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Abstract: 
 
We  investigated  the  computational  properties  of  natural  object  hierarchy  in  the 
context of constellation object class models, and its utility for object class recognition. 
We  first  observed  an  interesting  computational  property  of  the  object  hierarchy: 
comparing the recognition rate when using models of objects at different levels, the 
higher more inclusive levels (e.g., Closed‐Frame Vehicles or Vehicles) exhibit higher 
recall  but  lower  precision when  compared with  the  class  specific  level  (e.g.,  bus). 
These  inherent  differences  suggest  that  combining  object  classifiers  from  different 
hierarchical levels into a single classifier may improve classification, as it appears like 
these  models  capture  different  aspects  of  the  object.  We  describe  a  method  to 
combine these classifiers, and analyze the conditions under which improvement can 
be  guaranteed. When  given  a  small  sample  of  a  new  object  class, we  describe  a 
method  to  transfer  knowledge  across  the  tree  hierarchy,  between  related  objects. 
Finally, we describe  extensive  experiments  using  object  hierarchies  obtained  from 
publicly  available  datasets,  and  show  that  the  combined  classifiers  significantly 
improve recognition results. 
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Antithesis Modeling for Object Recognition 

We now introduce a novel framework for object categorization developed at ETH which is 
based on antithesis modeling. On the theoretical side, this framework provides a sound 
argument for summing evidence, legitimizing the common, often unjustified practice in the 
context of Hough transform based approaches. On the algorithmic side, we propose a compact 
parametric representation which allows for efficient search of local maxima by means of fix-
point iterations. We show that in this proposed framework, robust detection can be achieved 
by fast nearest-neighbor matching on the feature level, as opposed to the more expensive soft-
matching required in comparable approaches. In the following sections, we describe the 
algorithm’s main ideas. For details, as well as a quantitative evaluation, we then refer to 
[ETH-1], where the method’s performance is also compared to a state-of-the-art detector. 

1.1 Antithesis Modeling 
Many current object detection systems are based either on a feature transformation (such as 
the Hough transform), or on a sliding-window classification scheme. The former methods fall 
into the category of bottom-up systems, which try to predict high-level object information 
from low-level features. The latter test all possible hypotheses and validate them by actively 
sampling low-level features, i.e. using a top-down strategy. The initial formulation of our 
antithesis framework presented below also falls into the class of sliding window classifiers. 
However, as a result of the concrete choice of our object model, we are able to rewrite it as a 
Hough transform-based system. In other words, our concrete modeling choice makes the 
duality of sliding window and Hough transform based classifiers explicit. 
 
The main idea of our approach is diametrically opposite to most current object detection 
approaches from the literature (e.g. [2, 3, 6]). Instead of trying to model the likelihood that a 
given feature distribution stems from an instance of the target object category, we are 
interested in the probability of the contrary hypothesis, namely that the feature configuration 
occurs accidentally. The aim is then to quantify the probability that the features arise given 
the following antithesis: the observed feature configuration f is a random phenomenon, i.e. 
not due to an object. If this probability is small, then the antithesis has to be rejected, which 
leads to the conclusion that an object is present. Thus, the goal is to express the probability 
P(f |H0, λ) of the observed features f for a given object position λ and assuming that the 
antithesis H0 holds. 
 
The big advantage of this formulation concerns the common assumption of independence 
between features. Such an assumption is often required for computational feasibility, but it is 
not justified when we try to express the joint likelihood of a feature configuration belonging 
to an object, especially if features are sampled so closely that they overlap in the image. 
Consequently, current local feature-based object detection approaches mainly differ in the 
varying degree of feature independence they assume [2, 3, 6] and in the measures they take to 
compensate for the problems caused by that oversimplifying assumption. 
 
Under our antithesis H0, in contrast, the features are random and as such independent of each 
other. Hence, the probability factorizes P(f |H0, λ) = ∏i P(fi |H0, λ), and it remains to quantify 
the “randomness” of a single feature fi. On the one hand, a feature is random if it cannot be 
explained by the object model. On the other hand, if a feature is consistent with the model, 
there is still a slight chance that this happened accidentally, i.e. with probability ε < 1. The 
two cases can be fused into a single expression 
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where 1(fi ∈ Oλ) stands for the indicator function, which is 1 if the feature fi is consistent with 
the object Oλ at location λ, and 0 otherwise. In order to avoid having to make a hard decision, 
we relax the indicator function and replace it by a continuous function C(fi |λ), which 
expresses the confidence that feature fi is consistent with the object model. 
 
