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Abstract

In this report, we present several contributions to the dynamic 3D
scene analysis supported by image and video processing from omnidi-
rectional video data acquired by the AWEAR 2.0 platform. First, we
summarize the upgrades of our structure from motion (SfM) pipelines
for the autocalibration of the AWEAR 2.0 camera platform. Next,
we examine several examples of detecting abnormal situations using
statistics resulted from camera tracking: (i) feature detection, (ii)
sequential matching, and (iii) stereo matching on the top of SfM. Fi-
nally, we demonstrate the detection and classification of abnormal
situations, and correction of the contaminated camera calibrations
according to the abnormal events on real video sequences.

1 Summary of Developments in 2009

There are significant upgrades of our structure from motion (SfM) pipelines
for autocalibration of the AWEAR 2.0 camera platform. The contributions
are summarized while listing the related and acknowledged publications of
our SfM works.

Calibration. We focused on the vision aspect and hence the video sys-
tem of the AWEAR 2.0 platform [2]. For a system aimed at cognitive sup-
port, fish-eye lenses are very helpful due to their extended field of view. As
their handling requires some care, we will first describe the process of their
calibration. Calibration of the lens reveals the transformation between the
pixels in the omni-directional image and rays in 3D. As the intended lens
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(a)
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Figure 1: Camera trajectory improved by loop closing on the sequence
PARKING. (a) and (b) sample images: every 100th frame in the original
video sequence. (c) trajectory before bundle adjustment. (d) trajectory after
bundle adjustment with loop closing. Red lines with dots represent camera
positions and trajectory. Colored dots are the reconstructed 3D points.

model is equi-angular, we use a two-parameter model [4] which is an exten-
sion of the equi-angular model that allows to compensate for small defects
of non-expensive lenses due to manufacturing:

θ =
ar

1 + br2
. (1)

Due to aberrations dependent on manufacturing and mounting, it is necessary
to calibrate both lenses independently. For calibration, the entire field of
view should be covered by a calibration target, rendering standard planar
calibration targets unusable.

Robust Camera Pose Estimation. Tracks used for SfM are generated
in several steps, (1) detecting SURF features [1], (2) constructing tentative
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matches by using an approximate nearest neighbour search [5], and (3) ver-
ifying the tentative matches through epipolar geometry (EG) computed by
solving the 5-point minimal relative pose problem [6]. The robustness and
stability of camera pose estimation is further improved by PROSAC with
soft voting, and by scale selection using a visual cone test [10].

Bundle Adjustment Enforcing Global Camera Pose Consistency.
In a long camera trajectory, there might be some overlaps suitable for con-
structing loops that can compensate drift errors induced while proceeding
the trajectory sequentially. We construct loops by searching pairs of images
observing the same 3D structure in different times in the sequence. The
candidate image pairs are found by using the image similarity matrix con-
structed based on visual words and vocabulary [8], and verified by solving the
camera resectioning. Global consistency of camera poses and 3D structures
are enforced by closing the loops by adding new constraints for the bundle
adjustment [9] (see Figure 1).

Image Stabilization Using Camera Poses and Trajectory. The
recovered camera pose and trajectory can be used to rectify the original
images to the stabilized images [10]. If there exists no assumption on the
camera motion in a sequence, the simplest way of stabilization is to rectify
images w.r.t. the gravity vector in the coordinate system of the first camera
and all other images will then be aligned with the first one. This can be
achieved by taking the first image with care. When a sequence is captured
by walking or driving on the roads, it is possible to stabilize the images
w.r.t. the ground plane. For a gravity direction g and a motion direction t,
we compute the normal vector of the ground plane

d =
t × (g × t)

|t × (g × t)|
. (2)

We construct the stabilization and rectification transform R
s

for the image
point represented as a 3D unit vector such that R

s
= [ a,d,b ] where a =

(0, 0, 1)⊤ × d /
∣

∣(0, 0, 1)⊤ × d
∣

∣ and b = a × d / |a × d|. This formulation is
sufficient because the roads usually go up and down to the view direction.

