the one on the right-bottom corner. Below the location model, the parts’ mean appearance patches are shown. The last
three rows present parts implementations in the 3 test images that got the highest part likelihood. Each column presents the
implementations of the part shown above the column. The parts have clear semantic meaning and repetitive locations on the
dogs back, hind leg, joint of the hind leg, front leg and head. Most other parts behave similarly to the ones shown.

datasets were tested against office background images, and the Cars rear dataset was tested against road
background images. To allow for a clear comparison with [20], we used their exact train and test indexes
and the same feature detector (KB).

Our results are given in Table 1. They were obtained without modeling scale, since it did not improve
classification results when using the KB detector. This may be partially explained by noting that the
Caltech datasets contain relatively small variance in seale. Error rates for our method were computed nusing
the threshold learnt by our boosting algorithm. Results are presented for models with 7 parts (the number
of parts used in [20]) and 50 parts. When 7 parts are used, our results are comparable to those of [20].
However, when 50 parts are used our algorithm outperforms both competitors in most cases.

We used the Chairs and Dogs datasets to test the sensitivity of the algorithm to visual similarity be-
tween object and background images. We trained the Chairs dataset against the Caltech office background
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Figure T: 5 parts from a chair model. The model is presented in the same format as Figure 6. Madel parts represent the
tip of the chairs leg{first part), edges of the back {second and forth parts), the seat corner(third) and the seat edge(fifth). The
location model is exaggerated: The tip of the chairs leg is modeled as being far below its real mean position in object images.

Data Name | Our model | Our model | Fergus | Opelt
7 parts 50 parts et. al et. al
Motorbikes 7.8 4.9 7.5 7.8
Cars Rear 1.2 0.6 9.7 8.9
Airplanes 8.6 6.7 9.8 11.1
Faces 9.5 6.3 3.6 6.5

Table 1: Test error rates over the Caltech dataset, showing the results of our methad in 2 conditions - using 7 or 50 parts,
as well as two other methods - a generative model approach [20] and a discriminative model-free boosting approach [2]. The
algorithm’s parameters were held constant across all experiments.

dataset, and against the furniture dataset described above. The Dogs dataset was trained against 3 different
backgrounds datasets: Caltechs 'office’ background, 'Easy Animals’ and 'Hard Animals’. The results are
summarized in Table 2. As can be seen, our algorithm works well when there are large differences between
the object and background images. However, it fails to discriminate, for example, dogs from horses.

Data Background | Test Error
Chairs Office 2.23
Chairs Furniture 15.53
Dogs Office 8.61
Dogs Easy Animals 19.0
Daogs Hard Animals 34.4
Humans Sites 34.3
Humans (resticted) | Sites 25.9

Table 2: Error rates with the new datasets of Chairs, Dogs and Humans. Results were obtained using the KB detector (see
text for more details).

We used the Humans dataset to test the algorithm’s sensitivity to variations in scale and object articula-
tions. In order to obtain reasonable results on this hard dataset, we had to reduce scale variability to 2 scales
and restrict the variability in pose to hand gestures only - we denote this dataset by "Humans restricted’
(355 images). The results are shown in Table 2.

The parameters in our model are optimmized to minimize training error with respect to a certain back-
ground. One may worry that the learnt models describe the background just as well as they describe the
object, in which case performance in classification tasks against different backgrounds is expected to he poor.
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Data | Original BG Motorcycles BG | Airplanes BG | Sites BG
Cars Road (0.6) 3.0 2.2 6.8
Cars Office (1.6) 1.0 0.8 6.4
Chairs | Office (2.2) 8.0 1.4 6.2
Chairs | Furniture (15.5) 17.4 4.2 8.4
Dogs Office (8.6) 10.3 4.0 12.3
Dogs Easy animals  (19.0) 15.7 5.7 7.7

Table 3: Generalization results of some learnt models to new backgrounds. Each row describes results of a single class model
trained against a specific background and tested against other backgrounds. Test errors were computed using a sample of
100 images from each test background. The classifiers based on learnt models perform well in most of the new classification
tasks. There is no apparent connection between the difficulty of the training background and successful generalization to new

backgrounds.

