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Abstract: 

This deliverable presents two contributions. The first is a statistical analysis of the 

human motion dataset that was produced in D3.2 with a Motion Capture (MoCap) 

setup. The purpose of this dataset is to develop and evaluate both biological and 

computational models for action recognition based on the same underlying data, so 

that later experimental results become comparable and findings can be transferred. 

The statistics of the motion data are interesting, since they determine, to a large 

extent, the core of the machine learning techniques we consider for our computer 

vision algorithms. In addition, knowledge about the stimuli’s underlying 

dimensionality and principal modes of variation is important in order to design and 

evaluate neurophysiologic experiments. 

 

The second contribution is a newly developed computational body pose estimation 

and action recognition algorithm that is trained on the recorded MoCap data. It is 

specifically designed to handle the uncertainty and ambiguities that are inherent in 

noisy real-world video input using a robust statistical model. The algorithm uses the 

learned relationship between body pose and appearance available from the MoCap 

data both to constrain individual body poses and their sequence in the context of an 

activity model. Body pose estimation and tracking is achieved by a recursive 

Bayesian sampling algorithm with an activity switching mechanism based on learned 

transfer functions. The approach is experimentally evaluated on several challenging 

video sequences and achieves good results in difficult real-world settings. 
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1. Introduction 

A major line of research in DIRAC WP3 aims at drawing parallels between biological visual 

perception (in animals) and computational processing/analysis of similar visual stimuli. On 

the biological side, insights are gained by presenting test subjects (macaque monkeys) with 

visual stimuli of human actions and analyzing their neural responses. Deliverable D3.3 

summarizes the results of a first round of experiments for this research direction.  

 

On the computational side, we mainly operate with statistical tools and statistical machine 

learning techniques in order to build computational systems that can recognize the same kinds 

of actions. The motivation behind this research direction is to find computational mechanisms 

that can successfully deal with the uncertainty, ambiguity, and noise inherent in real-world 

sensory data. The design of those methods is informed by findings from the biological side, 

and they can in turn be used to suggest more detailed biological experiments. 

 

The unique approach pursued in DIRAC is to base both kinds of analysis on the same data. 

For this purpose, we have recorded a dataset of human motions with a Motion Capture 

(MoCap) setup, as described in deliverable D3.2. The recorded motion data is then used both 

to create stimuli for neurophysiological experiments on monkeys and to develop and train 

computational action recognition methods. Although the experimental conditions between 

both kinds of experiments will differ for practical reasons, the reliance on a common basis 

will allow us to get a better understanding of the underlying action recognition mechanisms, 

as well as of the used stimuli and their potentials and limitations. 

 

The purpose of this deliverable is twofold. A first focus lies on the statistical analysis of the 

dataset of human motions that was produced within the frame of the DIRAC project. The 

statistics of the motion data are interesting in two respects. On the one hand, they build the 

core of the machine learning techniques we consider for our computer vision algorithms. On 

the other hand, they may potentially give insight in principles of biological visual processing. 

The second focus lies on developing a computational body pose estimation and action 

recognition algorithm that is trained on the recorded MoCap data and operates on standard 

video input. This algorithm builds upon the statistical model learned from MoCap data both to 

constrain individual body poses to physically plausible limb configurations and to constrain 

their succession in the context of an executed action. As our experiments will show, the 

developed algorithm achieves successful body pose tracking and action recognition in 

difficult real-world video sequences. 

 

This document is structured as follows. In Section 2 we will recapitulate the human motion 

dataset that is the base for the subsequent analysis in Section 3. In Section 4 the 

computational tracking and activity inference algorithm is summarized. A more detailed 

technical description is attached to this report. Conclusions are given in Section 5. 

 

2. Human Action Dataset 

The basis for the experiments in this deliverable is the Human Action dataset recorded at ETH 

for deliverable D3.2 (“Setup and Stimuli for Neurophysiological Experiments”) using a 

MoCap setup. The dataset concentrates on the typical visual motion patterns for two types of 

human locomotion, walking and running. Multiple subjects were recorded under laboratory 

conditions performing those activities at different speeds. The resulting three-dimensional 

motion data was then further processed, and transferred into representations that are suitable 

for the planned experiments in the neurophysiological and computational domain. The 
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following sections briefly recapitulate the recording setup and its use for data acquisition and 

preprocessing. 

 

2.1 Motion Capture Setup 

The sequences were recorded using the ETH Motion Capture setup described in D3.2. This 

setup consists of an optical MoCap system (VICON) with 6 cameras that operate in the near-

infrared range. In order to reconstruct the 3D body motions, 41 infrared-reflective markers are 

attached to the skin of the test subjects according to a specific protocol. The trajectories of 

these markers are then tracked in the individual camera streams and integrated into a 3-

dimensional representation. Finally, an abstract body model (bi-ped, 17 rigid limbs) is used to 

interpret that data and solve for body poses. The system operates at 120Hz, and its spatial 

accuracy is better than 1cm for a working volume of approximately 2m by 2m. In order to 

capture locomotion patterns of a certain duration, a treadmill was used to keep the recorded 

person at a stationary location. 

2.2 Human Action Sequence 

Six subjects, male, between 20 and 40 years of age, of average physical constitution and in 

good health, were asked to perform a set of activities on the treadmill. They were allowed to 

acclimate to moving on the treadmill, which may be a bit cumbersome at first and which may 

else lead to biased or unnatural motions. The subjects were asked to walk and run at six 

different speeds for about 10 seconds. The speeds ranged from slow walking (2.5 km/h) over 

average speed to fast walking (4.2 and 6 km/h). Running was performed at 8, 10 and 12 km/h.  

The result of this stage are motion capture sequences (36, 6 subjects at 6 speeds), represented 

either as marker trajectories, or as a kinematic tree with 6 degree-of-freedom (DOF) 

transformations indicating the relative pose of each limb with respect to its parent limb, or 

with respect to a global coordinate system. The kinematic fit also provides 3d trajectories of 

the joint locations such as shoulders and knees, which we will use in our pose representation. 

 

2.3 Use for Computational and Neurophysiological Experiments 

The recorded action sequences form a common basis for both computational and 

neurophysiological experiments. The purpose of starting from joint-angle recordings instead 

of simple video data is that this representation allows us to exercise more control over the 

recorded data and transform it into different representations suitable for a large variety of 

experiments. As described in D3.2, we thus created several different stimuli sets for 

neurophysiological experiments from the raw MoCap data, where human motion is 

represented by (a) point-light displays, (b) stick figures, and (c) humanoid figures composed 

of cylinder-like geometrical primitives (see Figure 1). Those stimuli are currently being used 

in single-cell recording experiments on macaque monkeys performed by KUL; first results 

will be described in D3.3. 

 

In addition, we used the same raw data to create realistic-looking video input for training our 

computational algorithm described in Section 4. This was done by fitting a polygonal “skin 

model” mesh to the skeleton data and animating it with a computer graphics package, driven 

by the recorded joint angle data. We thus rendered realistic-looking silhouette sequences from 

a variety of viewpoints, which were used in order to train the appearance-based body pose 

estimation algorithm (see Figure 2). 
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(a) (b) (c) 

Figure 1: The three different types of stimuli prepared for neurophysiological experiments: (a) point-

light displays where the joint positions are indicated by dots; (b) stick figures, where adjacent joints are 

connected by a skeleton line; (c) humanoid figures, where body limbs are represented by cylinder-like 

geometrical primitives. 

  

Figure 2: Rendered silhouettes used to train the appearance-based body pose estimation algorithm. 

 

3. Statistical Analysis 

In this section, we will have a closer look at the motion data using linear and nonlinear 

statistical tools. The main purpose is to get a clear idea of the information and variation that is 

contained in our sequences. This is very important with regard to the interpretation of the 

neurophysiological experiments. In addition, it directly leads to a lower dimensional compact 

representation that will be our pose description of choice for the machine learning and 

inference algorithms. 

 

The analysis targets the intrinsic dimensionality of the data, as well as the main modes of 

variation of the body pose representation while performing typical movements of human 

locomotion. Our examination is guided by the proposition that the locomotion trajectories 

essentially form periodic manifolds of rather low dimensionality that can conceptually be 

divided into a prototypical motion pattern for the given locomotion type and into modes of 

variation that characterize the subject specific walking or running styles. 

 

3.1 Data Preparation and Normalization 

For the statistical analysis, we use a pose representation that is based on a list of 3D joint 

locations constituting the overall body configuration. The global translation and rotation of 

the body is normalized for, since we concentrate on the local body pose for this purpose.  

The analysis was carried out on a static snapshot-level, where each body pose from the 

captured sequences is regarded as one observation. This means that part of the variation in our 
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dataset stems from the body pose variation within a walking or running cycle, whereas 

another part stems from the differences of the walking styles between subjects and between 

activities (running vs. walking).  

Alternatively, the data could be analyzed per period, i.e. a sequence of poses corresponding to 

one walking cycle could be regarded as one observation. This has been done e.g. in 

[Sidenbladh00, Urtasun04, Jaeggli05] and requires a temporal alignment of the data. Such an 

analysis would allow for a separation of intra-subject variation within a walking cycle, and 

inter-subject resp. inter-activity variation. 

 

In order to facilitate the analysis, the data was normalized for limb length, i.e. all the motion 

sequences are based on a single skeleton template. This allows us to concentrate on the body 

motion and body configuration rather than on anatomical characteristics of the individual test 

subjects. We thus end up with a 60-dimensional representation that consists of 3d locations 

such as the head, shoulders, elbows, wrists, and hips. 