2 Detecting Incongruences on Stereo Image

Sequences

In this section, we recapitulate the problem definition as introduced in [7].
One of the goals of low-level processing is to preprocess incoming signals

and extract reliable information. In particular, the processing should be able
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to detect when some of the incoming information is wrong or when it is
too unreliable to be used in further processing. Why should the result of
processing be wrong? There may be various reasons. For instance:

1. one or both cameras may fail to provide images,
2. one or both lenses may be out of focus,
3. one or both cameras may lose their calibration,
4. cameras may get be out of sync,
5. the epipolar geometry (EG) of the cameras may change.

The above items represent a hierarchy of events that can be detected by
comparing the results of processing with expectations learned from previous
situations.

Another possibility of detecting incongruences comes from the fact that
AWEAR 2.0 cameras observe the same scene, only from slightly different
viewpoints. Thus, the results on left and right images should, on certain
level of processing, be comparable.

As the processing follows the standard path, we may add various detec-
tors based on statistics of the results. The simplest statistics (detectors,
classifiers) can be constructed by looking at the number of detected features,
tentative matches, and matches verified by epipolar geometries. These num-
bers can be plotted into graphs as a function of frame number in the sequence.
More advanced might be various quality measures, for instance the measure
based on apical angles and view field coverage as is used in the randomized
SfM [3].

We designed detectors of the above five events using the number of
matches. Once events are detected, the next step is to take an action that
will remove (if possible) the cause of the abnormality. For instance, we can
try to recalibrate individual cameras as well as the camera rig. In fact, this
action might be a part of the detection as well. For instance, when we detect
that we can successfully track individual cameras but cannot track the rig,
we can either expect the problem in rig calibration or in synchronization.
Then, we may try to recalibrate or shift frames and choose the action that
will better fit to incoming data. However, if none of these actions will im-
prove the results, we will conclude that we are not dealing with this situation,
we will start collecting these images, try to learn a model of the situation
(e.g. by clustering in the feature space provided by the statistics) as a new
phenomenon.
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(a) (b)

Figure 2: Detecting the abnormal situation in the sequence POLYBAG. (Top
row) input image pairs with matches at frame 100 (a), and frame 200 (b),
i.e. before and after the abnormal event. (2nd, 3rd, and 4th rows) progress
of feature detection, stereo matching, and sequential matching at frame 100
(a), and frame 200 (b). Colors are described in the text.

3 Detecting and Correcting Contaminated Cam-

era Calibrations

In [7], it has been shown that the abnormal situations are detectable using
statistics of the camera tracking. The remaining problems in [7] are to distin-
guish the abnormalities, and to correct the camera calibrations contaminated
by the abnormalities in practical data. In this section, we demonstrate de-
tecting abnormal situations and correcting camera calibration out of them
on real and practical image sequences.

The sequence POLYBAG is a stereo image sequence consisting of 812 ×
617 pixels large images of 280 frames long. When acquiring this sequence,
the camera 1 (C1) was covered with a poly bag at frame 150 and thus subse-
quent frames are blurred. Top left in Figure 2(a) and (b) shows the original
image of C1 with stereo matches of TC (red) and KEG (green) at frame 100
and 200, i.e. before and after the event, respectively. Top right in Figure 2(a)
and (b) shows the original image with sequential matches of TC (red) and
KEG (green) at frame 100 and 200, respectively. Furthermore, the statistics
in the whole sequence are presented in Figure 3:
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Figure 3: Statistics of camera tracking in the sequence POLYBAG. (a) fea-
ture detection, (b) stereo matching, and (c) sequential matching. Colors are
described in the text.

(a) The number of detected SURF features. Red and blue colors corre-
spond to C1 and C2, respectively.

(b) The number of matches between C1 and C2 in the stereo pair, i.e.
between C1 and C2 of the same frame. The graph shows tentative
matches (red), matches supported by an unconstrained epipolar geom-
etry (UEG) computed in every frame (blue), and a known EG (KEG)
computed using the precalibrated stereo rig configuration.

(c) The number of matches between consecutive images of C1 and C2 se-
quences. The graph shows tentative matches of C1 (red) and C2 (blue)
and matches supported by an UEG of the consecutive images of C1 (ma-
genta) and C2 (cyan), respectively.

