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Abstract:  
We  present  two  different  concepts  of  self-‐‑learning  tree-‐‑like  structures  that  model  
normal  human  behavior  or  activities  and  are  used  for  the  detection  of  abnormalities.  
Thanks  to  the  use  of  hierarchies,  we  can  apply  the  DIRAC-‐‑specific  reasoning  of  novel  
events.  The  two  approaches  have  different  advantages,  they  are  both  applied  to  the  
scenario  of  assisted  living,  one  of  the  approaches  furthermore  extends  to  other  
surveillance  tasks,  such  as  the  monitoring  of  public  places,  whereas  the  other  one  is  
updatable  at  runtime.  
  
  
  
Note:  As  long  as  not  all  of  the  described  techniques  are  published,  this  deliverable  
remains  confidential.  
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1.   Introduction  

1.1.   Context  

  
Tracker  trees,  as  they  are  developed  in  the  DIRAC  project  and  described  in  previous  
deliverables  (D3.9,  D3.12)  and  publications  [Nater  et  al.,  2009],  offer  a  convenient  and  
effective  approach  to  the  detection  of  abnormal  events  in  the  context  of  autonomous  
living   of   elderly   people.   In   DIRAC   deliverable   3.12,   a   fully   functional  
implementation   of   a   tracker   tree  has   been  described,   including   the  use   of  different  
techniques  for  the  various  tracker  nodes,  as  well  as  the  quantitative  evaluation  in  the  
described   setting.      As   the   different   trackers   have   been   trained   specifically   to   the  
underlying  actions  or  activities,  it  is  not  only  possible  to  reason  on  incongruencies  in  
the   tree,   but   also   detect   what   specific   action   the   person   is   performing  when   he   is  
behaving  according  to  expectations.  
  
However,  this  supervised  tracker  tree  approach  has  different  shortcomings:  
  

-‐‑ As  the  training  is  done  in  a  supervised  setting,  where  all  video  frames  in  the  
training   sequences   have   to   be   manually   annotated   with   an   action   label,  
establishing   a   new   tracker   tree   or   augmenting   the   tracker   tree   with   new  
actions  is  cumbersome.  A  more  automatic,  data  driven  technique  is  called  for.  

-‐‑ Once  the  tracker  tree  is  trained,  it  remains  fixed  during  the  time  it  is  applied  
in  people’s  homes.  However,  concepts  of  normality  might  change  over  time,  
furniture  might  be  moved,  etc.,  thus  it  is  desirable  to  make  the  approach  self-‐‑
learning  during  its  runtime.  

-‐‑ The  tracker  tree  has  proven  to  perform  adequately  in  the  scenario  of  elderly  
people  surveillance,  where  one  single  person  has  to  be  monitored  in  a  living  
room   setting.   The   DIRAC   concept   of   detecting   incongruent   events   would  
however   benefit   from   showing   applications   in   other   scenarios,   such   as   for  
example   the   surveillance   of   public   places.   This   requires   the  use   of   different  
feature   types,   and   again   encourages   self-‐‑learning   techniques,   as   every  
surveillance  setting  has  its  own  specificities.  

  
Due   to   these   reasons,  we   investigated   in   techniques   that   automatically   build   up   a  
hierarchy  from  the  available  input  image  stream.  This  hierarchy  can  then  be  used  to  
analyze   unseen   data   and   detect   abnormalities.   If   abnormalities   persist,   one   might  
reason   that   the   concept  of  normality  has   changed,  and  data   that   is   seen  at   runtime  
should  be  integrated  in  the  model  (life-‐‑long  learning).  
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1.2.   Approaches  

We  have  developed  two  different  approaches  for  unsupervised  analysis  of  (human)  
behavior.   Both   of   them   learn   automatically   from   training   data   in   order   to   create  
effective  models,  which   are   applied   at   runtime.   The   two   proposed   approaches   are  
scientifically  disseminated,  the  first  one,  entitled  Exploiting  simple  hierarchies  for  human  
behavior   analysis   was   published   at   CVPR   2010,   the   second   one,   with   the   title   Ad  
seriatim:   temporal   relations   in   video   for   unsupervised   activity   analysis   is   in   the   revision  
process  for  CVPR  2011.  
  
In   this  deliverable,  we  give  a  very  brief  description  of   each  of   the  approaches,   and  
show   their   implications   in   the   DIRAC   project.   For   details   on   the   technical  
backgrounds,   implementation   and   experimental   evaluation,  we   refer   to   the   papers  
that  are  provided  in  the  appendix.    