3.2 Eigenmode Analysis 

We first investigated the data using linear tools. The principal components of the 60-

dimensional pose examples were extracted. As expected, this analysis showed that our 60-

dimensional representation is highly redundant. Indeed, even using a simple linear method 

such as PCA, 99% of the variation of the data can be explained using only 14 principal 

components, which corresponds to a reduction of the original dimensionality by more than 

75%. 

 
 

Figure 3: Percentage of the data variance that is captured by a certain number (x-axis) of principal 

components. The 99% level is reached at 14 principal components. 

 

Another interesting question is whether the motion patterns of the different subjects occupy 

distinct spaces in the PCA-reduced pose space, e.g. if there is a linear separation that allows 

for distinguishing between subject or activities given new observations of body poses. In the 

following, we give a brief overview over the first principal components, aiming at interpreting 

them in a manner that is meaningful and intuitive for human observers. 
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(a) (b) 

Figure 4: a) Walking sequences (green) and running (red) of a single subject at all speeds. We plotted 

the first principal component (x-axis) against the second (y-axis). The second component separates 

walking and running motions. b) The figure shows a plot of the first (x-axis) against the third (y-axis) 

principal components, for a different subject. In both (a) and (b) the three speeds for each motion 

pattern can easily be distinguished. 

PC1: This PC encodes the main forward and backward motion of the legs during a walking or 

running cycle. Its amplitude corresponds to the step length and thus correlates with the 

walking and running speeds. See also Figure 5 and Figure 4. 

 

PC2: variation of this PC results in stick figures that are more or less bent forward and whose 

knees are bent more or less. This component allows for discrimination between running and 

walking. Especially for the running examples, it is also strongly dependent on the individual 

locomotion style of a person, whereas in the walking examples this component mainly varies 

with the phase of the walking cycle for all subjects (Figure 4(a) and Figure 6). 

 

       

Figure 5: The first principal component captures the main forward/backward motion of the legs. The 

stick figures were produced by varying the first principal component, while fixing the remaining 

component at their average value. 

PC3: This component periodically varies throughout the walking or running cycle; its 

amplitude tells how much the free leg is lifted during the floor contact phase of the other leg. 

This amplitude is consistently higher for running examples than for walking examples; it 

however depends on the individual running styles and is also positively correlated with the 

running speed (Figure 7 and Figure 4b). 

 

To summarize, we can state that the first and the third principal components constitute a 

prototypical walking motion, whereas the remaining components mainly encode subject 

specific aspects of the locomotion, as well as the transition from walking to running motions. 
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Figure 6: Varying the second principal component. 

Figure 7: Varying the third principal component results in lifting of the legs. 

3.3 LLE Analysis  

In the previous section, we have shown that even with linear methods we can obtain a pose 

representation that is much more compact than the original 60-dimensional one, without 

losing a prohibitive amount of information. Using non-linear dimensionality reduction 

methods this can be pushed even further, in order to get an estimate of the true intrinsic 

dimensionality of the data set. From an engineering point of view, the dimensionality 

reduction also leads to more compact representations of body poses and thus alleviates the 

difficulties commonly referred to as the ‘curse of dimensionality’ in subsequent machine 

learning and inference stages of our tracking pipeline described in Section 4. 

 

3.3.1 Locally Linear Embedding 

LLE was introduced by [Roweis00] as an unsupervised learning algorithm that computes low-

dimensional, neighborhood-preserving embeddings of high-dimensional inputs. It maintains 

the linear local neighborhood relationships of the data points, while allowing for nonlinear 

deformations of the manifold on a global level. 

 

Unlike other dimensionality reduction techniques, LLE does not provide direct mappings 

from the high-dimensional to the low-dimensional representation or vice versa. In the frame 

of our learning based pose estimation algorithm, we need a way to project points on the LLE 

manifold back into the original pose space. Assuming a functional relationship, we model this 

mapping with a nonlinear (kernel) regressor.   

 

We computed an LLE embedding for a varying number of LLE dimensions. In its first step, 

the LLE algorithm describes the relationships of each data point with its nearest neighbors 

(NNs). The number of NNs taken into account is a parameter that has to be set. In our 

experiments, we obtained good results with 200 NNs (in a dataset of 2178 data points). Figure 

8 shows a 3-dimensional plot of the LLE-reduced walking data, where each test subject has its 

own color.  
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Figure 8: Three-dimensional visualization of the walking motion data using LLE dimensionality 

reduction. 

 

Figure 9 shows a plot of the reconstruction error as a function of the number of LLE 

dimensions. This experiment was carried out on all training examples of the class ‘WALK’. 

The reconstruction error is partly due to the regression-based reconstruction mechanism and 

partly to the loss of information of the actual LLE dimensionality reduction step.  The benefit 

from having more than 6 LLE dimensions in such a setting seems to be rather limited. We 

have observed that the basic walking motion is well captured by 2-3 LLE components, while 

additional components allow for the representation of individual walking styles and variation 

that is due to the different walking speeds. 

 

 

Figure 9:  Mean reconstruction errors (in millimeters) as a function of the number of LLE dimensions 

of the low dimensional body pose representation. The green curve shows results from a hold-out 

validation set, whereas the blue curve shows the errors of the data that were used to train the kernel 

regressor for back projection into the original pose space. 

3.4 Summary 

The investigation suggests that the actual dimensionality is much lower than the 60 

dimensions of the original representation. This is essential for the computer vision tracking 

approach, making inference methods applicable that would be intractable in a high 

dimensional space. Linear PCA allowed for a dimensionality reduction by more than 75%. 

Moreover, the first few principal components have a clear interpretation in terms of the 

prototypical motion pattern or inter-subject vs. inter-activity spreading. Using LLE and a 
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regression based reconstruction mapping, an activity specific representation of 4-6 

dimensions allowed for sufficiently precise projection into the original pose space.  

 

In the following section, the results from this statistical analysis are used in order to develop 

computational body pose estimation and tracking approach. 

 

4. Tracking Approach 

Building upon the recorded MoCap data and using the statistical analysis presented above, 

ETH has developed a computational algorithm for human body pose estimation and action 

recognition. This section describes our developed method’s core components. For more 

details, as well as more extensive experimental results, we then refer to the original 

publications in [ETH-1,ETH-2]. 

 

The key idea behind this approach is to model a generative mapping from body poses to 

appearance descriptors that captures the statistical relationship between individual body poses 

and their appearance, as well as the dynamics in the pose manifolds. Body poses are inferred 

by a recursive Bayesian sampling algorithm, which offers a framework for dealing with non-

Gaussian and multimodal body pose posteriors. 

 

However, sampling based algorithms are generally not applicable for inference in high-

dimensional state spaces, such as the space of body poses. We therefore use Locally Linear 

Embedding (LLE, [Roweis00]) to find a low-dimensional embedding of our 60-dimensional 

pose parameterization, using the results from the statistical analysis presented in Section 3. As 

our results show, the considered motions can be captured reasonably well with just 4 LLE 

dimensions. 

 

Similarly, we find a low-dimensional embedding for the appearance descriptor that can be 

compared to the image content both in a top-down and in a bottom-up fashion. Using a rough 

foreground segmentation, we compare Binary PCA and distance transforms for this modeling 

step. Sparse kernel regressors are used to capture the non-linearities of the mapping from 

body pose to appearance efficiently. Although unimodal, the appearance prediction will be 

subject to uncertainty, since other factors than just the body configuration (pose) may affect 

appearance (clothing, physical constitution, lighting conditions, etc). This is taken into 

account by learning a prediction variance matrix of the mapping. 

 

In this work, we consider two action categories: walking and running. Rather than learning a 

unified representation that contains both walking and running motions, we learn separate 

activity specific models, as well as a model for transitions between them. The learned transfer 

functions are used in an activity switching mechanism, which then allows to classify the 

action that is currently being executed. 

 

The main novelties of this approach are its learned generative appearance modeling (Section 

4.2), the tracking in an LLE-reduced pose representation with a nonlinear dynamic model 

(Sections 4.3-4.5), and the simultaneous recognition of multiple action categories (Section 

4.6). A final post-processing step estimates the globally optimal trajectory throughout the 

entire sequence (Section 4.7). As our experimental results on several challenging sequences 

show, the dynamical model helps to track through poorly segmented low-resolution image 

sequences, while at the same time reliably classifying the activity type (Section 4.8 and [ETH-

1,ETH-2]) 
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4.1 Tracking Framework 

Figure 10 shows an overview of our tracking framework. Its central idea is to express both the 

high-dimensional body pose description (i.e. the joint locations that will be the system’s 

output) and the corresponding image content (i.e. the system’s input) by lower-dimensional 

representations, for which it can learn a generative mapping from body pose to an appearance 

descriptor.  

 

Figure 10: An overview of the general architecture of the tracking framework (the equation numbers 

refer to the equations in [ETH-1]). 

 

4.2  Appearance Model  

The representation of the subject’s image appearance is based on a rough figure-ground 

segmentation. Under realistic imaging conditions, it is typically not possible to get clean 

silhouettes for a person moving across unconstrained scenes. The image descriptor will 

therefore have to be to some degree robust to noisy segmentations. We achieve this 

robustness in two stages. 