The occurrence of the abnormal event is easily detected by the number of
features in (c), and the event is classified into “Camera fails” or “Camera out
of focus” by taking into account the congruency of statistics (c), (d), and (e).
Further classification between “Camera fails” and “Camera out of focus” can
be performed by applying the low-level image processing techniques such as
calculating the average intensity of images.

Next, we demonstrate the detection of abnormal situations “DESYNC:
Cameras out of sync” and “DECALIB: Camera rig calibration wrong”, their
classification, and correction of the camera calibrations from these situations.

The camera tracking is first performed on the sequence CITYWALK
which consists of every 5th frame of the original video sequence, e.g . Fig-
ure 4(a) and (b), acquired by well synchronized and calibrated stereo cam-
eras. The camera tracking on the sequence CITYWALK is very challenging
due to many objects (people) moving in the scene. The correctness of our
camera tracking is implicitly verified by the recovered camera trajectories as
shown in Figure 4(c) and (d). Figure 5(a), (b), and (c) shows the statistics
of feature detections, stereo and sequential matching.

Figure 5(d), (e), and (f) shows the statistics of the camera tracking per-
formed on the situation “DESYNC” which is generated by dropping first two
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(a) (b)

(c) (d)

Figure 4: Camera tracking of the sequence CITYWALK. Input omnidirec-
tional images of left camera C1 (a) and right camera C2 (b). Bird’s eye view
of the camera trajectory recovered by a single camera SfM using C1 (c) and
C2 (d), respectively.

frames of C1 on the sequence CITYWALK. Figure 5(g), (h), and (i) shows
the statistics of camera tracking performed on the situation “DECALIB”
which is generated by applying a wrong rig calibration: 1 degree of rotation
was applied to the precomputed stereo geometry, in other words, 1 degree of
rotation was applied to normalized image points of camera 1. Colors in Fig-
ure 5 follow in the same as Figure 5 except for a recomputed EG (magenta) in
(e), and (h) which indicates the number of stereo matches computed with a
stereo rig configuration successively updated by recomputing EG from stereo
pairs of neighbouring 5 frames. Clearly, these two situations can be distin-
guished by comparing the recomputed EG (REG) between Figure 5 (e) and
(h).

The misalignment of synchronization is systematically specified in such a
way that shift ±1 frame of left (or right) camera and perform KEG matching
until finding a significant peak w.r.t. the number of matches.

The REG in Figure 5(b) validates that decalibration can be recovered by
recomputing a stereo rig configuration using neighbouring frames. Further-
more, Figure 6 shows KEGs computed on wrong rig calibrations arranged by
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Figure 5: Statistics of camera tracking in the sequence CITYWALK. (a),
(d), and (g) feature detection. (b), (e), and (h) stereo matching. (c), (f),
and (i) sequential matching. Colors are described in the text.
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Figure 6: Statistics of KEGs computed with wrong rig calibrations on the se-
quence CITYWALK. Colors correspond to errors in degree as (red) 0, (green)
0.5, (blue) 1, (cyan) 5, (magenta) 10, (yellow) 20, and (black) 270.

tampering the precomputed stereo geometry, applying rotations varying from
0 to 20 degrees. The graph reveals that the incorrect stereo configuration is
sufficiently detectable at 1 degree. On the other hand, KEG computed on
0.5 degree contamination returns a high number of matches and it is difficult
to distinguish because the error caused by tampering the stereo calibration
is absorbed in the tolerance, which is also 0.5 degree (2 pixels on images),
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of evaluating matches in camera tracking. The precision can be improved
by using high quality and resolution images and then setting the tolerance
tighter.

4 Conclusions

We presented several contributions to the dynamic 3D scene analysis on
omnidirectional video data acquired by the AWEAR 2.0 platform. First,
we summarized the upgrades of our SfM pipeline, and examined the per-
formance by computing the camera poses and trajectory on long video se-
quences. The experimental results revealed that the accuracy of computing
the camera poses and trajectory is significantly improved by the loop closing
technique which enforces the global consistency of camera poses when there
exists overlaps of trajectory. Next, we reviewed abnormal situations which
can be detectable by camera tracking, and examined several examples for
their detection, and classification based on the statistics obtained from the
camera tracking. Finally, we demonstrated the correction of the camera cal-
ibrations contaminated by the abnormal events on the top of detecting and
classifying them on real and practical video sequences.
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