  

2.   Exploiting  simple  hierarchies  for  human  behavior  analysis  

 
Figure   1.  The   input   image   stream   is   analyzed   in   a  model,   which   consists   of   two   cascaded  
hierarchies.   They   are   established   in   an   unsupervised   manner.   Reasoning,   in   line   with   the  
DIRAC-‐‑specific   theory   is   applied   in   order   to   perform   abnormal   event   detection   in   unseen  
videos.    
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Abstract

We propose a data-driven, hierarchical approach for the
analysis of human actions in visual scenes. In particular, we
focus on the task of in-house assisted living. In such scenar-
ios the environment and the setting may vary considerably
which limits the performance of methods with pre-trained
models. Therefore our model of normality is established
in a completely unsupervised manner and is updated au-
tomatically for scene-specific adaptation. The hierarchical
representation on both an appearance and an action level
paves the way for semantic interpretation. Furthermore we
show that the model is suitable for coupled tracking and ab-
normality detection on different hierarchical stages. As the
experiments show, our approach, simple yet effective, yields
stable results, e.g. the detection of a fall, without any human
interaction.

1. Introduction

In many visual surveillance scenarios, an automatic sys-
tem has to detect anomalies and then give out a warning
for an operator. To cope with various situations and en-
vironments, a multitude of different approaches have been
proposed, see [8] for a survey. Most of these methods de-
tect anomalies as outliers to previously trained models of
normality. Successes include the analysis of an agent’s mo-
tion patterns [19], traffic monitoring [10], the surveillance
of public places [1], and the evaluation of a webcam image
stream [6].

Our work aims at supporting autonomous living of el-
derly or handicapped people, by monitoring their well-
being with a visual surveillance system installed in their
homes. Fall detection is one major task of such activity
monitoring systems [18]. To this end, rule-based systems
have been established, performing well for the detection of
different, predefined dangerous cases (e.g. [2, 15]). They
lack general applicability, however. Other methods imple-
ment a more principled model of human behavior and are

(a) Normal action (b) Abnormal event

(c) Human behavior analysis

Figure 1. Human behavior in an input image stream is analyzed
in a cascade of two hierarchical models. They are established in
an unsupervised manner and permit the characterization of normal
and abnormal events for example in in-house monitoring scenes.

then able to point out suspicious configurations. Boiman
and Irani [4], for example, check whether they can explain
a given activity as a puzzle of spatio-temporal database en-
tries. In our previous work [17], we used a set of trackers,
each dedicated to a certain range of activities. Another ap-
proach is to extract key-frames and estimate transition prob-
abilities for a set of predefined activities (e.g. [14]). The
main limitation of all these systems is their need for an of-
fline, prior training with labeled training data. In such su-
pervised approaches, no long-term adaptation to particular
scenes or persons can be achieved. Furthermore, no training
sequence contains a comprehensive set of all the situations
to expect. Due to these reasons, a dynamical, data-driven
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2.1.   Idea  

Inspired  by  neurophysiological   findings   that   suggest   that   the  human  visual   system  
makes  a  distinction  between  the  analysis  of  instantaneous  snapshots  (or  single  poses  
in  the  context  of  human  behavior)  and  the  analysis  of  motion  (or  actions)  [Lange  and  
Lappe,  2006],  we  set  up  a  two-‐‑stage  model.  It  is  learned  in  an  unsupervised  manner  
and  structures  the  underlying  data  in  two  cascaded  hierarchical  representations.  This  
is   illustrated   in   Fig.   1.   The   first   stage   encodes   human   appearances   on   a   per-‐‑frame  
basis   (snapshot)   and   is  built   in   a   top  down  process.  The   second  hierarchy  explains  
sequences  of  appearances,  i.e.,  actions  or  behavioral  patterns,  in  a  bottom  up  analysis.  
The  overall  approach  is  based  on  the  assumption  that  normal  activities  are  observed  
frequently,   whereas   very   rare   observations   tend   to   be   abnormal.   Thus,   only  
frequently  occurring  appearances  and  actions  are  modeled.  
  
