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Abstract:

We investigated the computational properties of natural object hierarchy in the
context of constellation object class models, and its utility for object class recognition.
We first observed an interesting computational property of the object hierarchy:
comparing the recognition rate when using models of objects at different levels, the
higher more inclusive levels (e.g., Closed-Frame Vehicles or Vehicles) exhibit higher
recall but lower precision when compared with the class specific level (e.g., bus).
These inherent differences suggest that combining object classifiers from different
hierarchical levels into a single classifier may improve classification, as it appears like
these models capture different aspects of the object. We describe a method to
combine these classifiers, and analyze the conditions under which improvement can
be guaranteed. When given a small sample of a new object class, we describe a
method to transfer knowledge across the tree hierarchy, between related objects.
Finally, we describe extensive experiments using object hierarchies obtained from
publicly available datasets, and show that the combined classifiers significantly
improve recognition results.



Exploiting Object Hierarchy: Combining Models from Different Category Levels

Abstract

We investigated the computational properties of natural
object hierarchy in the context of constellation object class
models, and its utility for object class recognition. We first
observed an interesting computational property of the ob-
Ject hierarchy: comparing the recognition rate when using
models of objects at different levels, the higher more inclu-
sive levels (e.g., Closed-Frame Vehicles or Vehicles) exhibit
higher recall but lower precision when compared with the
class specific level (e.g., bus). These inherent differences
suggest that combining object classifiers from different hi-
erarchical levels into a single classifier may improve clas-
sification, as it appears like these models capture different
aspects of the object. We describe a method to combine
these classifiers, and analyze the conditions under which
improvement can be guaranteed. When given a small sam-
ple of a new object class, we describe a method to transfer
knowledge across the tree hierarchy, between related ob-
Jects. Finally, we describe extensive experiments using ob-
Ject hierarchies obtained from publicly available datasets,
and show that the combined classifiers significantly improve
recognition results.

1. Introduction

Human cognition relies on a hierarchal representation of
objects in the world (see examples in Fig. 1), in the pro-
cess of recognizing and referring to objects. How can we
use such hierarchical structure to improve object recogni-
tion and categorization? This question has been addressed
in a number of recent papers, mostly pursuing different di-
rections to exploit this hierarchy when confronted with new
categories (the small sample problem). The directions un-
der study included the transfer of knowledge from known
to new categories using Bayesian priors [ | 1], sharing parts
between objects at different levels of the hierarchy and im-
proving generalization [|3, 7], learning distance functions
using related classes [0, V], and transferring features [0, 4
or structure [5] from known classes to new ones. Often,
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Figure 1. The four hierarchies used in our experiments. Categories at
different levels of the tree are labeled (and color-coded) as follows: L’
denotes the Leaf level, "P" denotes the Parent level. "G’ denotes the Grand-
parent level, and "R’ the level ol all objects. Our largest hierarchy (lowest
diagram above) contains object classes from the CalTech256 database [+].
The facial hierarchy contains objects from [12].

when working on object class recognition, objects are repre-
sented by parts (or features) learned directly from example
images of each object category, where relations between the
parts (geometrical and possibly other) may sometimes be
captured by graphical models trained using the same data.
We address the question posed above from a somewhat
different point of view. We observe that the natural object
hierarchy offers at our disposal a rich family of classifiers,
for each category in each node of the hierarchy tree; the
similarity between these classifiers varies, possibly in some
relation to the distance between them on the object tree,
but they all share some common characteristics. For exam-
ple, if we build these classifiers with a discriminative algo-
rithm that uses the background images of the CalTech256



database [%], then all the classifiers are trained to distin-
guish a certain isolated object from a background of clut-
ter. Such commonalities may permit the combination of
different classifiers to improve the recognition of specific
object classes. We expect this improvement to be more pro-
nounced when using related objects, and in particular ob-
jects from higher (inclusive) levels in the hierarchy tree.

The idea of combining classifiers has been extensively
studied in the machine learning community under different
frameworks, including committee machines, ensemble av-
erage, or boosting. In light of the so-called bias/variance
dilemma [7], the ensemble average of a number of classi-
fiers should improve generalization, as long as the classi-
fiers are both accurate and diverse. One common way to
obtain such a collection of classifiers is to train different
classifiers with different samples of the training data. But
note that the object recognition classifiers, trained to recog-
nize different objects at different levels of the object hier-
archy tree, may be viewed as just such - classifiers trained
on different resamples of the training data. Viewed this way,
we may expect to see improvement when combining any set
of classifiers, even those trained to recognize very distinct
objects. At the same time, for obvious reasons, we expectto
see larger improvement when combining classifiers trained
to recognize similar objects (those closer to each other on
the tree), as compared to very different ones.