The validity of the antithesis can now be evaluated for every possible position of an object, as 
in a sliding window approach. As nearby positions tend to be similar (which results in similar 
feature probability), we are seeking for locations where the antithesis is locally most unlikely. 
Putting everything together, the task of object detection reduces to minimizing the following 
function 
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where the term C(fi |λ) encodes the object model information, and the reliability term ε does 
not affect the position of the minimum and drops out. As we can see, the information 
provided by features is combined additively. This is important for the robustness of the 
detection system and will be discussed in the following section. 
 
The above derivation defines the framework only in a generic form. In order to get a concrete 
algorithm, the confidence function C has to be specified to encode an object model. For the 
detailed derivation how that is done in our proposed approach, we refer to [ETH-1]. As we 
show there, our chosen representation in terms of a parametric mixture model allows us to 
predict the object center in a Hough-transform like fashion, so that recognition can be 
performed very efficiently by means of fix-point iterations. 

1.2 Summation of Evidence 
As one of our main contributions, our proposed antithesis model leads to a sound explanation 
of the common practice of summing evidence. This summation, while yielding empirically 
good performance [6, 7], has often been used without a convincing justification. A rather 
pragmatic view on this question of summing information (provided by features) or taking 
their product is given by Kittler et al. [4]. They point out that the sum is a more robust way to 
combine classifiers than using their product. From a more practical point of view, the implicit 
shape model (ISM) [6] has received considerable attention. This Hough transform based 
algorithm is formulated in a probabilistic framework as a marginalization over features 

∑=
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where I denotes the observed image. The first term describes the occurrence distribution 
where the object center is expected, relative to the observed feature, whereas the second term 
measures the matching confidence. Object detection is then achieved by finding maxima of 
p(λ | I). As such, the algorithm is very similar to ours. However, this formulation implies that 
only one or the other feature is observed, while in practice they are all observed 
simultaneously. The question is: how can the summation of evidence, which leads to the 
empirically observed robust performance, be justified else? We believe that our antithesis 
model gives a nice and sound argument to this practice. Moreover, it suggests using a 
confidence measure instead of the probability density. Although these two quantities are 
strongly related, choosing one or the other has a strong impact on the results, as we will show 
in Section 1.4. 
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Williams et al. [9] approach the problem from a different direction based on a model 
introduced by Sudderth et al. [8]. There, the joint distribution of the object and the features is 
considered. In order to make that model tractable, the features are considered to be 
independent such that the joint probability factorizes, i.e. P(f1... fn, λ) = P(λ) ∏i P(fi | λ). They 
obtain a justification for summing the evidence using a first-order Taylor approximation. 
However, the independence assumption made in this model is not very appropriate. In reality, 
given the presence of an object there are often long-distance interactions among features, 
which are not modeled by their framework. Although our model does not exploit these 
dependencies either, we do not reason about the presence of an object, but about the absence 
of an object, in which case the independence assumption can more readily be justified. 

1.3 Soft‐Matching Strategies 
Our object representation builds on local features, which have become a matured image 
representation. The basic concept is to extract features fi at given locations li, which are then 
vector quantized and represented by a representative codeword wi. Due to noise or 
quantization effects, it may happen that the closest codeword is not necessarily the best 
association. The robustness of the system can therefore be increased by allowing some degree 
of soft-matching. Hence, one single feature is matched to several codewords instead of only 
one, and several occurrences are generated. Such a procedure has the positive side effect that 
it increases the number of samples available to estimate the distribution. Matching features to 
codewords happens at two places, namely during learning and recognition, where both can 
use soft or hard matching. The advantage of hard matching is that it is much faster to perform 
at recognition time [5], which has to be traded off for system robustness. The interesting 
question here is: does soft-matching yield a benefit? 
 

 
Figure 1. Soft-matching versus nearest neighbors. The black circles indicate feature values, whereas 
the white ones represent codewords. The single black circle at the bottom is a feature fi observed in a 
new test image. The features at the top are from the training set and are used to learn the occurrence 
distribution. One can see that the same activation radius can be obtained for all three variants, 
depending on the degree of soft-matching (1, 3, or 5-NN in this example) used during learning and 
recognition, respectively. 