Indeed, from a purely discriminative point of view, there is no reason to believe that the learnt classifier will
be useful when one of the classes (the background) changes. To investigate this issue, we used the learnt
models to classify object images against various backeground images not seen by the learning algorithm. We
found that the learnt models tend to generalize well to the new classification problem, as seen in Table 3.
These results show that the models have ‘generative’ qualities: they seem to capture the 'essence’ of the
object in a way that does not really depend on the background used.

5.4 Recognition performance analysis

In this section we analyze the contribution to performance of several important modeling factors. Specifically,
we consider the contribution of modeling part location and seale, and of inereasing the number of model
parts and features extracted per image.

5.4.1 Location and scale models

The relational components of the model, i.e. the location and scale of the parts, elearly complicate learning
considerably, and it is important to understand if they give any performance gain. Table 4 shows compar-
ative results varving the model complexity. Specifically we present results when using only an appearance
model, and when adding location and scale models, using the GV detector [11].8 We can see that although
the appearance model produces verv reasonable results, adding a location model significantly improves per-
formance. The additional contribution of the scale model is relatively minor. Additionally, by comparing the
results of our full blown model (A+L+S) to those presented in Tables 1-2, we can see that the discriminative
GV detector usually provides somewhat better results than those obtained using the generic KB detector.

Data Name | A A+L A+L4S
Motorbikes 8.1 3.2 3.5
Cars Rear 4.0 1.4 0.6
Airplanes 15.1 15.1 12.1
Faces 6.1 5.2 3.8
Chairs 16.3 10.8 10.9

Table 4: Errors rates using models of varying complexity. (A) Appearance model alone. (A+L) Appearance and location
models. {A4+L+5) Appearance, location and scale models. The algorithm’s parameters were held constant across all experic
ments.

58imilar experiments with the KB detector yielded similar results, but showed no significant improvement with scale mod-
eling.
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Figure 8: a) Error rate as a function of the number of parts P in the model on the Caltech datasets for Ny = 200. b) Error
rate as a function of the number of image features Ny on the Cars rear (easy) and Airplanes ( Relatively hard) Caltech datasets,
with P =30. In b), the X axis varies between 13 and 228 features in log scale, base 2. All the results were obtained using the
KB detector.

5.4.2 Large numbers of parts and features

When hundreds of features are used per image, many features lie in the background of the image, and learning
good parts implicitly requires feature pruning. Figure 8 gives error rates as a function of the number of parts
and features. Significant performance gains are obtained by secaling up these quantities, indicating that the
algorithm is able to find good part models even in the presence of many clutter features. This behavior
should be contrasted with the generative learning of a similar model in [21], where increasing the number of
parts and features does not usually lead to improved performance. Intuitively, maximum likelihood learning
chooses to model features which are frequent in object images, even if these are simple clutter features from
the background, while discriminative learning naturally tends to selects more discriminative parts.

5.5 Localization results

Locating an object in a large image is much harder than the binary present/absent detection task. The
latter problem is tackled in this paper using a limited set of image features, and a crude grid of possible
object locations. For localization we use a similar framework in learning, but turn to a more exhaustive
search at the test phase. While searching we do not select representative features, but consider instead as
part candidates all the possible image patches at every location and several scales. Object center candidates
are taken from a dense grid of possible image locations. To search efficiently, we use the methods proposed
in [21, 18], which allow such an exhaustive search in a relatively low computational cost.
The model is applied to an image following a three stage protocol:

1. Convolve the image with the first 15 filters of the DCT base at N, scales, vielding N. = 15 coefficient
activity maps’. We use N, = 5§, spanning patch sizes between 5 and 30 pixels.

2. Compute P x N, appearance maps by applying the parts appearance models to the vector of DCT co-
efficients at every image location. The coordinate values (z, y) in map (k, j) contain the log probability
of part k& with scale j in location (z,y).