Thus the main conceptual contribution of this paper is to
identify the object hierarchy as a source of classifier vari-
ability, which is induced by different and inherently mean-
ingful resampling of the training data. We then go ahead
and describe a framework to combine the classifiers lin-
early, using each classifier's probabilistic output and the
corresponding LRT (Loglikelihood Ratio Test) value. This
approach is somewhat different, and possibly more power-
ful, than the traditional ensemble of classifiers, since each
object classifier builds a different representation of the data
based on the training subset that it sees. The approach dif-
fers from boosting and bagging in that the data resampling
is not based on some bootstrapping procedure, but on super-
vised information given to the system via the object hierar-
chy tree. Clearly our approach could be augmented with
boosting to further improve results.

The rest of this paper is organized as follows. First, we
review in Section 2 the object class constellation model used
to obtain each object classifier, and describe how we com-
bine these classifiers. We also discuss the theory underlying
our approach. In Section 4 we show that a number of in-
tuitive object hierarchies (described in Section 3), provided
by a human teacher, reveal consistent and sensible computa-
tional characteristics. Specifically, classifiers built for more
specific objects (such as "bus’) - corresponding to the lowest
level in the object tree, are characterized by high precision
(or high specificity) and low recall (low sensitivity), while

classifiers built for more general classes of objects at the
next levels up the tree (such as "vehicle”) show the opposite
- low specificity and high sensitivity. In general, the speci-
ficity of object classifiers decreases as we ascend the object
tree. Then, In Section 5, we describe how to use the hier-
archy to transfer knowledge between classes, as a way to
address the small sample problem. Finally, we investigate
in Section 6 combined classifiers as a general framework
for the construction of object recognizers. We show empiri-
cally that combined classifiers improve performance signif-
icantly (over all constituent classifiers), and that typically
three-level combinations perform better still than two-level
combinations.

2. Combining Object Models

Our object class model To leam object models, we use
the method described in [2], because its computational ef-
ficiency allows us to consider models (and images) with
many features. The algorithm learns a generative rela-
tional part-based object model, modeling appearance, lo-
cation and scale. Location and scale are relative to the un-
known object location and scale, as captured by a star-like
Bayesian network. The model’s parameters are discrimina-
tively optimized using an extended boosting process. This
model has been shown to achieve competitive recognition
results on standard benchmark datasets, approaching the
state-of-the-art in object class recognition. Thus we be-
lieve that the results and improvements we show are gen-
eral, and can be replicated with other, conceptually similar,
part-based models.

Based on this model and some simplifying assumptions,
the likelihood ratio test function is approximated (using the
MAP interpretation of the model) by

Fix)= mgx urenQafc log p{u|C, Qk) — v {1)

with P parts, threshold v, C denoting the object’s location
and seale, and Q(x) the set of extracted image features.

Classifier combination rule In our experiments we com-
bined 2, 3 and 4 object classifiers. For each classifier,
we used its LRT value from (1), obtaining a 2-, 3- or 4-
dimensional vector respectively. We then trained a Support
Vector Machine classifier with the same training data repre-
sented in this new vector space, using a linear kernel.

The bias/variance dilemma Let x € X denote the im-
age, F(x) the LRT output of the classifier from (1), and
D){x) denote the binary random variable assigning 1 to class
images, and -1 to background images. Tt can be readily



shown that the mean-square error between classifier F' and
the desired output 1) can be decomposed as follows:

E[(F(x) - E[D®)] = BEF®)+V(FEX)
B(F(x)) (BE[F(x)] - E[DX)]
VIFx) = E[Fx) - EFX)?

where B(F(x)) denotes the classifier’s bias, and V (F(x))
its variance. It can also be shown that when considering
an ensemble average of such classifiers, the bias of the new
classifier remains the same as the bias of F'(x), but its vari-
ance is reduced. As a result, the mean square error of the
new classifier is also reduced.

2

The sensitivity/specificity tradeoff We now analyze the
case of two classifier combination, where one classifier has
high sensitivity and low specificity and the other has low
sensitivity and high specificity. Recall that this is the com-
putational property that distinguishes object classifiers from
lower levels of the object hierarchy tree and classifiers from
higher levels of the tree (see Section 4), and thus this anal-
ysis is revealing.

Given the function F'(x) from (1), define the classifier
F*(x) = sign(F'(x))!. Let Fy(x), F5(x) denote two clas-
sification functions, and G(x) = w its ensemble
average. Let G* (x) = sign(G(x)) denote the correspond-
ing classifier, and let G**(x) = w denote an-
other related classifier.

We compute the error probability Pr of classifier G* (x):

4Pg(G*(x)) = E[(G* (x) — D(x))?] 2)

= B[((G"(x) - " X))+ (G**(x) — D(x)))¥]

= E[(G" - VP + E[(F - D))

+E[(+(F5 — D))®] + 2E[(+(F} — D)(3(F5 — D))

R2E[(G" - G"){E[(FT — D)) + E[3(F; — D))}
Note that

E[(+(F} (x) — D(x)))?] = Pu(F})

and

EL4(F (%) — D)] =
—PlF (x) =
where AS(F}) denotes the classifier’s preference to either

recall (sensitivity) or precision (a measure typically simi-
lar to specificity)?, i.e., its sensitivity minus its specificity.