 

First, we compute a probabilistic segmentation by modeling the background color by a 

mixture of Gaussians for each image pixel (similar to [Stauffer99]). Instead of using this 

model to compute only a hard binary segmentation (Figure 11a), we however also keep the 

continuous output (see Figure 11b). Secondly, we employ a robust appearance descriptor that 

models the appearance variability contained in our training data. In [ETH-1], we have 

experimented with two different choices for this descriptor: a signed distance transform 

[Bailey04] with subsequent linear PCA as a dimensionality reduction step (Figure 11c) and a 

representation based on Binary PCA (BPCA) [Zivkovic06] for binary foreground images. 

Both image descriptors are computed from the content of a bounding box around the centroid 
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of the person, and 10-20 PCA resp. BPCA components have been found to yield good 

reconstructions.  

  
 

a) b) c) 

Figure 11: Binary (a) and continuous (b) foreground segmentation on a real sequence. c) Signed 

distance transformed silhouette descriptor, computed on clean training silhouette data as used for 

training the statistical models. 

4.3  Pose and Motion Model 

Representations for the full body pose are high-dimensional by nature: our current 

representation is based on 3D joint locations of 20 body locations such as hips, knees, and 

ankles. To alleviate the difficulties of learning and performing inference in high-dimensional 

spaces, we identify a low-dimensional embedding of the body pose representation by a 

dimensionality reduction step. We use LLE [Roweis00], as introduced in Section 3.3.1, which 

approximately maintains the local neighborhood relationships of each data point, while 

allowing for global deformations. 

 

LLE dimensionality reduction is performed on all poses in the data set that belong to a certain 

activity. It expresses each data point in a space of the desired low dimensionality. However, 

LLE does not provide explicit mappings between the two spaces that would allow to project 

new data points (that were not contained in the original data set) between them. Therefore, we 

model the reconstruction projection from the low-dimensional LLE space to the original pose 

space with a kernel regressor (RVM). Separate models are learned for the two distinct 

activities walking and running. 

 

The training examples form a periodic twisted “ring” in LLE space. As a linear dynamic 

model is not suitable to predict future poses on this curved manifold, we model the dynamics 

using another RVM regressor, yielding a dynamic prior. This prior is combined with an 

additional static prior, which encodes knowledge about feasible (or likely) body poses for a 

given activity modeled with a Gaussian Mixture Model (GMM). 

 

Drawing an analogy to the neurophysiological experiments described in D-3.3, this static 

prior corresponds roughly to a snapshot model for activity recognition [Giese03]. It only 

contains information which body poses are likely for a certain activity, but it has no 

knowledge about their temporal sequence. The dynamic prior, on the other hand, encodes 

such temporal information and describes how the body pose representation may move about 

in LLE space, but on its own, it may lead to points in this space that do not correspond to 

valid body configurations. It is important to point out, however, that this dynamic prior does 

not correspond to the motion pathway postulated in Giese & Poggio’s model, which is rather 

based on low-level motion cues. Instead, it can be seen as a higher-level addition to the form 

pathway, augmenting it with temporal information. 
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4.4 Mapping from Pose to Appearance  

Next, we model the generative mapping from pose x to image descriptors y that allows to 

predict image appearance given pose hypotheses and that fits well into generative inference 

algorithms such as recursive Bayesian sampling. In addition to the local body pose x, the 

appearance also depends on the viewpoint ω (rotation around the vertical axis) from which the 

subject is observed. This functional mapping is approximated by a sparse kernel regressor 

(again an RVM), which is estimated from the training data. 

 

4.5 Interfering Position, Body Pose, Orientation and Activities  

Tracking is performed jointly in the entire state space Θ, consisting of the discrete activity a, 

orientation ω, the 2D bounding box parameters (position, width, and height) u, v, w, h, and the 

body pose x. Despite the reduced number of pose dimensions, we face an inference problem 

in a 10-dimensional space. Having a good sample proposal mechanism such as our dynamical 

model is therefore crucial for the Bayesian recursive sampling to run efficiently with a 

moderate number of samples.  The precise inference algorithm is very similar to the classical 

CONDENSATION [Isard98], but differs in our choice for the sample proposal and weighting 

functions. The algorithm is described in more detail in [ETH-1]. 

 

A special property of our generative framework is that the computation of the image 

descriptor and its projection onto the subspace and back can be issued in both directions. One 

possibility is therefore to compute the image descriptors in a bottom-up manner and project 

them onto the PCA or BPCA subspaces, from which the likelihood can then be directly 

obtained. Alternatively, in a purely generative top-down manner, we can predict whether we 

expect a certain pixel to be foreground or background given a pose hypothesis. This is done 

by back projecting the appearance descriptor into full appearance space and comparing the 

resulting probability distribution to the observed image using the Bhattacharyya similarity 

measure [Bhattacharyya43]. Again, please refer to [ETH-1,ETH-2] for details.  

 

Both alternative ways of likelihood computation nicely complement each other. The bottom-

up variant requires binary images to compute the image descriptors, while the top-down 

variant can handle continuous foreground probabilities. Often, the foreground segmentation is 

available in the form of probability maps and thresholding it may cause an unnecessary loss 

of information and introduce noise. Experimentally, we have found the top-down version to 

be more robust to such noisy environments. On the other hand, the bottom-up (B)PCA variant 

can benefit from the learned data covariance matrix, which makes it a good choice in less 

noisy situations. 

 

4.6 Activity Switching 

Each action category has its own low-dimensional pose parameterization expressed in a 

distinct LLE space. In order to switch between actions, we want to model the transition 

between those action categories, i.e. we want to find walking poses that are very similar to a 

given running pose and vice versa. During training, we therefore generate two sets of training 

pairs by looking for the most similar running pose for every walking pose and vice versa. We 

then model the nonlinear mapping between those pairs using two sparse kernel regressors. 

This can easily be generalized to more action categories. 

 

During tracking, a number of samples are generated in each time step that allow for a smooth 

transition into the other activity. If those hypotheses are supported by image information, they 

will be selected in the subsequent resampling step until they eventually take overhand. The 

percentage of samples of a certain activity category is a measure for the algorithm’s belief 
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about the currently observed action. The image support for the hypotheses is given by the 

observation likelihood, which is always based on the action-specific appearance model. 

4.7  Global Trajectory Optimization 

The described sample-based tracking algorithm provides a set of N samples with 

corresponding weights for each frame of the sequence. As we are interested in a consistent 

trajectory through the entire image sequence, we apply a post-processing algorithm that finds 

optimal paths through the set of samples. We use Belief Propagation with the Max-Product 

algorithm (resp. its numerically more stable Min-Sum counterpart) [Kschischang01], which 

chooses one sample per time step to form a trajectory through time and state space that best 

satisfies both the observation likelihood and the temporal prior. Instead of searching for the 

optimal trajectory for the entire sequence, the algorithm can also be applied to sub-sequences 

in a sliding-window fashion. 

 

4.8 Experimental Results 

The tracking algorithm was trained on our human action dataset described in Section 2 using 

data from all 6 subjects, all 3 speeds per activity, and applying the normalization steps from 

Section 3.1. In total, the training set consists of 2000 body poses for each activity. All the 

kernel regressors were trained using the Relevance Vector Machine algorithm with Gaussian 

kernels [Tipping00]. Different kernel widths were tested and compared using a 

crossvalidation set consisting of 50% of the training data in order to avoid overfitting. 

 

We then evaluated our tracking algorithm on a number of different test sequences. The main 

goals were to show its ability to deal with noisy sequences with poor foreground 

segmentation, image sequences of very low resolution, varying viewpoints through the 

sequence, and switching between activities.  

 

Particle filtering was performed using a set of 500 samples, leading to a computation time of 

approximately 2-3 seconds per frame in unoptimized Matlab code. Hypotheses are initialized 

in the first frame by deriving the subject’s position from the output of a pedestrian detector 

and randomly sampling from the entire space of feasible poses in the reduced LLE 

representation. This generally works well, and the sample set converges to a low number of 

clusters within a few time steps, as desired. 

 

Figures 12 and 13 show example results of our algorithm on two challenging sequences (more 

results can be found in [ETH-1,ETH-2]). The sequence in Figure 12 is a standard test set from 

[Sidenbladh00], showing a person walking in a circle. The main challenge here is the varying 

viewing angle that is difficult to estimate from noisy silhouettes. The sequence in Figure 13 

was recorded in a real traffic environment with a webcam. It shows a man walking on a 

pedestrian crossing and then starting to run. The image quality is very low with only 320x240 

pixels resolution, subjects as small as 40-50 pixels in height, and severe MPEG compression 

artifacts. Still, our results show that our approach can successfully process both challenging 

sequences and additionally detect the transition between the two activities in a reliable 

fashion.  



 

16 

Figure 12: Results for the circular walking sequence from [Sidenbladh00]. The figure shows full 

frames (top row) and cutouts with bounding box in original or segmented images, together with the 

estimated poses (middle and bottom row). Darker limbs are closer in depth. 

Figure 13: Results for a real traffic scene with a transition from walking to running. The first row 

shows some examples of the full frames, the other rows contain cutouts with estimated poses. The 

graph on the bottom right shows the probability of action category running (blue solid line) and the 

activity inferred by the global optimization (red dots). 
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5. Conclusion 

One of the main goals of DIRAC WP3 is to draw parallels between biological and 

computational action recognition. A concrete strategy pursued in DIRAC towards this goal is 

to perform experiments and evaluate computational mechanisms for both research fields on 

the same underlying data. Continuing and complementing work begun in deliverables D3.2 

and D3.3, the contribution of this deliverable was therefore twofold. First to perform a 

statistical analysis of the recorded MoCap human action dataset and thus facilitate 

neurophysiological and computational experiments. Second to present a computational body 

pose estimation and action recognition approach based on this data that is able to work with 

the complexity of real-world video footage. 