3. Apply the relational model to the set of appearance maps, vielding a single log probability map for the
‘hidden center’ node. To this end, the N, appearance maps of each part are merged into a single map
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Figure 9: 5 parts from the car side model used in the localization task. The parts shown correspond to the two wheels, front
and rear ends, and the top-rear corner. The complete model includes 38 parts, most of them with clear semantics. While the
model is not symmetric w.r.t to the x axis, it is not far from being so. It hence happens that a car is successfully detected, but
its direction is not properly identified.

by choosing at each coordinate the most likely part scale. We then compute P part message maps,
corresponding to the messages h*(I, C') defined in Eq. (24), by applying the distance transform [18] to
the merged appearance maps. Finally the "hidden center’ map is formed as a weighted sum of parts
message maps.

The data includes cars facing both directions (i.e. left-to-right and right-to-left). We therefore flip the
training images prior to training, such that all cars face the same direction. At the test phase we run
the exhaustive search for the learnt model and its mirror image. We detect local maxima in the hidden
center map, sort them according to likelihood, and prune neighboring maxima in a way similar to the
neighborhood suppression technique suggested in [23]. Figure 10 presents some probability maps and detected
cars, illustrating tvpical suceessful and problematic detections. Each detection is labeled as hit or miss using
the criterion used in [24] (which is slightly different from the one used in [23]), to allow for a fair comparison
with other methods. Figure 11 presents a precision-recall curve and a comparison of the achieved localization
performance to several recently suggested methods. Our results are comparable to those obtained by the
best methods, and are inferior only to a method which uses ’strong’ supervision, in the form of images with
parts segmentations. In this method part identities are not learnt but chosen manually, and so the learning
task is simpler.

6 Discussion

We have presented a method for object class recognition and localization, based on
discriminative optimization of a relational generative model. The method combines the
natural treatment of spatial part relations, typical to generative classifiers, with the efficiency
and pruning ability of discriminative methods. Efficient, scalable learning is achieved by
extending boosting techniques to a simple relational model with conditionally dependent
parts. In a recognition task, our method compares favorably with several purely generative or
purely discriminative systems recently proposed. In a localization task its performance is
comparable to the best available method.

While our recognition results are good, [28, 31] report better results obtained using
discriminative methods which ignore geometric relations and focus instead on feature
representation. Specifically, in [28] segmentation based features are used, while in [31]
features are based on flexible exhaustive search of ’code book’ patches. The recognition
performance of these approaches relies on better feature extraction and representation,
compared with our simple combination of interest point detection and DCT-based
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representation. We regard the advances offered by these methods as orthogonal to our main

contribution, i.e. the efficient incorporation of geometrical relations. In future research, well
combine these advantages, combining better part appearance models and better feature
extraction techniques with the relational boosting technique suggested here.

Figure 10: Hidden center probability maps and car detections. In each image pair, the left image shows the probability map
for the location of reference point . The right image shows the 5 parts from Figure 9 superimposed on the detected cars.
Top Successful detections. Notice that the middle of a gap between two cars tends to emerge as a probable car candidate, as
it gains support from both cars. Bottom Problematic detections. The third example includes a spurious detection and a car
detected using the model of the 'wrong' direction. The bottom example includes a spurious 'middle car’ between two real cars.
WValues in the probability maps were thresholded and linearly transformed for visualization.

Recall-Precision curve

o8 Method Reference | Equal error rate
=08 Roth et al. [24] 0.21
., Fergus et al. 2003 [20] 0.115
Fergus et al. 2005 [21] 0.078
02 Our method - 0.076
0 Leibe et. al.* 6] 0.09 (0.025)
005 0. 11_ P?é1csi6ion0'2 025 03
a) b)

Figure 11: a) Recall-Precision curve for cars side detection, using the model shown in Figure 9. b) Error error rates
(recall=1-precision) cbtained on the cars side data by several recent methods.Cur performance is comparable to the state-of-
the-art methods. images with manually segmented parts. It obtains error rate of 0.09, which is improved to 0.025 using an
MDL verification step.
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The complexity of our suggested learning technique is linear in the number of parts and
features per image, but it may still be quite expensive. Specifically, the inference complexity
of the hidden center C is O(NcNf P ) where Nc is the number of considered center locations,
and this inference is carried for each image many times during learning. This limits us to a
relatively crude grid of possible center locations in the learning process, and hence limits the
accuracy of the location model learnt. A possible remedy is to consider less exhaustive
methods for inferring the optimal hidden center, based on part voting or mean shift mode
estimation, as done in [21]. Such ’heuristic’ inference solutions may offer enhanced
scalability and a more biologically plausible recognition mechanism.