PIF(x) =1, D(x) = -]
—LD(x) = 1] = AS(F)

!For convenience, we define the sign function as sign(F) = 1if F' >
0, and sign{F) = —1if F < 0.

“Notation reminder: recall and sensitivity denote the rate of true pos-
itives, specificity denotes the rate of true negatives, and precision denotes
the fraction of true positives among all examples identified as positive.

Henceforth we shall call AS{F}) the ’recall/precision pri-
macy’. Finally,

E[(G* —G™? = P(ryr=1,F——1) + P(F{=—1,5;=1)

Pe(Fy) + Pr(Fy)

A

(with equality only when £, F5 err on disjoint sets of ex-
amples).
Putting all the above together, we get

APg(G*) <2Py(F})+2Pp(FY) + 2A8(F})AS(FY))]
+2E[(G" — G")(AS(F) + AS(F3))
—2p(4(Ff — D), +(F5 — D)) 3)

where p(X,Y) = F[XY] — E[X]E[Y] denctes the non-
normalized correlation coefficient of X, V.
We can now state our main result:

Result: Assume that I, FJ are two classifiers with op-
posite recall/precision primacy, i.e. and w.Lo.g., AS{F}) >
0 and AS(F}) < 0 thus AS(F}) - AS(F}) < 0. As-
sume further that the magnitude of their primacy is similar,
ie., [AS(EY)| ~ |AS(F2)], and that their correlation with
respect to the data is small, i.e., |p(1(F} — D), (L(FF —
DY) < |EA(FT — D) E[L(Ff — D)]]. Then it follows
from (3) that

Pe(F!) + Pe(ly)
2

Pep(G")y <

In other words, the error probability of the combined classi-
fier is smaller (usunally significantly so) than the mean error
probability of the constituent classifiers.

In practice, we see that the combined error is typically
smaller than the minimal error of the constituent classifiers
with opposite recall/precision primacy, see Section 6.

3. Datasets and General Experimental Setup
Datasets

In our experiments, we used an extensive data set con-
taining various objects that can be found in natural scenes.
As much as possible, classes were taken from standard
benchmark datasets, with a few exceptions (to be detailed
shortly). We organized these objects into four natural hier-
archies. Examples from the object classes and background
images can be viewed in Fig. 2. A summary of the hierar-
chies is provided in Fig. 1.

In the rest of this paper we use the following notation to
refer to object classes at different levels in the hierarchy (see
Fig. 1): specific object classes, like *Elk’ and *Tricycle’, are
labeled "L’ (for Leaf). More inclusive categories, like "Ter-
restrial Animals’, are labeled 'P’ (for Parent). Categories at
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Figure 2. Examples taken from the object classes and background images.
used to train and test our different Category level models, see Fig. 1.

the next level up, like *Animals’, are labeled *G’ (for Grand-
parent). Finally, the category of all objects is denoted "R’
(for Root).

For the discriminative learning procedure (see Section 2)
and in order to evaluate the recognition results, we used two
types of background. When using classes from the Cal-
Tech256 dataset [#] (the lowest hierarchy in Fig. 1), we used
their Clutter Background images as well. With the remain-
ing 3 smaller hierarchies and to achieve greater variability
(and additional challenges) in the conditions of our exper-
iments, we used our own Object Background dataset, con-
taining various images of objects different from the learnt
objects. This background was manually collected using
Google, PicSearch and online catalogues.

CalTech256 Object Hierarchy This hierarchy includes
pictures of various objects from the CalTech256 dataset [%],
see Fig. 1. We chose objects that can be naturally organized
into a sensible hierarchy: 'Animals’ - including 'Terres-
trial Animals’ and *"Winged Animals’, and "Ground Trans-
portation” - including "Open-Frame Vehicles’ and "Closed-
Frame Vehicles’. Models were learnt for objects from the
"Terrestrial Animals® and "Open-Frame Vehicles® classes;
other objects were used for training G’ and "R’ level mod-
els. The CalTech256 Clutter Background was used with
this dataset. We note that our category affiliations may not
be identical to those used in [£]. in an attempt to empha-
size visual similarities over functional (thus ignoring, for
example, the motorized vs. un-motorized distinction); we
also used different names for the inclusive categories. The
images in the Ground-Transportation Category were flipped
to achieve uniform orientation (all vehicles pointing right-
wards).

Closed-frame Vehiclell Hierarchy This hierarchy con-
tains 5 classes of common vehicles (more so than those in
the CalTech256 database), contrasted with pictures from the
"Object Background’. Pictures (for the vehicle classes and
background) were chosen manually from Google and Pic-
Search, showing vehicles at similar canonical orientation.

Faces Hierarchy This hierarchy contains pictures of 5 in-
dividuals taken from [!2], with varying facial expressions.

Basic-Level Hierarchy This hierarchy was built to match
standard hierarchies favored in the cognitive science liter-
ature, representing canonical categorization levels (basic-
level, sub-ordinate, and super-ordinate). Pictures were ob-
tained from the CalTech101 subset of [¢], or collected using
mainly online shopping catalogues.