At  runtime,   the  model  can  be  used  for   the   interpretation  of  unseen  video  data.  The  
data   is   analyzed  with   respect   to   snapshots   (single   frames)   in   the   first   hierarchy   as  
well  as  sequences  that  present  motion  patterns.  Abnormal  events  are  detected,  based  
on  the  DIRAC-‐‑specific  paradigm  of  classifier  disagreement.  Additionally,  we  show  in  
the  paper  how  to  update  both  hierarchies.  In  fact,  as  we  apply  simple  modeling  and  
clustering   techniques,   an   adaptation   of   the  models   is   feasible.   Similar   outliers   that  
occur   frequently   are   assumed   to   belong   to   a   drifted   concept   of   normality,   and   are  
therefore  added  to  the  initial  model.  
  
The   comparison   between   the   monkeys’   behavioral   responses   to   video   stimuli   of  
human  walkers  and  the  output  of  the  model,  trained  on  the  same  human  walkers,  is  
investigated  in  a  different  DIRAC  collaboration  and  reported  in  [Nater  et  al.,  2010].  
  

2.2.   Relations  to  DIRAC  

A   key   ingredient   of   the   proposed   technique   is   the   hierarchical   structure,   which   is  
used   for   modeling.   We   explicitly   seek   to   create   hierarchies   that   consist   of   many  
layers,  by  fixing  the  splitting  of  each  tracker  node  into  two  sub-‐‑nodes.  Each  sub-‐‑node  
is  then  more  specific  than  its  parent,  since  it  only  models  a  part  of  the  data  that  the  
parent  node  had  included.  In  DIRAC  terms,  we  deal  with  a  disjunctive  hierarchy.    
  
Abnormal  events  are  detected  where  and  when  a  more  general  node  in  the  hierarchy  
still  explains  the  data,  but  none  of  the  more  specific  connected  children  nodes  does.  
Such   an   abnormal   event   can  occur   at   any   level   in   the  hierarchy.   Since  more   subtle  
abnormal   events   will   be   outliers   at   levels   more   towards   the   leaf   nodes,   while  
important   deviations   tend   to   be   detected   already   close   to   the   root,   this   hierarchy  
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paves   the   way   for   a   semantic   interpretation   on   the   nature   of   the   detected  
abnormality.  

  

3.   Temporal   relations   in   video   for   unsupervised   activity  
analysis  

 
Figure  2.  Overview  of  the  proposed  hierarchical  model.  Each  node  represents  part  of  the  data.  
Nodes  at  higher  levels  are  more  general  and  describe  broad  activity  data  in  an  approximate  
manner,  nodes  on   lower   levels   are  well   tuned   to   specific   activities.   In  order   to   successively  
split  the  data,  temporal  relations  in  the  image  stream  are  exploited.  

 

3.1.   Idea  

Temporal  consistency  is  an  important  cue  in  continuous  data  streams  such  as  videos.  
By  exploiting  the  temporal  relations  from  frame  to  frame,  we  show  that  it  is  possible  
to   split   the   data   stream   into   its   composing   activities.      This   splitting   procedure   is  
applied   recursively   on   the   data,   as   sketched   in   Fig.   2,   using   discriminative   slow  
feature   analysis   (SFA).   This   technique,   first   introduced   in   [Wiskott   and   Sejnowski,  
2002]   is   inspired  by  human   learning   capacities.  Once  all   the  activities   are   extracted  
from   the   data,   a   simple   PCA-‐‑based   modeling   technique   is   applied   to   be   able   to  
interpret   unseen   data   at   runtime.   As   shown   in   the   experimental   section   of   the  
appended   (submitted)  paper,   the   technique  yields  superior   results  compared   to   the  
approach   described   in   Sec.   2   on   the   same   in-‐‑house   data.   Furthermore,   it   can   be  
applied  to  different  surveillance  scenarios  by  interchanging  feature  types.  We  show  
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Figure 2. Overview of the pro-

posed hierarchical model. Each

node represents a part of the data.

Nodes at higher level are more

general and describe broad activ-

ity data in an approximate man-

ner, nodes on lower levels are

well tuned to specific activities.

In order to successively split the

data, temporal relations in the

image stream are exploited.

model building and reasoning. Let us consider the different

image sequences depicted in Fig. 1. One obvious obser-

vation is that changes from frame to frame are quite slow

with respect to the whole sequence. While horse riding is

one activity, the actions of a tracked person (2nd row) ex-

hibit different activities. In particular, they have a certain

duration and usually short interconnections (e.g., walking,

sitting down, sitting). This is also true on larger scales.