 

In future work, the ETH action recognition approach will be gradually extended with different 

ways to integrate detection and tracking elements in order to reduce pose ambiguity and 

obtain more reliable results. In particular, we will explore statistical methods to also exploit 

the correlation between body pose and appearance in order to maximize the discriminative 

power of the reduced appearance representation. In addition, now that both a biological and a 

computational setup are available operating on the same data, we will explore cross-links 

between the two fields and design/perform experiments to cross-check findings from both 

fields against one another. The results from these experiments will then feed into in the M30 

deliverable D3.6. 
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Abstract. We consider the problem of monocular 3d body pose tracking from
video sequences. This task is inherently ambiguous. We propose to learn a gener-
ative model of the relationship of body pose and image appearance using a sparse
kernel regressor. Within a particle filtering framework, the potentially multimodal
posterior probability distributions can then be inferred. The 2d bounding box lo-
cation of the person in the image is estimated along with its body pose. Body
poses are modelled on a low-dimensional manifold, obtained by LLE dimen-
sionality reduction. In addition to the appearance model, we learn a prior model
of likely body poses and a nonlinear dynamical model, making both pose and
bounding box estimation more robust. The approach is evaluated on a number
of challenging video sequences, showing the ability of the approach to deal with
low-resolution images and noise.

1 Introduction

Monocular body pose estimation is difficult, because a certain input image can often
be interpreted in different ways. Image features computed from the silhouette of the
tracked figure hold rich information about the body pose, but silhouettes are inher-
ently ambiguous, e.g. due to the Necker reversal. Through the use of prior models this
problem can be alleviated to a certain degree, but in many cases the interpretation is
ambiguous and multi-valued throughout the sequence.

Several approaches have been proposed to tackle this problem, they can be divided
into discriminative and generative methods. Discriminative approaches directly infer
body poses given an appearance descriptor, whereas generative approaches provide a
mechanism to predict the appearance features given a pose hypothesis, which is then
used in a generative inference framework such as particle filtering or numerical optimi-
sation.

Recently, statistical methods have been introduced that can learn the relationship
of pose and appearance from a training data set. They often follow a discriminative
approach and have to deal explicitly with the nonfunctional nature of the multi-valued
mapping from appearance to pose [1–4]. Generative approaches on the other hand typ-
ically use hand crafted geometric body models to predict image appearances (e.g. [5],
see [6, 7] for an overview).

We propose to combine the generative methodology with a learning based statistical
approach. The mapping from pose to appearance is unimodal and can thus be seen



as a nonlinear regression problem. We approximate the mapping with a RVM kernel
regressor [8] that is efficient due to its sparsity.

The human body has many degrees of freedom, leading to high dimensional pose
parameterisations. In oder to avoid the difficulties of high dimensionality in both the
learning and the inference stage, we apply a nonlinear dimensionality reduction algo-
rithm [9] to a set of motion capture data containing walking and running movements.

1.1 Related Work

Statistical approaches to the monocular pose estimation problem include [1–4, 10, 11].
In [10] the focus lies on the appearance descriptor, and the discriminative mapping from
appearance to pose is assumed to be unimodal and thus modelled with a single linear
regressor. The multimodality of the discriminative mapping is explicitly addressed in
[1–4] by learning multiple mappings in parallel as a mixture of regressors. In order to
choose between the different hypotheses that the different regressors deliver, [1, 2] use
a geometric model that is projected into the image to verify the hypotheses. Inference
is performed for each frame independently in [1]. In [2] a temporal model is included
using a bank of Kalman filters. In [3, 4] gating functions are learned along with the re-
gressors in order to pick the right regressor(s) for a given appearance descriptor. The
distribution is propagated analytically in [3], and temporal aspects are included in the
learned discriminative mapping, whereas [4] adopts a generative sampling-based track-
ing algorithm with a first-order autoregressive dynamic model.

These discriminative approaches work in a bottom-up fashion, starting with the
computation of the image descriptor, which requires the location of the figure in the
images to be known beforehand. When including 2d bounding box estimation in the
tracking problem, a learned dynamical model might help the bounding box tracking,
and avoid loosing the subject when it is temporarily occluded. To this end, [12] learns
a subject-specific dynamic appearance model from a small set of initial frames, con-
sisting of a low-dimensional embedding of the appearances and a motion model. This
model is used to predict location and appearance of the figure in future frames, within a
CONDENSATION tracking framework. Similarly, low-dimensional embeddings of ap-
pearance (silhouette) manifolds are found using LLE in [11], where additionally the
mapping from the appearance manifold to 3d pose in body joint space is learned using
RBF interpolants, allowing for pose inference from sequences of silhouettes.

Instead of modelling manifolds in appearance space, [13–15] work with low dimen-
sional embeddings of body poses. In [13], the low-dimensional pose representation, its
dynamics, and the mapping back to the original pose space are learned in a unified
framework. These approaches do not include statistical models of image appearance.

In a similar fashion, we also chose to model manifolds in pose space rather than
appearance space, because the pose manifold has fewer self-intersections than the ap-
pearance manifold, making the dynamics and tracking less ambiguous. In contrast to
[13–15], our model includes a learned generative likelihood model. When compared to
[1–4, 10, 11], our approach can simultaneously estimate pose and bounding box, and
learning a single regressor is more easily manageable than a mixture of regressors.

The paper is structured as follows. Section 2 and 3 introduce our learned models
and the inference algorithm, and in Section 4 we show experimental results.



2 Learning

Figure 1 a) shows an overview of the tracking framework. Central element is the low-
dimensional body pose parameterisation, with learned mappings back to the original
pose space and into the appearance space. In this section all elements of the framework
will be described in detail. Our models were trained on real motion capture data sets of
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Fig. 1. a) An overview of the tracking framework. Solid arrows represent signal flow during
inference, the dashed arrow stands for LLE resp. BPCA dimensionality reduction during training.
The figure refers to equations in Section 2. b) Body pose representation as a number of 3d joint
locations. c) Corresponding synthetically generated silhouette, as used for training the appearance
model.

different subjects, running and walking at different speeds.

2.1 Pose and Motion Prior

Representations for the full body pose configuration are high dimensional by nature;
our current representation is based on 3d joint locations of 20 body locations such as
hips, knees and ankles, but any other representation (e.g. based on relative orientations
between neighbouring limbs) can easily be plugged into the framework. To alleviate
the difficulties of high dimensionality in both the learning and inference stages, a di-
mensionality reduction step identifies a low dimensional embedding of the body pose
representations. We use Locally Linear Embedding (LLE) [9], which approximately
maintains the local neighbourhood relationships of each data point and allows for global



deformations (e.g. unrolling) of the dataset/manifold. LLE dimensionality reduction is
performed on all poses in the data set and expresses each data point in a space of desired
low dimensionality. We currently use a 4-dimensional embedding. However, LLE does
not provide explicit mappings between the high-dimensional and the low-dimensional
space, that would allow to project new data points (that were not contained in the origi-
nal data set) between the two spaces. Therefore, we model the reconstruction projection
from the low-dimensional LLE space to the original pose space with a kernel regressor.

X = fp(x) = WpΦp(x) (1)

Here, X and x are the body pose representations in original resp. LLE-reduced spaces,
Φp is a vector of kernel functions, and Wp is a sparse matrix of weights, which are
learned with a Relevance Vector Machine (RVM). We use Gaussian kernel functions,
computed at the training data locations.

The training examples form a periodic twisted ’ring’ in LLE space, with a curvature
that varies with the phase within the periodic movement. A linear dynamical model, as
often used in tracking applications, is not suitable to predict future poses on this curved
manifold. We view the nonlinear dynamics as a regression problem, and model it using
another RVM regressor, yielding the following dynamic prior,

pd(xt|xt−1) = N (xt;xt−1 + fd(xt−1)∆T , Σd), (2)

where fd(xt−1) = WdΦd(xt−1) is the nonlinear mapping from poses to local velocities
in LLE pose space, ∆T is the time interval between the subsequent discrete timesteps
t − 1 and t, and Σd is the variance of the prediction errors of the mapping, computed
on a hold-out data set that was not used for the estimation of the mapping itself.