General experimental setup

In general, we always tested recognition performance for
specific object categories from level "L’ (leaf) of all the re-
spective hierarchies. Thus, for example, when comparing
three models such as "Llama’, "Animal’, and "Terrestrial
Animal’, they were all tested on the recognition of Llama
pictures.

For each hierarchy, all models were trained with the
same background images but different object images. All
tests were done with the same background and test images,
and the same algorithm parameters. Each experiment was
repeated 60-100 times, with new random samples of train
and test images. Since the Equal Error Rate (denoted EER)
of the ROC is not well suited when the number of posi-
tive examples is much smaller than the number of negative
examples [ 1], we used the preferred EER of the Recall Pre-
cision Curve (RPC).

To compare performance, we report two measures: (i)
Precision and Recall of each classifier; (ii) EER of the RPC
curve for each classifier, computed by varying the threshold
of the optimal linear SVM classifier.

4. Object Hierarchy

We study the computational properties distinguishing
objects from different levels in the object hierarchy tree, re-
vealing opposite recall/precision primacy - high precision
for the lowest level (specific) models, and high recall for
higher level (inclusive) models. With sufficiently large sam-
ples per object, and given that we always test the recognition
of object classes from level "L, not surprisingly object mod-
els from level "L" show superior recognition performance.
In accordance, we see a decrease in performance as we use
models ascending the object hierarchy tree.

Experimental setup We tested the recognition of each
specific object from level 'L’ by 5 types of models learnt
using object categories from different levels in the hierar-
chy tree, see Table 1. To assure fair comparison, all models
saw the same train images of the 'L’ object they were tested
on; an illustrative example of this procedure is shown in
Table 1. In different experiments we varied the number of
train images per 'L’ object: 5. 10, 15, 20, 25 and 30. Three



hierarchies were used: CalTech256 Object, Closed-frame
Vehiclell, and Faces.

Exp | Category training set |[Example:
L P G R DB |[Llama

1 1 ILlama

2 5] ILlama, Camel, Dog, Elk
Elephant

3 5 ILlama, Duck, Owl
Swan, Ostrich

4 5 ILlama, Soda-can, Sock
Segway, Motorbike

5 5 |Llama, Segway, Tricycle
Motorbike, Mountainbike

Table 1. This table shows the 5 different models learnt and evaluated on
the recognition of "L’ level objects. 'DB” refers to a "G’-level category
from a Different Branch of the tree. Examples are shown for the Llama as
"L level object. In each different experiment, each "L’ class provided the
same fixed amount of pictures to the training set (5, 10, 15, 20, 25 or 30.)

With all the 3 hierarchies, we used test data composed
of images of the target object and images of the relevant
background in equal proportion. None of the test images
was used for training. With the CalTech256 Object Hier-
archy, where the models are learnt using the Clutter Back-
ground, we also conducted additional experiments, using
for test data images from the target 'L’ object mixed with
images of a different 'L’ object.

4.1. Results

Recall and Precision are shown in Fig. 3, comparing
recognition when using 'L’ and "P* level models (left), and
'L’ and "G’ level models (right). In the first comparison
(Leaf vs. Parent), only 4 representative examples from the
3 hierarchies are shown; very similar results were obtained
with all other objects. In the second comparison (Leaf
vs. Grandparent), all objects from the CalTech256 Object
Hierarchy are shown. These graphs clearly show the Re-
call/Precision Primacy effect, where 'L’ models show high
precision and low recall in recognition, while 'P* and "G’
models show high recall and low precision. This happens
for all objects, regardless of the number of training exam-
ples.

The Recall Precision Curve and its corresponding EER
are shown in Fig. 4 for two representative examples. Not
surprisingly, we see that with sufficient training examples
per 'L’ object (as for the Dog class), the 'L’ model performs
best, and performance deteriorates as we ascend the object
hierarchy. As the sample per class decreases, the advantage
of the 'L’ model over the 'P* model decreases, eventually
the "P* model might outperform the 'L’ model. Once again,
similar phenomenon is observed for all objects.

Looking more closely at these results, we see that the
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Figure 3. Recall and Precision of classifiers. Left column: four represen-
tative object classes, recognized with the "L, 'P" and the combined "L+P’
models. "SU" refers to the SUV class, "Mr" - Motorbike, "Ep’ - Elephant,
"KA'- one of the female faces. The numbers indicate the size of the train
set (e.g., "SUS refers to the SUV model trained with 5 SUV examples).
Right column: all learnt object classes from the CalTech256 Object Hier-
archy trained with 30 images per object class, and recognized with the 'L,
"G’ and the combined "L+G™ models.

recall/precision primacy difference occurs regardless of the
overall recognition rate. Specifically, for the Elephant with
10 training examples, we see from Fig. 4 that the "P* model
performs better than the 'L’ model, and vice versa for the
Elephant with 30 training examples. Still, Fig. 3 shows the
same Recall/Precision primacy in both cases.

5. Using hierarchy to transfer knowledge

We study here how to transfer information between re-
lated objects, located nearby in the object hierarchy tree, to
handle the problem of small sample or the appearance of
new objects.