In traffic surveillance, activities may relate to typical traf-

fic patterns. On an even larger scale, changes over days or

months define the activities (e.g., day/night, summer/winter,

etc.). This analysis at different scales already suggest a hi-

erarchical structure where more specific activities are em-

bedded into more general ones.

In this work, we explicitly explore the strong temporal

relation in the image stream for model building. Activities

are automatically discovered and continuously refined. Fur-

thermore, we are able to interpret unseen video sequences

in order to re-detect activities or spot abnormal events, such

as the ambulance (3rd row) and the big tent for a street fes-

tival (4th row) in Fig. 1. The contributions of this paper are

twofold:

• We propose an unsupervised technique to segment the

data into compact and meaningful activities. To this

end, we explore the strong temporal relations in the

video stream (Sec. 2). The automatically discovered

activities are efficiently represented and arranged in an

hierarchical manner (Sec. 3).

• Due to the coarse to fine representation in the hier-

archy, analysis and interpretation of unseen data be-

comes feasible. (Sec. 4).

Experimental results, presented in Sec. 5 in different video

surveillance scenarios, show the usefulness and wide gen-

erality of the proposed technique. We exhibit traffic moni-

toring, the surveillance of public places, as well as the de-

tection of abnormalities in inhouse scenarios. In the last ex-

ample, a target can be tracked within a scene, which shows

the additional benefit of simultaneous tracking and activity

reasoning.

2. Activities in data streams
Without loss of generality, in this work we focus on im-

age streams. Given an image stream, S = {I1, I2, . . . , IT }
of T images, It ∈ IR

n×m
, the image stream shall be mod-

eled. Further, let each image It be represented by a D-

dimensional feature vector ft ∈ IR
D

. As we will show in

the experiments, the exact feature representation is not cru-

cial.

Due to the expected variety in the data, it often is dif-

ficult to build a single model which describes the data and

its dynamic behavior precisely. In this work, we propose to

automatically split the image stream into meaningful sub-

sequences. If they are consistent and less complex, they

can be represented more easily and precisely. This idea is

similar to motion segments in [15] or micro-actions in [13].

Since we do not restrict ourselves to human actions, we call

these subsequences activities.

From temporal relations to hierarchical models. In

data obtained from time series, as in videos, there is a pow-

erful link between temporally adjacent observations. This

observation is very intuitive, but provides the important cue

and is often not enough exploited for learning unsupervised

activity models. In that sense, we characterize activities to

have a certain duration, to be observed frequently, and to

be interconnected with shorter transitions. In other words,

with high probability, neighboring frames share their activ-

ity label. For example, in the case of human action recogni-

tion, activities correspond to the actions, like walking or sit-

ting, which are executed over a certain time. The transitions

between these activities are normally quite short without a

clearcut boundary.

We opt to explore this principle by arranging the video

data in a hierarchical manner as outlined in Fig. 2. In a

long datastream, some activities might be very distinctive

and can be segmented on a general level, while subtle con-

2
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results   for   traffic   monitoring   as   well   as   the   surveillance   of   a   public   place   from  
webcam  data.    
  

3.2.   Relations  to  DIRAC  

As   in   the   previous   approach,   the   concept   that   enables   the   detection   of   abnormal  
events  is  the  reasoning  in  the  hierarchy.  Following  DIRAC  terminology,  we  establish  
a  disjunctive  hierarchy,  where  nodes  closer   to   the   root  are  more  general  and  become  
more   and  more   specific  when  moving   towards   the   leafs.   The   splitting   technique   is  
now  more  data-‐‑driven   than  previously,   since   the  number   of   established   sub-‐‑nodes  
depends  on  the  low  dimensional  distribution  of  data  points  in  SFA  space.  
  
Abnormal  events  are  again  detected  where  and  when  a  more  general  node  can  well  
describe   the   current   observation,   but   none   of   its  more   specific   children   nodes   can.  
From   the   location   in   the   tree,  where   this   abnormal   event   occurs,   reasoning   on   the  
severity  of  the  event  can  be  deduced.  Due  to  the  SFA  modeling,  nodes  in  this  model  
often  precisely  correspond  to  activities  or  actions  with  a  semantic  meaning  and  thus  
a  semantic  interpretation  of  the  abnormal  event  is  encouraged.  