Not all body poses that can be expressed using the LLE pose parameterisation do
correspond to valid body configurations that can be reached with a human body. The
motion model described so far does only include information about the temporal evo-
lution of the pose, but no information about how likely a certain body pose is to occur
in general. In other words, it does not yet provide any means to restrict our tracking to
feasible body poses. Worse, the learned regressors can produce erroneous outputs when
they are applied to unfeasible input poses, since the extrapolation capabilities of kernel
regressors to regions without any training data is limited. The additional prior knowl-
edge about feasible body poses is introduced as a static prior that is modelled with a
Gaussian Mixture Model (GMM).

ps(x) =
C∑
c

pcN (x;µc, Σc), (3)

with C the number of mixture components. We obtain the following formulation for the
temporal prior by combination with the dynamic prior pd(xt|xt−1).

p(xt|xt−1) ∝ pd(xt|xt−1) ps(xt) (4)

2.2 Likelihood Model
The representation of the subject’s image appearance is based on a rough figure-ground
segmentation. Under realistic imaging conditions, it is not possible to get a clean sil-
houette, therefore the image descriptor has to be robust to noisy segmentations to a



certain degree. In order to obtain a compact representation of the appearance of a per-
son, we apply Binary PCA [16] to the binary foreground images. The descriptors are
computed from the content of a bounding box around the centroid of the figure, and
10 to 20 BPCA components are kept to yield good reconstructions. The projection of a
new bounding box into the BPCA subspace is done in an iterative fashion, as described
in [16]. Since we model appearance in a generative top-down fashion, we also consider
the inverse operation that projects the low-dimensional image descriptors y back into
high dimensional pixel space and transforms it into binary images or foreground proba-
bility maps. By linearly projecting y back to the high-dimensional space using the mean
µ and basis vectors V of the Binary PCA, we obtain a continuous representation Yc that
is then converted back into a binary image by looking at its signs, or into a foreground
probability map via the sigmoid function σ(Yc).

p(Y = fg|y) ∝ σ(V T y + µ) (5)

Now we will look how the image appearance is linked to the LLE body pose repre-
sentation x. We model the generative mapping fa from pose x to image descriptors y
that allows to predict image appearance given pose hypotheses and fits well into gener-
ative inference algorithms such as particle filtering. In addition to the local body pose x,
the appearance depends on the global body orientation ω relative to the camera, around
the vertical axis. First, we map the pose x, ω into low dimensional appearance space y,

fa(x, ω) = WaΦa(x, ω) (6)

where the functional mapping fa(x, ω) is approximated by a sparse kernel regressor
(RVM) with weight matrix Wa and kernel functions Φa(x).

By plugging (6) into (5), we obtain a discrete 2d probability distribution of fore-
ground probabilities Seg(p) over the pixels p in the bounding box.

Seg(p) = p(p = fg|fa(x, ω)) (7)

From this pdf, a likelihood measure can then be derived by comparing it to the actually
observed segmented image Yobs, also viewed as a discrete pdf Obs(p), using the Bhat-
tacharyya similarity measure [17] which measures the affinity between distributions.

Obs(p) =p(p = fg|Yobs)

BC(x, ω, Yobs) =
∑
p

√
Seg(p)Obs(p) (8)

We model the likelihood measure as a zero mean Gaussian distribution of the Bhat-
tacharyya distance dBh = −ln(BC(x, ω, Yobs)), and obtain as the observation likeli-
hood

p(Yobs|x, ω) ∝ exp(− ln(BC(x, ω, Yobs))2

2σ2
BC

) (9)

3 Inference

In this section we will show how the 2d image position, body orientation, and body
pose of the subject are simultaneously estimated given a video sequence, by using the



learned models from the previous section within the framework of particle filtering. The
pose estimation as well as the image localisation can benefit from the coupling of pose
and image location. For example, the known current pose and motion pattern can help
to distinguish subjects from each other and track them through occlusions. We therefore
believe that tracking should happen jointly in the entire state space Θ,

Θt = [ωt, ut, vt, wt, ht, xt], (10)

consisting of the orientation ω, the 2d bounding box parameters (position, width and
height) u, v, w, h, and the body pose x.

Despite the reduced number of pose dimensions, we face an inference problem in
9-dimensional space. Having a good sample proposal mechanism like our dynamical
model is crucial for the Bayesian recursive sampling to run efficiently with a moder-
ate number of samples. For the monocular sequences we consider, the posteriors can
be highly multimodal. For instance a typical walking sequence, e.g. observed from a
side view, has two obvious posterior modes, shifted 180 degrees in phase, correspond-
ing to the left resp. the right leg swinging forward. When taking the orientation of the
figure into account, the situation gets even worse, and the modes are no longer well
separated in state space, but can be close in both pose and orientation. Our experiments
have shown that a strong dynamical model is necessary to avoid confusion between
these posterior modes and reduce ambiguities. Some posterior multimodalities do how-
ever remain, since they correspond to a small number of different interpretations of the
images, which are all valid and feasible motion patterns.

The precise inference algorithm is very similar to classical CONDENSATION [18],
with normalisation of the weights and resampling at each time step. The prior and like-
lihood for our inference problem are obtained by extending (4) and (9) to the full state
space Θ. In our implementation, the dynamical prior pd(Θi

t|Θi
t−1) serves as the sample

proposal function. It consists of the learned dynamical prior from eq. (2), and a simple
motion model for the remaining state variables θ = [ωt, ut, vt, wt, ht].

pd(Θi
t|Θi

t−1) = pd(xi
t|xi

t−1)N (θi
t; θ

i
t−1, Σθ) (11)

In practice, one may want to use a standard autoregressive model for propagating θ,
omitted here for notational simplicity. The static prior over likely body poses (3) and
the likelihood (9) are then used for assigning weights wi to the samples.

wi
t ∝ p(Y i

t |Θi
t)ps(Θi

t) = p(Y i
t |xi

t, ω
i
t)ps(xi

t) (12)

Here, i is the sample index, and Y i
t is the foreground probability map contained in the

sampled bounding box (ui
t, v

i
t, w

i
t, h

i
t) of the actually observed image. Note that our

choice for sample proposal and weighting functions differs from CONDENSATION in
that we only use one component (pd) of the prior (4) as a proposal function, whereas
the other component (ps) is incorporated in the weighting function.

4 Experiments

We evaluated our tracking algorithm on a number of different sequences. The main
goals were to show its ability to deal with noisy sequences with poor foreground seg-



Fig. 2. Circular walking sequence from [5]. The figure shows full frames (top), and cutouts with
bounding box in original or segmented input images and estimated poses. Darker limbs are closer
in depth.

mentation, image sequences of very low resolution, and varying viewpoints through the
sequence.

Particle filtering was performed using a set of 500 samples, leading to a compu-
tation time of approx. 2-3 seconds per image frame in unoptimised Matlab code. The
sample set is initialised in the first frame as follows. Hypotheses for the 2d bounding
box locations are either derived from the output of a pedestrian detector that is run
on the first image, or from a simple procedure to find connected components in the
segmented image. Pose hypotheses xi

1 are difficult to initialise, even manually, since
the LLE parameterisation is not easily interpretable. Therefore, we randomly sample
from the entire space of feasible poses in the reduced LLE space to generate the ini-
tial hypotheses. Thanks to the low-dimensional representation, this works well, and the
sample set converges to a low number of clusters after a few time steps, as desired.

The described models were trained on a database of motion sequences from 6 dif-
ferent subjects, walking and running at different speeds. The data was recorded using an
optical motion capture system. The resulting sequences of body poses were normalised
for limb lengths and used to animate a realistic computer graphics figure in order to
create matching silhouettes for all training poses (see Fig. 1c). The figure was rendered
from different view points, located every 10 degrees in a circle around the figure. Due
to this choice of training data, our system currently assumes that the camera is in an ap-
proximately horizontal position. The training set consists of 4000 body poses in total.
All the kernel regressors were trained using the Relevance Vector Machine algorithm
(RVM) [8], with Gaussian Kernels. Different kernel widths were tested and compared
using a crossvalidation set consisting of 50% of the training data, in order to avoid
overfitting. 4 LLE dimensions were used, and 15 BPCA components.



Fig. 3. Diagonal walking sequence. Estimated bounding boxes and poses. The intensity of the
stick figure limbs encodes depth; lighter limbs are further away.

The first experiment (Fig. 2) shows tracking on a standard test sequence3 from [5],
where a person walks in a circle. We segmented the images using background sub-
traction, yielding noisy foreground probability maps. The main challenge here is the
varying viewing angle that is difficult to estimate from the noisy silhouettes. Track-
ing through another publicly available sequence from the HumanID corpus is shown in
Figure 3. The subject walks in an angle of approx. 35 degrees to the camera plane. In
addition it is viewed from a slight top-view and shows limb foreshortening due to the
perspective projection. These are violations of the assumptions that are inherent in our
choice of training data, where we used horizontal views and orthographic projection.
Nevertheless the tracker performs well.

Figure 4 shows an extract from a real soccer game with a running player. The se-
quence was obtained from www.youtube.com, therefore the resolution is low and the
quality suffers from compression artefacts. We obtained a foreground segmentation by
masking the color of the grass. In Figure 5 we show a real traffic scene that was recorded
with a webcam of 320 × 240 pixels. The subjects are as small as 40 pixels in height.
Noisy foreground segmentation was carried out by subtracting one of the frames at the
beginning of the sequence.

Our experiments have shown that the dynamical model is crucial for tracking through
these sequences, since the image information is unreliable and therefore has to be accu-
mulated over time. The tracker can otherwise be distracted by the noisy segmentations
and the multimodal per-frame likelihoods.

3 http://www.nada.kth.se/ hedvig/data.html



Fig. 4. An extract from a soccer game. The figure shows original and segmented images and with
estimated bounding boxes, and estimated 3d poses.

5 Summary and Conclusion

We have proposed a learning-based approach to the estimation of 3d body pose and im-
age bounding boxes from monocular video sequences. The relationship between body
pose and image appearance is learned in a generative manner. Inference is performed
with a particle filter that samples in a low-dimensional body pose representation ob-
tained by LLE. A nonlinear dynamical model is learned from training data as well. Our
experiments show that the proposed approach can track walking and running persons
through video sequences of low resolution and unfavourable image quality.