Experimental setup We tested the recognition of each
specific object from level 'L’ by 7 types of models learnt
using object categories from different (more inclusive) lev-
els in the hierarchy tree, see Table 2, which also shows an
illustrative example of this procedure. The test background
set consisted of 75 background images, while the test object
set consisted of 30 images. Only the Basic-Level Hierarchy
was used.

5.1. Results

Fig. 5 shows the results. Clearly the 'P’ class model
transfers information most effectively (seen in the superi-
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Figure 4. Performance of the different category level models. Top & mid-
dle: left column - the EER of the RPC, right column - full RPC curve where
the point of the original classifier is highlighted . Once again, 'L’ denotes
the Leaf category, "P’ - Parent, 'G’ - GrandParent, 'R’ - Root, and "DB’
- Different Branch. Top: performance of all models tested on the 'Dog’
class from the Caltech256 hierarchy. Middle: same for the "Mountain-
Bike’ class from the Caltech256 hierarchy. Bottom: performance of the
'L’ and "P models on the 'SUV" class from the "Closed-Frame VehiclesIl’
hierarchy and on the Elephant class from the "Terrestrial Animals’. EER
scores are shown as a function of the size of the training set - increasing
from 5 up to 25 for the SUV, sizes 10 and 30 for the Elephant. Note the
decrease in the performance superiority of the SUV "P’" model over the 'L’
model till it is insignificant, as the train size increases. Note the opposite
superiority of 'L’ vs. "P" models when comparing the two Elephant class
models.

ority of Exp. 3 over Exp. 5-7), and improves performance
over the small sample case (seen in the superiority of Exp. 4
over Exp. 2).

5.2. Discussion

The results above show a clear hierarchy structure, where
models which are learnt from nearby objects (brothers)
in the object hierarchy tree can substantially improve the
recognition results of each other. It shows the possibility for
the success of a learning-to-learn scheme - where fewer ex-
amples of the goal object class are used in the learning pro-
cess, augmented by examples from different related classes.

Ex

Object training set
L P G DB BG

Example:
Classic Guitar

Classic Guitar

Classic Guitar

| B

Electric Guitar

Classic, Electric Guitar

Grand Piano

30 Living Room Chair
30 |Background

~1| O | &

Table 2. The models learnt in the different experiments on the transfer of
information between classes. "L’ refers to the Leaf level, "P’ to the Parent,
"G’ to the Grandparent, 'DB’ to a Different Branch of the tree, and "BG’
to the background.
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Figure 5. Transfer of knowledge between related classes. Description of
the different experiments is given in Table 2.

6. Using hierarchy to improve classification via
combination

We now ask whether the combination of two or more ob-
ject model classifiers, which are based on different category
levels, can improve the performance of the original classi-
fiers.

Experimental setup We used the same setup, same data,
and same learnt models as used in Section 4. We tested
different combinations by combining two or more models
from different category levels as described in Section 2. The
different combinations that we studied are summarized in
Table 3.

For comparison, we used a naive alternative method,
which learned directly an object model using the same set
of images as used by the combined model. Each image in
this set was initially weighted to reflect its true weight on
the combined model. For example, when combining two
models such as 'Llama’ and "Terrestrial Animals’, we note
that the Llama images provided all the training set for the
Llama model, and only 20% of the training set for the "Ter-



Exp Example:
Llama as Leaf Level

L+P ‘Llama’ + 'Terrestrial Animals’

L+G ‘Llama’ + *Animals’

L+R ‘Llama’ + "Tree Root’

L+DB Llama’ + 'Open-Frame Vehicles’

P+G "Terrestrial Animals’ + *Animals’

L+P+G 'Llama’ + "Terrestrial Animals’ + *Animals’

L+P+G+R | 'Llama’ + 'Terrestrial Animals’ + *Animals’

+ "Tree Root’

Table 3. The different combinations we studied: "+ denotes a combina-
tion of two models. "L refers to the Leaf level, P’ - Parent, "G’ - Grand-
parent, 'R’ - Root, and "DB" - Different Branch.
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Figure 6. Comparison of combined and original classifiers. 'L’ denotes a
leaf model, 'P’ - parent model, "G’ - grandparent model, "L+P" leaf/parent
combined model and "L+G” leaf/grandparent combined model. Top: ob-
ject models recognized with the 'L, 'P" and the combined "L+P" mod-
els. Bottom: object models recognized with the 'L’, "G’ and the combined
'L+G" models. Top-Left: CalTech256 Object Hierarchy, "Open-frame Ve-
hicle’ and "Terrestrial Animal’, with 30 training images per object class.
Specifically, "Mr" denotes the Motorbike class, "Mn’ - Mountain-Bike ,
'Sg’ - Segway, "To’ - Touring-Bike, "Tri" - Tricycle, 'Ca’ - Camel, "Do’ -
Dog, 'Ep’ - Elephant, "Ek’ - Elk, 'Lm’ - Llama. Top-Right: "Closed-Frame
Vehiclell” Hierarchy with 15 training images per object class, and "Faces’
Hierarchy with 5 training images per object class. Bottom: CalTech256
Object Hierarchies, with 30 training images per object class

restrial Animals’ model; thus in the training of the com-
bined model, the Llama training set received total weight of
0.6, while the remaining 4 classes received total weight of
0.4. The background train set remained unchanged.