Interpreting feature matching in a probabilistic manner, the hard matching (i.e. NN-rule) 
corresponds to an activation distribution peaked on the best match. Soft-matching corresponds 
to a blurring of that (codeword) activation distribution. Consequently, we argue that applying 
soft-matching during learning and recognition corresponds to a double blurring, and a similar 
effect could be achieved by applying a stronger blurring either during learning or at 
recognition time (see Figure 1). As soft-matching yields more activations, it is preferably 
applied during learning. Since the resulting occurrence distribution will still be compressed by 
our parametric mixture model, this does not incur too much of an overhead. By shifting soft-
matching to the learning stage, it becomes thus possible to use faster NN-matching during 
recognition, where speed is of prime importance. As we show in the attached paper [ETH-1], 
this strategy can be used without decreasing recognition performance. 
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Figure 2. Detection time and performance at equal error rate with reduced occurrence distributions on 
two test sets. Feature extraction (in red) is a constant cost, which can be reduced dramatically with 
optimized detectors. With our proposed approach, the detection time can be significantly reduced at the 
cost of only a small decrease in accuracy. 

1.4 Density versus Confidence 
The probabilistic argument given in [6] defines the objective function to hypothesize object 
positions as a sum of probability densities. Our antithesis framework derived in Section 1.1, 
on the other hand, suggests the use of the confidence level associated with these densities. In 
[ETH-1], we have experimentally compared those two variants. Although the difference 
between the two objective functions seems actually fairly small, i.e. only a rescaling of each 
density function by a feature-dependent factor, an astonishing impact could be observed. 
Namely, the confidence based objective function suggested by the antithesis modeling clearly 
outperforms the density based variant.  

1.5 Effect on Run‐time 
Finally, the parametric object model introduced in Section 1.1 offers an interesting 
opportunity for speeding up the proposed approach’s run-time. Effectively, this model 
represents each feature’s spatial distribution on the object as a mixture of Gaussians with a 
feature-dependent normalization factor. In order to speed up recognition, we can now drop all 
mixture components whose peaks are smaller than x% of the globally maximal peak. Figure 2 
reports the resulting average detection time, as well as the achieved performance at equal 
error rate, for two test datasets of motorbikes and pedestrians. We see that for values up to x = 
10% and 15%, respectively, the computation time (ignoring feature extraction) can be reduced 
by about half without decrease in accuracy. This yields a detection time of about 1.2s for a 
motorbike image (after feature extraction). If runtime is of prime importance, we can also 
sacrifice some accuracy in favor of speed. On the pedestrians, for example, we can increase 
the threshold to x = 35%, which yields the same equal error rate as the published baseline 
from [6]. Doing so, the detection time (after feature extraction) decreases from initially 5.5s to 
only 1.1s. Note that this simple, but very effective heuristic exploits the structure of our 
parametric model and would not be easily realizable in a non-parametric framework. 
 
This result is especially interesting in conjunction with the fast feature detectors developed by 
KUL in WP1. With their help, the remaining feature extraction time of, on average, 1.2s and 
2.4s for the motorbike and pedestrian images, respectively, can be dramatically reduced to 
only a few milliseconds. The proposed antithesis modeling framework thus promises a way to 
leverage that speed also for the later recognition stage. 



 

15 

References 

[ETH-1] A. Lehmann, B. Leibe, L. Van Gool. “Antithesis Modeling for Object Recognition”, 
submitted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), 
Anchorage, USA, Oct. 2008. (appended to this document) 
 
[2] D. Crandall, P. Felszenszwalb, D. Huttenlocher, “Spatial Priors for Part-Based 
Recognition using Statistical Models”, in IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR’05), 2005. 
 
[3] R. Fergus, A. Zisserman, P. Perona, „Object Class Recognition by Unsupervised Scale-
Invariant Learning“, in IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR’03), 2003. 
 
[4] J. Kittler, M. Hatef, R. Duin, J. Matas. „On Combining Classifiers”. In IEEE Transactions 
on Pattern Analysis and Machine Learning, Vol. 20(3), pp. 226–239, 1998. 
 
[5] B. Leibe, K. Mikolajczyk, B. Schiele, „Efficient Clustering and Matching for Object Class 
Recognition“, In British Machine Vision Conference (BMVC’06), 2006. 
 
[6] B. Leibe, A. Leonardis, B. Schiele, „Robust Object Detection with Interleaved 
Categorization and Segmentation“, in International Journal of Computer Vision, Vol. 77, No. 
1-3, 2008. 
 
[7] A. Opelt, A. Pinz, A. Zisserman. „A Boundary-Fragment Model for Object Detection”. In 
European Conference on Computer Vision (ECCV’06), 2006. 
 
[8] E. B. Sudderth, A. Torralba, W. T. Freeman, A. S. Willsky. “Learning Hierarchical 
Models of Scenes, Objects, and Parts”. In International Conference on Computer Vision 
(ICCV’05), 2005. 
 
[9] C. K. I. Williams, M. Allan. “On a Connection Between Object Localization with a 
Generative Template of Features and Pose-Space Prediction Methods”. Technical Report 
0719, University of Edinburgh, 2006. 
 
 
 