Future work will include several extensions of the current method. We will explic-
itly consider multiple activity categories and perform action recognition along with the
tracking. Also, we will investigate different image descriptors, that do extract the rele-
vant image information more efficiently.
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Abstract. We present a method to simultaneously estimate 3d body pose and
action categories from monocular video sequences. Our approach learns a low-
dimensional embedding of the pose manifolds, as well as the statistical relation-
ship between body poses and their image appearance. In addition, the dynamics
in these pose manifolds are modelled. Sparse kernel regressors capture the non-
linearities of these mappings efficiently. Body poses are inferred by a recursive
Bayesian sampling algorithm with an activity-switching mechanism based on
learned transfer functions. Using a rough foreground segmentation, we compare
Binary PCA and distance transforms to encode the appearance. As a postprocess-
ing step, the globally optimal trajectory through the entire sequence is estimated,
yielding a single pose estimate per frame that is consistent throughout the se-
quence. We evaluate the algorithm on challenging sequences with subjects that
are alternating between running and walking movements. Our experiments show
how the dynamical model helps to track through poorly segmented low-resolution
image sequences where tracking otherwise fails, while at the same time reliably
classifying the activity type.

1 Introduction

We consider the problem of estimating human body pose and action categories from
image sequences. This is a difficult problem, especially when dealing with low quality
low resolution imagery. Often the individual images do not provide enough information
to resolve ambiguous situations, and strong prior models have to be adopted in order to
compensate for that lack of information.

To address these problems we propose a method to estimate 3d body pose and action
categories simultaneously. We learn strong dimensionality-reduced models of feasible
body poses that belong to a certain activity or motion pattern, as well as the temporal
evolution of the body poses over time. Furthermore, the transition functions between
different activities are learned from training data as well. All the mappings are modelled
using sparse kernel regressors, leading to efficient evaluation during tracking.

The observations are taken into account in the form of roughly segmented images
that are obtained by a pre-processing step such as motion segmentation, background
subtraction or other. The underlying relationship between image appearance and body
poses is multivalued and ambiguous, thus non functional. Other learning based ap-
proaches have explicitly modelled the multimodality of the discriminative mapping
from appearances to poses (or the joint probability density function between appear-
ance and pose) with mixtures of regressors or Gaussians (e.g. [1–4]). The number of



required regressors is however a delicate parameter of these systems, as is the regu-
larisation during the learning stage, which is needed to avoid overfitting. We therefore
follow the opposite strategy, and model the generative mapping from body poses to ap-
pearance descriptors, which can be assumed to be functional and thus be approximated
with a nonlinear kernel regressor. Although unimodal, the appearance prediction will
be subject to uncertainty, because other factors than just the body configuration (pose)
may affect appearance (clothing, physical constitution, lighting conditions etc). This is
taken into account by learning a prediction variance matrix of the mapping.

A main focus of the proposed approach lies on the ambiguities and uncertainties
that are inherent in monocular body tracking. Recursive Bayesian Sampling offers a
framework for dealing with non-Gaussian and multimodal body pose posteriors and
allows us to integrate the nonlinear learned dynamical model. However, sampling-based
algorithms are generally not applicable for inference in high-dimensional state spaces
like the space of body poses. We therefore use Locally Linear Embedding (LLE, [5]) to
find a low-dimensional embedding of our 60-dimensional pose parameterisation. With
4 LLE dimensions, the considered motions can be captured reasonably well.

In this paper we investigate typical human motion patterns such as walking and
running. Rather than learning a unified representation that contains both walking and
running motions, we learn separate activity specific models that allow us to explic-
itly recognize the performed activity along with the pose estimation, using a switching
mechanism of the inference algorithm.

The main novelties of this paper are the generative appearance modelling, the track-
ing in a LLE-reduced pose representation with a nonlinear dynamical model, simulta-
neous recognition of multiple action categories, and the extraction of a globally optimal
trajectory through the entire sequence.

1.1 Related Work

There is a wide variety of literature about body pose estimation and tracking (see [6]
for an overview). Here we will have a look at the application of statistical methods to
this problem that infer poses from one or multiple camera streams. Many authors adopt
a discriminative strategy to infer poses directly from image descriptors [1–4, 7–9].

Synchronous image sequences from multiple cameras typically provide enough in-
formation to resolve ambiguities. The discriminative mapping from descriptors to body
poses can thus be modelled using a single regressor. In [9], a new image descriptor is
introduced based on a voxel representation that is derived from segmented images of
multiple cameras. This descriptor can then be directly mapped into pose space. In [8]
multiple silhouette image descriptors and corresponding pose descriptors are concate-
nated and modelled with a mixture of Probabilistic PCA; poses can then be inferred
given multiple views of the subject.

Monocular approaches have to deal with the one-to-many discriminative mapping
from appearance to pose. This issue is explicitly addressed in [1–4] by learning multiple
mappings in parallel as a mixture of regressors. In order to choose between the different
hypotheses that the different regressors deliver, [1, 2] use a geometric model that is pro-
jected into the image to verify the hypotheses. Inference is performed for each frame
independently in [1]. In [2] a temporal model is included using a bank of Kalman filters,



and a Viterbi algorithm finds a path through the peaks of the posterior distribution. In
[3, 4] gating functions are learned along with the regressors in order to pick the right
regressor(s) for a given appearance descriptor. The distribution is propagated analyti-
cally in [3], and temporal aspects are included in the learned discriminative mapping,
whereas [4] adopts a generative sampling-based tracking algorithm with a first-order
autoregressive dynamic model.

These discriminative approaches work in a bottom-up fashion, starting with the
computation of the image descriptor, which requires the location of the figure in the
images to be known beforehand. When including 2d bounding box estimation in the
tracking problem, a learned dynamical model might help the bounding box tracking,
and avoid loosing the subject when it is temporarily occluded. To this end, [10] learns
a subject-specific dynamic appearance model from a small set of initial frames, con-
sisting of a low-dimensional embedding of the appearances and a motion model. This
model is used to predict location and appearance of the figure in future frames, within a
CONDENSATION tracking framework. Similarly, low-dimensional embeddings of ap-
pearance (silhouette) manifolds are found using LLE in [11], where additionally the
mapping from the appearance manifold to 3d pose in body joint space is learned using
RBF interpolants, allowing for pose inference from sequences of silhouettes.

Instead of modelling manifolds in appearance space, [12–14] work with low dimen-
sional embeddings of body poses. In [12], the low-dimensional pose representation, its
dynamics, and the mapping back to the original pose space are learned in a unified
framework. These approaches do not include statistical models of image appearance.
Our approach also models pose manifolds rather than appearance manifolds, because
the pose manifold has fewer self-intersections than the appearance manifold, making
the dynamics and tracking less ambiguous.

Regarding activity switching, [15] has proposed a state switching mechanism, where
different dynamical models are chosen, depending on a discrete state variable. In our
approach, the different states (activities) involve separate models for pose, dynamics
and appearance.

Our approach fundamentally differs from the above-mentioned papers in that it si-
multaneously tracks in a state space that includes body pose, 2d bounding box location
and a discrete activity label. Furthermore, we present a full-fledged pipeline with gener-
ative rather than discriminative modelling of the appearance, entirely based on learned
models.

The remainder of this paper is organised as follows. Section 2 introduces our learned
models. In Section 3 the sample-based inference is presented and Section 4 shows ex-
perimental results on different video sequences.

2 Statistical Modelling

Figure 1 a) shows an overview of the tracking framework, reduced to a single activity
category for clarity. Central element is the low-dimensional body pose parameterisation,
with learned mappings back to the original pose space and into the appearance space.
In this section all elements of the framework will be described in detail. Our models
were trained on real motion capture data sets of different subjects, running and walking
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Fig. 1. a) An overview of the tracking framework. Solid arrows represent signal flow during
inference, the dashed arrow stands for the nonlinear dimensionality reduction during training.
The figure refers to equations in Section 2. b) Body pose representation as a number of 3d joint
locations. c) Distance transformed image descriptor dt(Y ). Each pixel value is proportional to
the distance to the silhouette, and its sign indicates whether the pixel lies inside the silhouette.

at different speeds. Walking and running training examples were separately processed
to train activity specific models.

2.1 Pose and Motion Model

Representations for the full body pose configuration are high dimensional by nature;
our current representation is based on 3d joint locations of 20 body locations such as
hips, knees and ankles, but any other representation (e.g. based on relative orientations
between neighbouring limbs) can easily be plugged into the framework. To alleviate
the difficulties of high dimensionality in both the learning and inference stages, a di-
mensionality reduction step identifies a low dimensional embedding of the body pose
representations. We use Locally Linear Embedding (LLE) [5], which approximately
maintains the local neighbourhood relationships of each data point and allows for global
deformations (e.g. unrolling) of the dataset/manifold.

LLE dimensionality reduction is performed on all poses in the data set that belong
to a certain activity, and expresses each data point in a space of desired low dimen-
sionality. However, LLE does not provide explicit mappings between the two spaces,
that would allow to project new data points (that were not contained in the original
data set) between them. Therefore, we model the reconstruction projection from the



low-dimensional LLE space to the original pose space with a kernel regressor.