6.1. Results

Fig. 6 shows the EER recognition results for all 20 ob-
jects, from the "P’ classes of 'Terrestrial Animals’, "Open-

Figure 7. All different combinations of classifiers. Left: the EER of the
RPC. Right: full RPC (Recall Precision Curves). Top: results when recog-
nizing the 'Dogs’ class. Bottom: results with the "Mountain Bike’ class.

Frame Vehicles’, 'Closed-Frame Vehiclesll’, and ’Faces’.
We show recognition results with 3 models - 'L’, "P°, and
the combined 'L+P’, fixing the number of training examples
to 30, 30, 15, and 5 for each object in the 4 'P’ classes re-
spectively. We also show recognition results with 3 models
-'L’, 'G’, and the combined 'L+P’, with 30 training exam-
ples and two classes of the CalTech256 Object Hierarchy.

Clearly, almost always, the combined model performed
better than both constituent models. This happened for all
objects and all training conditions, regardless of which of
the constituent models was initially superior. The only ex-
ception occurred in the experiments with only 5 training
images per object class (small sample). Moreover, in all ex-
periments the combined model improved significantly the
weak measure (either Recall or Precision) of each of the
constituent models, as demonstrated in Fig. 3.

Fig. 7 shows results with the 7 different classifier combi-
nations, listed in Table 3, for two object classes. These are
representative results - similar results were obtained with all
other classes. Note that the two-level combinations that ob-
tain the highest performance are either the 'L+P’ or "L+G’.
Not surprisingly, therefore, the best results are obtained
with the three- and four-level combinations ("L+P+G’ and
'L+P+G+R’ respectively).

Fig. 8 shows the EER of the RPC in the second test
condition, when test examples included an equal number
of images from the target object and another unrelated dis-
tractor object (instead of the standard background images).
Not surprisingly, when the 'L’ model was combined with
a model whose training set included pictures of the dis-
tractor object, the performance of the combined model was
reduced. However, interestingly enough, this reduction is
rather slight (see Fig. 8). This decrease remains slight even
when the "L’ model is combined with a very poor classifier
(under these conditions), like the 'R’ or 'DB’ ones. Thus
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Figure 8. The EER of the RPC when the test examples included images
of the target object - the "Mountain Bikes’ - and another object (instead
of the standard background images). Top: models tested against *'Camel’.
Bottom: models tested against "Tricycle’.

these results seem to suggest that the improvement obtained
by the combined classifier against the standard background
is not accomplished at the high cost of reducing the discrim-
inability of the new classifier against other, possibly related,
objects.

Finally, we note that in most cases, the comparison
against the naive model showed superior results for the
combined model, while in the other cases the advantage of
the naive model was not significant. On the other hand, the
training time of the naive model was substantially longer.
Moreover, this training procedure is not modular, while the
combination scheme we described is rather flexible.

7. Summary and Discussion

We analyzed the computational properties of constella-
tion object class models, built to describe object categories
at different levels of the object hierarchy tree. An interesting
observation emerged, when comparing specific object mod-
els, trained using images of objects corresponding to the
leaves of the hierarchy tree, with models built to describe
categories at higher levels of the object hierarchy tree. The
first (specific) models exhibit higher precision, while the
second (inclusive) models exhibit higher recall. We pro-
vided the theoretical analysis showing why this situation
should be favorable for the success of a classifier combined
from two such constituents (one with higher precision, the
other with higher recall), and demonstrated experimentally

that significant improvement is indeed achieved in all cases.
In our experiments the combined model performed better
than all constituents models in almost all cases. The im-
provement magnitude was larger when the constituent clas-
sifiers corresponded to nearby objects in the hierarchy tree,
showing that this improvement is not due simply to the
larger training set.

In all our experiments, we used a specific part-based
model that can be learned rather efficiently, and can there-
fore handle a relatively large number of parts (or features).
Although we did not perform experiments to this effect, we
believe that this improvement can be obtained with any ob-
ject class model, and that the phenomena we have observed
do not depend on the specific model we used.
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Antithesis Modeling for Object Recognition

We now introduce a novel framework for object categorization developed at ETH which is
based on antithesis modeling. On the theoretical side, this framework provides a sound
argument for summing evidence, legitimizing the common, often unjustified practice in the
context of Hough transform based approaches. On the algorithmic side, we propose a compact
parametric representation which allows for efficient search of local maxima by means of fix-
point iterations. We show that in this proposed framework, robust detection can be achieved
by fast nearest-neighbor matching on the feature level, as opposed to the more expensive soft-
matching required in comparable approaches. In the following sections, we describe the
algorithm’s main ideas. For details, as well as a quantitative evaluation, we then refer to
[ETH-1], where the method’s performance is also compared to a state-of-the-art detector.