Finally, leaving technical details aside, we regard this work as a contribution to an important
debate in learning from unprocessed images, regarding the choice of generative vs.
discriminative modeling. We demonstrated that combining generative relational modeling
with discriminative optimization can be fruitful and lead to more scalable learning. However,
this combination is not free of problems. Our technical problems with covariance matrix
learning and the tendency of our technique to produce ’exaggerated’ models are two
examples. The method proposed here is a step towards the required balance between the
descriptive power of generative models and the task relatedness enforced by discriminative
optimization.
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A Feature repetition and ML optimization in a star model

Allowing feature repetitions, we derived the likelihood approximation (10) for our star model. For a set of
object images {1 j-};"zl. Thiz approximation entails the following total data likelihood

n n P
Zl«)gP(I”B] = -nlogK.;.-i—Zlog[maxH max P(z|C,6%)] (32)
= 5=1 < el
" F
= nlogKo+ max max log P(x|C,8%)
s ; ¢ KZ=:1“’EFU-") |

The maximum likelihood parameters ©® = (#;,...8p) are chosen to maximize this likelihood. In this
maximization, we can ignore the constant term nlog Ky. To simplify further notation let us denote parts’
conditional log likelihood terms by g;(C,8) = ma(-X)P (x]|C,8k). Also denote the vector of the hidden

T F(I;

center variables in all images by €' = (', .., Oy, ).

n P n F P n

. S ke = Z . (. ke — ax il S OF k) [ y

mgx[Z max Z g;i(C.6%)] (cf?%,‘)[mgkz Z q;(C5.6%)] lllc_'_t.‘& Z n},}x[z 4;(C;,0%)] (33)
i=1 K=1 =1 K=1 K=1 =1

For any fixed centers vector €', and any 1 < k < P, the optimal #* is determined as 6% = argmazy G 6.C)

where G(6,C) = z;':l 9;(C;,8). Hence, for any C, the optimal part parameters #% are identical, as maxima

of the same function. Clearly the maximum over ¢ also posses this propertv.

The proof can be repeated in a similar way for the star model presented in [21], in which the center node
is an additional 'landmark’ part, as long as the sum over all model interpretations in an image is replaced
by the single maximal likelihood interpretation.

B Part weights introduction

Here we establish the functional equivalence between classifiers with and without part weights for weak
learners of the form (14). We use the identity

log G(z|u, ) — v = o' log Glz|p', ') — '] (34)

where

W=p, =ax, 9’:%[9—m%mlc;g;??r—%(a——)loym

to introduce part weights into the classifier. This identity is true for all o = 0. We apply this identity to
each part k in the classifier (14), with of = |ZF|~14, to obtain

i F
() = ¢ log Gz|uk, TF) — pF = & ¢ oo G|, TF ) — ¥ 25
fiI) ;Lg}%) og Glr|ug, Xg) — v ;ﬂ [Iglgf}) og G(z|pg, X ) —v* ] (35)

K

where Zf = o*¥F is has a fixed determinant of 1 for all parts. The weights o* therefore (inversely) reflect

covariance scale.
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Proof of lemma 1

We differentiate the loss w.r.t. v

N N
> ep-fI) )+ Y ep(fI) - v) (36)

{izwi=1} {imgi=—1}

N
ol p T -
D= E_l exp(—wi[f(I:) —v]) = —

For f = f — 1, (36) gives property (21). Solving for v gives

N N
exp(r) z exp(—f(I;)) = exp(—v) Z exp(f(I;)) (37)
{tu=1} {iyi=—1}

from which (20) follows. Finally, we can compute the loss using the optimal v

‘\' B \ 7 é‘
il p> : exp(f(I;)) .
S ewp-ulf) —v) = | S exp(—1)
= Y, exp(—f({i) {ipi=1}
| {dwi=1} i
N 4 -3
5 exn(f(L) N
+ {«,;",;':—1} E exp(f(I;))
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from which (22} follows.
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