X = fp(x) = WpΦp(x) (1)

Here, X and x are the body pose representations in original resp. LLE-reduced spaces,
Φp is a vector of kernel functions, and Wp is a sparse matrix of weights, which are
learned with a Relevance Vector Machine (RVM). We use Gaussian kernel functions,
computed at the training data locations. Separate models are learned for the two distinct
activities, fw

p (xw) and fr
p (xr). In the following we will use superscripts (e.g. w for

walk and r for run) to indicate activity categories in the notation if necessary and omit
them if the same formulation holds for all actions.

The training examples form a periodic twisted ’ring’ in LLE space, with a curvature
that varies with the phase within the periodic movement. A linear dynamical model, as
often used in tracking applications, is not suitable to predict future poses on this curved
manifold. We view the nonlinear dynamics as a regression problem, and model it using
another RVM regressor, yielding the following dynamic prior,

pd(xt|xt−1) = N (xt;xt−1 + fd(xt−1)∆T , Σd), (2)

where fd(xt−1) = WdΦd(xt−1) is the nonlinear mapping from poses to local velocities
in LLE pose space, ∆T is the time interval between the subsequent discrete timesteps
t − 1 and t, and Σd is the variance of the prediction errors of the mapping, computed
on a hold-out data set that was not used for the estimation of the mapping itself. Again,
the dynamics are learned separately for the different action categories.

Not all body poses that can be expressed using the LLE pose parametrisation do
correspond to valid body configurations that can be reached with a human body. The
motion model described so far does only include information about the temporal evo-
lution of the pose, but no information about how likely a certain body pose is to occur
in general. In other words, it does not yet provide any means to restrict our tracking
to feasible body poses. The additional prior knowledge about feasible body poses, or
likely poses for a given activity, is introduced as a static prior that is modelled with a
Gaussian Mixture Model (GMM).

ps(x) =
C∑
c

pcN (x;µc, Σc), (3)

with C the number of mixture components. The influence of this pose prior can be
kept low, avoiding a distortion of the tracking results towards typical average motion.
We introduce a weighting factor λ > 1 and obtain the following formulation for the
temporal prior by combination with the dynamic prior pd(xt|xt−1).

p(xt|xt−1) ∝ pd(xt|xt−1) ps(xt)
1
λ (4)

We also want to model the transition between the considered action categories, that each
have their own low dimensional pose parametrisation expressed in distinct LLE spaces.
Informally, we want to find walking poses that are very similar to a given running pose
and vice versa, since we know that the transition is performed smoothly, without any
sudden or jerky ’jump’ of the body configuration.



Given our distinct training sets of walking and running poses, two sets of training
pairs are generated by looking for the most similar running pose for every walking pose
and vice versa, and the nonlinear mapping between these pairs is modelled using two
sparse kernel regressors fr→w

switch(xr) and fw→r
switch(xw). This can easily be generalised to

more action categories and leads to the following motion model, where the state space
from eq. (4) is augmented by a discrete state variable at.

p(xt, at|xt−1, at−1) ∝
{
pnoswitch pat(xt|xt−1) if at = at−1

pswitch pat−1→at(xt|xt−1) else (5)

Here, the motion model for the case of activity switching pat−1→at(xt|xt−1) is mod-
elled as a normal distribution around the pose predicted by the regressor fat−1→at

switch . The
probabilities that an activity transition does or does not occur are denoted pswitch and
pnoswitch.

2.2 Appearance Model

The representation of the subject’s image appearance is based on a rough figure-ground
segmentation. Under realistic imaging conditions, it is not possible to get a clean sil-
houette, therefore the image descriptor has to be robust to noisy segmentations to a
certain degree. We consider two types of image descriptors, distance transforms dt(Y )
[16] of segmented figures with a subsequent linear PCA dimensionality reduction step
(see Figure 1c), and a representation obtained by applying Binary PCA (BPCA) [17]
to binary foreground images. Both image descriptors are computed from the content
of a bounding box around the centroid of the figure, and 10 to 20 PCA resp. BPCA
components have been found to yield good reconstructions. We introduce the following
notation for the computation of these descriptors and the projection on the respective
subspaces given the raw pixel image Y :

yDT =V (dt(Y )− µ)
yBPCA =BPCA(Y )

(6)

In this equation, µ and V are the mean and basis vectors obtained by PCA. BPCA(Y )
and dt(Y ) are nonlinear operations, in the BPCA case the projection on the subspace is
done iteratively (see [17]). As we will see later, it is useful in some situation to consider
the inverse operation that projects the image descriptors yDT and yBPCA back into high
dimensional pixel space and transforms it into binary images or foreground probability
maps. From the descriptors we compute probability maps via the sigmoid function σ(.).

p(Y = fg|yDT ) ∝ σ(V T yDT + µ)

p(Y = fg|yBPCA) ∝ σ(V T yBPCA + µ)
(7)

Again, µ and V are the mean and basis vectors from linear resp. binary PCA.
Now that we have seen how to compute image descriptors from segmented images

and back, we will look how the image appearance is linked to the LLE body pose repre-
sentation x. We will model the generative mapping from pose x to image descriptors y



that allows to predict image appearance given pose hypotheses and fits well into gener-
ative inference algorithms such as recursive Bayesian sampling. In addition to the local
body pose x, the appearance depends on the global body orientation ω (rotation around
vertical axis).

p(y|x, ω) =N (y; fa(x, ω), Σa)
fa(x, ω) =WaΦa(x, ω)

(8)

Here, the functional mapping fa(x, ω) is approximated by a sparse kernel regressor
(RVM) with weight matrix Wa and kernel functions Φa(x). Σa is the prediction vari-
ance matrix, it indicates which dimensions of the descriptor y can be well predicted
and which cannot, and thus accounts for the fact that the prediction of y will always be
subject to uncertainty. Σa is estimated from a hold-out set of the original training data
and restricted to a diagonal matrix for simplicity.

3 Inferring Image Position, Orientation, Activity and Pose

In this section we will show how the 2d image position, body orientation, activity cate-
gory, and body pose of the subject are simultaneously estimated given a video sequence,
by using the learned models from the previous section within the framework of recur-
sive Bayesian sampling. Both pose estimation and image localisation can benefit from
the coupling of pose and image location. For example, the known current pose and mo-
tion pattern can help to distinguish subjects from each other and track them through
occlusions. We therefore believe that tracking should happen jointly in the entire state
space Θ,

Θt = [at, ωt, ut, vt, wt, ht, xt], (9)

consisting of the discrete activity a, orientation ω, the 2d bounding box parameters
(position, width and height) u, v, w, h, and the body pose x.

Despite the reduced number of pose dimensions, we face an inference problem in
10-dimensional space. Having a good sample proposal mechanism like our dynamical
model is crucial for the Bayesian recursive sampling to run efficiently with a moderate
number of samples. For the monocular sequences we consider, the posteriors can be
highly multimodal. Our experiments have shown that a strong dynamical model is nec-
essary to avoid confusion between these posterior modes and reduce ambiguities. The
remaining posterior multimodalities correspond to a small number of different interpre-
tations of the images, which are all valid and feasible motion patterns.

The precise inference algorithm is very similar to classical CONDENSATION [18],
with normalisation of the weights and resampling at each time step. If we neglect the
activity switching mechanism for a moment, the prior and likelihood for our inference
problem are obtained by extending (4) and (8) to the full state space Θ. In our imple-
mentation, the dynamical prior pd(Θi

t|Θi
t−1) serves as the sample proposal function. It

consists of the learned dynamical pose prior from eq. (2), and a simple motion model
for the remaining state variables θ = [ωt, ut, vt, wt, ht].

pd(Θi
t|Θi

t−1) = pd(xi
t|xi

t−1)N (θi
t; θ

i
t−1, Σθ) (10)



In practice, one may want to use a standard autoregressive model for propagating θ,
omitted here for notational simplicity. The static prior over likely body poses (3) and
the likelihood (8) are then used for assigning weights wi to the samples.

wi
t ∝ p(yi

t|Θi
t)ps(Θi

t)
1
λ = p(yi

t|xi
t, ω

i
t)ps(xi

t)
1
λ (11)

Here, i is the sample index, and yi
t is the image descriptor computed from the sampled

bounding box (ui
t, v

i
t, w

i
t, h

i
t). Note that our choice for sample proposal and weighting

functions differs from CONDENSATION in that we only use one component (pd) of the
prior (4) as a proposal function, whereas the other component (ps) is incorporated in
the weighting function.

Likelihood computation in image space or on a PCA subspace. Our framework has
a generative flavour, since we model the pdf of the appearance given the body pose
in a top-down manner. The computation of the image descriptor and projection on the
subspace and back can be issued in both directions, as seen in eq. (6) and (7). One
possibility is to compute the image descriptors in a bottom-up manner and project them
onto the PCA or BPCA subspace (6), where the likelihood is then directly obtained
using (8).

Alternatively, in a purely generative top-down manner, we can predict whether we
expect a certain pixel to be foreground or background given a pose hypothesis. This
is done by concatenating the mapping fa(x, ω) from eq. (8) and the projection of the
appearance descriptor into full appearance space (image space) (7). This yields a dis-
crete 2d probability distribution of foreground probabilities Seg over the pixels p in
the bounding box. From this pdf, a likelihood measure can then be derived by com-
paring it to the actually observed segmented image Obs, also viewed as a discrete pdf,
using the Bhattacharyya similarity measure [19] which measures the affinity between
distributions.