1.1 Antithesis Modeling

Many current object detection systems are based either on a feature transformation (such as
the Hough transform), or on a sliding-window classification scheme. The former methods fall
into the category of bottom-up systems, which try to predict high-level object information
from low-level features. The latter test all possible hypotheses and validate them by actively
sampling low-level features, i.e. using a top-down strategy. The initial formulation of our
antithesis framework presented below also falls into the class of sliding window classifiers.
However, as a result of the concrete choice of our object model, we are able to rewrite it as a
Hough transform-based system. In other words, our concrete modeling choice makes the
duality of sliding window and Hough transform based classifiers explicit.

The main idea of our approach is diametrically opposite to most current object detection
approaches from the literature (e.g. [2, 3, 6]). Instead of trying to model the likelihood that a
given feature distribution stems from an instance of the target object category, we are
interested in the probability of the contrary hypothesis, namely that the feature configuration
occurs accidentally. The aim is then to quantify the probability that the features arise given
the following antithesis: the observed feature configuration f is a random phenomenon, i.e.
not due to an object. If this probability is small, then the antithesis has to be rejected, which
leads to the conclusion that an object is present. Thus, the goal is to express the probability
P(f [Ho, 1) of the observed features f for a given object position A and assuming that the
antithesis Hq holds.

The big advantage of this formulation concerns the common assumption of independence
between features. Such an assumption is often required for computational feasibility, but it is
not justified when we try to express the joint likelihood of a feature configuration belonging
to an object, especially if features are sampled so closely that they overlap in the image.
Consequently, current local feature-based object detection approaches mainly differ in the
varying degree of feature independence they assume [2, 3, 6] and in the measures they take to
compensate for the problems caused by that oversimplifying assumption.

Under our antithesis Hy, in contrast, the features are random and as such independent of each
other. Hence, the probability factorizes P(f |[Ho, 1) = I'[; P(fi|Ho, A), and it remains to quantify
the “randomness” of a single feature f. On the one hand, a feature is random if it cannot be
explained by the object model. On the other hand, if a feature is consistent with the model,
there is still a slight chance that this happened accidentally, i.e. with probability ¢ < 1. The
two cases can be fused into a single expression

P(fy] Hou2) = 8107
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where 1(f; € O,) stands for the indicator function, which is 1 if the feature f; is consistent with
the object O, at location A, and 0 otherwise. In order to avoid having to make a hard decision,
we relax the indicator function and replace it by a continuous function C(f; |4), which
expresses the confidence that feature f; is consistent with the object model.

The validity of the antithesis can now be evaluated for every possible position of an object, as
in a sliding window approach. As nearby positions tend to be similar (which results in similar
feature probability), we are seeking for locations where the antithesis is locally most unlikely.
Putting everything together, the task of object detection reduces to minimizing the following
function

A =argminP(f |H,, 1) = arg mianC(fiM)
y! 2 :

A =argmin ) C(f; | A)loge
4 i

A =argmin ) C(f; | 1)

where the term C(f; |4) encodes the object model information, and the reliability term & does
not affect the position of the minimum and drops out. As we can see, the information
provided by features is combined additively. This is important for the robustness of the
detection system and will be discussed in the following section.

The above derivation defines the framework only in a generic form. In order to get a concrete
algorithm, the confidence function C has to be specified to encode an object model. For the
detailed derivation how that is done in our proposed approach, we refer to [ETH-1]. As we
show there, our chosen representation in terms of a parametric mixture model allows us to
predict the object center in a Hough-transform like fashion, so that recognition can be
performed very efficiently by means of fix-point iterations.

1.2 Summation of Evidence

As one of our main contributions, our proposed antithesis model leads to a sound explanation
of the common practice of summing evidence. This summation, while yielding empirically
good performance [6, 7], has often been used without a convincing justification. A rather
pragmatic view on this question of summing information (provided by features) or taking
their product is given by Kittler et al. [4]. They point out that the sum is a more robust way to
combine classifiers than using their product. From a more practical point of view, the implicit
shape model (ISM) [6] has received considerable attention. This Hough transform based
algorithm is formulated in a probabilistic framework as a marginalization over features

p(l| I):Zp(l| fi)P(fi | |)

where | denotes the observed image. The first term describes the occurrence distribution
where the object center is expected, relative to the observed feature, whereas the second term
measures the matching confidence. Object detection is then achieved by finding maxima of
p(A | 1). As such, the algorithm is very similar to ours. However, this formulation implies that
only one or the other feature is observed, while in practice they are all observed
simultaneously. The question is: how can the summation of evidence, which leads to the
empirically observed robust performance, be justified else? We believe that our antithesis
model gives a nice and sound argument to this practice. Moreover, it suggests using a
confidence measure instead of the probability density. Although these two quantities are
strongly related, choosing one or the other has a strong impact on the results, as we will show
in Section 1.4.
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Williams et al. [9] approach the problem from a different direction based on a model
introduced by Sudderth et al. [8]. There, the joint distribution of the object and the features is
considered. In order to make that model tractable, the features are considered to be
independent such that the joint probability factorizes, i.e. P(f.. f,, ) = P(1) I1i P(fi | A). They
obtain a justification for summing the evidence using a first-order Taylor approximation.
However, the independence assumption made in this model is not very appropriate. In reality,
given the presence of an object there are often long-distance interactions among features,
which are not modeled by their framework. Although our model does not exploit these
dependencies either, we do not reason about the presence of an object, but about the absence
of an object, in which case the independence assumption can more readily be justified.

1.3 Soft-Matching Strategies

Our object representation builds on local features, which have become a matured image
representation. The basic concept is to extract features f; at given locations I;, which are then
vector quantized and represented by a representative codeword w;. Due to noise or
quantization effects, it may happen that the closest codeword is not necessarily the best
association. The robustness of the system can therefore be increased by allowing some degree
of soft-matching. Hence, one single feature is matched to several codewords instead of only
one, and several occurrences are generated. Such a procedure has the positive side effect that
it increases the number of samples available to estimate the distribution. Matching features to
codewords happens at two places, namely during learning and recognition, where both can
use soft or hard matching. The advantage of hard matching is that it is much faster to perform
at recognition time [5], which has to be traded off for system robustness. The interesting
question here is: does soft-matching yield a benefit?

occurrences .\Q..,. ..... 00000

codewords  OOLSOO OGS0 O QOO0
Ji @ @ o
soft-matching learning learning & recognition
during: only recognition only

Figure 1. Soft-matching versus nearest neighbors. The black circles indicate feature values, whereas
the white ones represent codewords. The single black circle at the bottom is a feature fi observed in a
new test image. The features at the top are from the training set and are used to learn the occurrence
distribution. One can see that the same activation radius can be obtained for all three variants,
depending on the degree of soft-matching (1, 3, or 5-NN in this example) used during learning and
recognition, respectively.

Interpreting feature matching in a probabilistic manner, the hard matching (i.e. NN-rule)
corresponds to an activation distribution peaked on the best match. Soft-matching corresponds
to a blurring of that (codeword) activation distribution. Consequently, we argue that applying
soft-matching during learning and recognition corresponds to a double blurring, and a similar
effect could be achieved by applying a stronger blurring either during learning or at
recognition time (see Figure 1). As soft-matching yields more activations, it is preferably
applied during learning. Since the resulting occurrence distribution will still be compressed by
our parametric mixture model, this does not incur too much of an overhead. By shifting soft-
matching to the learning stage, it becomes thus possible to use faster NN-matching during
recognition, where speed is of prime importance. As we show in the attached paper [ETH-1],
this strategy can be used without decreasing recognition performance.
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Figure 2. Detection time and performance at equal error rate with reduced occurrence distributions on
two test sets. Feature extraction (in red) is a constant cost, which can be reduced dramatically with
optimized detectors. With our proposed approach, the detection time can be significantly reduced at the
cost of only a small decrease in accuracy.

1.4 Density versus Confidence

The probabilistic argument given in [6] defines the objective function to hypothesize object
positions as a sum of probability densities. Our antithesis framework derived in Section 1.1,
on the other hand, suggests the use of the confidence level associated with these densities. In
[ETH-1], we have experimentally compared those two variants. Although the difference
between the two objective functions seems actually fairly small, i.e. only a rescaling of each
density function by a feature-dependent factor, an astonishing impact could be observed.
Namely, the confidence based objective function suggested by the antithesis modeling clearly
outperforms the density based variant.

1.5 Effect on Run-time

Finally, the parametric object model introduced in Section 1.1 offers an interesting
opportunity for speeding up the proposed approach’s run-time. Effectively, this model
represents each feature’s spatial distribution on the object as a mixture of Gaussians with a
feature-dependent normalization factor. In order to speed up recognition, we can now drop all
mixture components whose peaks are smaller than x% of the globally maximal peak. Figure 2
reports the resulting average detection time, as well as the achieved performance at equal
error rate, for two test datasets of motorbikes and pedestrians. We see that for values up to x =
10% and 15%, respectively, the computation time (ignoring feature extraction) can be reduced
by about half without decrease in accuracy. This yields a detection time of about 1.2s for a
motorbike image (after feature extraction). If runtime is of prime importance, we can also
sacrifice some accuracy in favor of speed. On the pedestrians, for example, we can increase
the threshold to x = 35%, which yields the same equal error rate as the published baseline
from [6]. Doing so, the detection time (after feature extraction) decreases from initially 5.5s to
only 1.1s. Note that this simple, but very effective heuristic exploits the structure of our
parametric model and would not be easily realizable in a non-parametric framework.

This result is especially interesting in conjunction with the fast feature detectors developed by
KUL in WP1. With their help, the remaining feature extraction time of, on average, 1.2s and
2.4s for the motorbike and pedestrian images, respectively, can be dramatically reduced to
only a few milliseconds. The proposed antithesis modeling framework thus promises a way to
leverage that speed also for the later recognition stage.
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