Segi
t(p) =p(p = fg|fa(xi

t, ω
i
t))

Obsi
t(p) =p(p = fg|imaget, u

i
t, v

i
t, w

i
t, h

i
t)

BCi
t =

∑
p

√
Segi

t(p)Obsi
t(p)

(12)

Both alternative ways of likelihood computation have advantages and drawbacks.
The bottom-up variant requires binary images to compute the image descriptors, whereas
the top-down variant can handle continuous foreground probabilities. Often the fore-
ground segmentation is available in the form of probability maps, and thresholding it
may cause an unnecessary loss of information and yield unsatisfying results. On the
other hand, evaluation of likelihood on the (B)PCA subspace can benefit from the
learned variance matrix Σa. Also, the bottom-up computation of descriptors can be
disturbed by noisy segmentations. This holds particularly for the distance transformed
image descriptor yDT . In the case of the descriptor based on BPCA, the projection on
the subspace is iterative and therefore slow, which in this case reduces the attractivity of
the bottom-up variant from a practical perspective. Experimentally, the combination of
distance transformed descriptors and bottom-up descriptor computation fails when the



input image segmentation is very noisy, the other three combinations perform similarly
well.

3.1 Activity Switching

When turning to the multi activity tracking case, the sample proposal function is adapted
according to eq. (5). A sample i undergoes an activity switch with probability pswitch.
We currently consider two activities, walking and running, therefore we set pw→r

switch =
pr→w

switch = 1 − pnoswitch. The scheme can be extended to more activity categories. In
case of an activity switch, the sample i is initialised with a value in LLE pose space of
the new activity at by sampling from the activity transition function pat−1→at(xt|xt−1).
In such a manner, at each time step a number of samples are generated that allow for
a smooth transition into the other activity. If these hypotheses are supported by the
image information, they will be selected in the subsequent resampling step and take
overhand. The percentage of samples of a certain activity category is a measure for
the algorithm’s belief about the currently observed action. The image support for the
hypotheses is given by the observation likelihood, which is always based on the action
specific appearance model (fw

a resp. fr
a in eq. (8)).

3.2 Globally Optimal Trajectory

The described sample-based tracking algorithm provides a set of N samples with cor-
responding weights for each frame of the sequence. This representation of the posterior
is not suitable for many purposes, even visualisation is difficult. Furthermore, the pos-
teriors are computed on a per-frame level, i.e. at time step t we compute p(Xt|Y1:t).
Often we are interested in a consistent trajectory through the entire image sequence, i.e.
in the maximum of the posterior p(X1:T |Y1:T ) over the poses of all time steps, given
all observations. In other words, we are interested in the value for X1:T with maximal
probability rather than marginals for each Xt.

In our framework this is achieved by a postprocessing algorithm that finds opti-
mal paths through the set of samples. We use the Max-Product algorithm resp. its nu-
merically more stable counterpart, the Min-Sum algorithm that operates with negative
logarithms instead of probabilities (see [20] or [21] for belief propagation algorithms).
These algorithms are discrete by nature, i.e. each node of the Markov chain (each time
step) has a number of discrete states that in our case is equal to the number of samplesN
of the tracking algorithm. The algorithm will thus choose one sample per node to form
a trajectory through time and state space that best satisfies both observation likelihood
and temporal prior. Instead of finding the optimal trajectory for the entire sequence, the
algorithm can also be applied to sub-sequences, in a sliding-window fashion.

More formally, the goal is to find a sequence of state variables Θ1:T that maximises
the global function p(Θ1:T ), which is factorised into the product of evidence functions
υ that take into account the image information, and compatibility functions ψ of tem-
porally adjacent nodes.

p(Θ1:T ) =
1
Z

T∏
t=2

ψ(Θt, Θt−1)
T∏

t=1

υ(Θt), (13)

whereZ is a normalisation constant. Since the global function to optimise is the same as
during the recursive tracking, the same equations can be reused. The evidence functions



Fig. 2. Circular walking sequence from [22]. The figure shows full frames (top), and cutouts with
bounding box in original or segmented input images and estimated poses. Darker limbs are closer
in depth.

υ(Θt) are computed according to eq. (11). In fact we can directly reuse the sample
weights computed during tracking. The compatibility between neighbouring nodes is
given by eq. (10). The Max-Product resp. Min-Sum algorithm performs inference in
this chain graph by propagating local messages (beliefs) between neighbouring nodes.

4 Experiments

Training. The described models were trained on a database of motion sequences from 6
different subjects, walking and running at 3 speeds per activity (2.5, 4.2, 6 resp. 8,10,12
km/h). The data was recorded using an optical motion capture system at a framerate
of 60 Hz and subsampled to 30 Hz. The resulting sequences of body poses were nor-
malised for limb lengths and used to animate a realistic computer graphics figure in
order to create matching silhouettes for all training poses. The figure was rendered from
different view points, located every 10 degrees in a circle around the figure. Due to this
choice of training data, our system currently assumes that the camera is in an approxi-
mately horizontal position. The training set consists of 2000 body poses of each activity.
All the kernel regressors were trained using the Relevance Vector Machine algorithm
[23], with Gaussian Kernels. Different kernel widths were tested and compared using a
crossvalidation set consisting of 50% of the training data, in order to avoid overfitting.

Tracking. We evaluated our tracking algorithm on a number of different sequences.
The main goals were to show its ability to deal with noisy sequences with poor fore-
ground segmentation, image sequences of very low resolution, varying viewpoints through
the sequence, and switching between activities. The figures in this section show the
body poses of the optimal trajectory that was computed according to Section 3.2, based
on the samples from the recursive Bayesian sampling algorithm.



Fig. 3. Circular walking sequence from [24], original resp. segmented input images with esti-
mated bounding boxes, and estimated poses.

The particle filtering was performed using a set of 500 samples, leading to a com-
putation time of approx. 2-3 seconds per image frame in unoptimised Matlab code. The
sample set is initialised in the first frame as follows. Hypotheses for the 2d bounding
box locations are either derived from the output of a pedestrian detector that is run on
the first image, or from a simple procedure to find connected components in the seg-
mented image. Pose hypotheses xi

1 are difficult to initialise, even manually, since the
LLE parametrisation is not easily interpretable. Therefore, we randomly sample from
the entire space of feasible poses in the reduced LLE space to generate the initial hy-
potheses. Thanks to the low-dimensional representation, this works well, and the sample
set converges to a low number of clusters after a few time steps, as desired.

The first experiment (Fig. 2) shows tracking on a standard test sequence1 from [22],
where a person walks in a circle. We segmented the images using background subtrac-
tion, yielding noisy foreground probability maps. The main challenge here is the vary-
ing viewing angle that is difficult to estimate from the noisy silhouettes. Figure 3 shows
another publicly available sequence2. Here we used only one camera, this sequence has
been mainly used for multi-camera tracking (e.g. [24, 9]).

Figure 4 shows an extract from a treadmill sequence that was 1660 frames long in
total. In this sequence, the subject initially walks and switches to running and back to
walking several times. The figure shows a few frames from the transition from running
to walking; the first two frames clearly contain running poses, then the arms are lowered
and the last 3 frames show walking. The plot on the bottom right shows the estimated

1 http://www.nada.kth.se/ hedvig/data.html
2 http://www.cs.brown.edu/ ls/



Fig. 4. Transition from running to walking. The original sequence is 1660 frames long, here we
show selected frames from the transition phase between frame 921 and frame 936. The figure on
the bottom right shows the estimated activities; the blue curve shows the continuous probability
that we observe running rather than walking over the entire sequence, the red bars indicate the
activity that has been inferred by the global optimisation.

running probabilities throughout the sequence. Even for humans, it is not obvious to
identify the exact moment of activity change, there is typically a transition phase of
approx. 0.5 seconds. In our experiments, the activity switch was always detected within
this transition phase, as desired. Note that we do not take into account the typical peri-
odic motion in vertical direction that distinguishes running from walking, the activity is
correctly estimated from the local shape and its deformation over time alone.

The sequences of Figures 5 and 6 were recorded in a real traffic environment with
a webcam. The image resolution is 320 × 200 pixels, with subjects as small as 40-50
pixels in height. Furthermore, the image quality is unfavourable due to severe MPEG
compression artefacts and noisy foreground segmentation. In Figure 5 the person car-
ries an umbrella that could be misinterpreted as a leg, and a bag that distorts the overall
shape of the pedestrian. The subject also turns away from the camera over the duration
of the sequence. Our experiments showed that such a challenging sequence, combining
different kinds of difficulties, can only be tracked thanks to the dynamical model, since
the information from individual images is unreliable and therefore has to be accumu-
lated over time. The pedestrian in Figure 6 suddenly starts to run when crossing a street.
The activity switch is reliably detected, as can be seen in the activity plot on the bottom
right.

5 Summary

We presented an monocular tracking approach that simultaneously estimates the 2d
bounding box coordinates, the performed activity, and the 3d body pose of a moving
person. To this end, we learn statistical models of pose, dynamics, activity transition,
and appearance using efficient sparse kernel regressors. The relationship of pose and
appearance is learned in a generative manner. Using LLE, we find an embedding of the
pose manifolds of low dimensionality, which allows us to use a Monte-Carlo sampling
algorithm for tracking. A Max-Product algorithm finally extracts the optimal sequence
through the entire image sequence. We demonstrated the method on different challeng-
ing video sequences of low resolution with noisy segmentation.



Fig. 5. Real traffic scene with low resolution input images, noisy segmentation, disturbing objects
(umbrella, bag), and varying viewangle. Original frames (top) and cutouts.
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