  

4.   Conclusion  

The   two   appended   publications   present   two   approaches   to   the   unsupervised  
modelling   of   human   behaviour   and   activities   in   general.   In   this   deliverable,   we  
briefly   introduced  the   techniques,  and  explained  the  DIRAC-‐‑related  considerations.  
We  show  that  by  means  of  unsupervised  methods,  the  detection  of  abnormal  events  
in  assisted  living  scenarios  is  possible.    
  
In  an  automatic  manner,  both  approaches  establish  disjunctive  hierarchies,  which  can  
be  used  for  the  interpretation  of  unseen  data  at  runtime.  Whereas  the  first  approach  
has   the   advantage   of   being   updatable,   the   second   technique   has   superior  
performance   and   delivers   a   more   easily   interpretable   hierarchy   of   activities.   In  
addition,   the   second   concept   was   also   successfully   applied   to   other   surveillance  
scenarios  with  different  feature  types.  
  
Unsupervised   techniques,   compared   to   the   supervised   tracker   tree   come  with   one  
particular  drawback   that   is   the   lack  of  an  exact  semantic  meaning  of  each  modeled  
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activity  node.  While  one  tracker  in  the  supervised  tracker  tree  exactly  corresponded  
to  a  well-‐‑defined  human  action,  such  as  walking  or  sitting,  this  is  less  clear  when  an  
unsupervised   model   is   built.   Therefore   the   detection   and   recognition   of   known  
actions   is   less   straight   forward,   and   additional   human   effort  would   be   required   to  
obtain  action  recognition  capabilities  as  in  the  supervised  tracker  tree.  
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Abstract

We propose a data-driven, hierarchical approach for the
analysis of human actions in visual scenes. In particular, we
focus on the task of in-house assisted living. In such scenar-
ios the environment and the setting may vary considerably
which limits the performance of methods with pre-trained
models. Therefore our model of normality is established
in a completely unsupervised manner and is updated au-
tomatically for scene-specific adaptation. The hierarchical
representation on both an appearance and an action level
paves the way for semantic interpretation. Furthermore we
show that the model is suitable for coupled tracking and ab-
normality detection on different hierarchical stages. As the
experiments show, our approach, simple yet effective, yields
stable results, e.g. the detection of a fall, without any human
interaction.

1. Introduction
In many visual surveillance scenarios, an automatic sys-

tem has to detect anomalies and then give out a warning
for an operator. To cope with various situations and en-
vironments, a multitude of different approaches have been
proposed, see [8] for a survey. Most of these methods de-
tect anomalies as outliers to previously trained models of
normality. Successes include the analysis of an agent’s mo-
tion patterns [19], traffic monitoring [10], the surveillance
of public places [1], and the evaluation of a webcam image
stream [6].

Our work aims at supporting autonomous living of el-
derly or handicapped people, by monitoring their well-
being with a visual surveillance system installed in their
homes. Fall detection is one major task of such activity
monitoring systems [18]. To this end, rule-based systems
have been established, performing well for the detection of
different, predefined dangerous cases (e.g. [2, 15]). They
lack general applicability, however. Other methods imple-
ment a more principled model of human behavior and are

(a) Normal action (b) Abnormal event

(c) Human behavior analysis

Figure 1. Human behavior in an input image stream is analyzed
in a cascade of two hierarchical models. They are established in
an unsupervised manner and permit the characterization of normal
and abnormal events for example in in-house monitoring scenes.

then able to point out suspicious configurations. Boiman
and Irani [4], for example, check whether they can explain
a given activity as a puzzle of spatio-temporal database en-
tries. In our previous work [17], we used a set of trackers,
each dedicated to a certain range of activities. Another ap-
proach is to extract key-frames and estimate transition prob-
abilities for a set of predefined activities (e.g. [14]). The
main limitation of all these systems is their need for an of-
fline, prior training with labeled training data. In such su-
pervised approaches, no long-term adaptation to particular
scenes or persons can be achieved. Furthermore, no training
sequence contains a comprehensive set of all the situations
to expect. Due to these reasons, a dynamical, data-driven



model is called for. In a more unsupervised setting, recent
work [7] uses very weakly annotated image sequences in
order to learn actions autonomously.

In this paper we propose to learn a model of normal hu-
man behavior in a completely unsupervised manner. This
model consists of two hierarchical representations arranged
in a cascade, as illustrated in Fig. 1(c). The first stage en-
codes human appearances and is built by a top-down pro-
cess, whereas the second hierarchy explains sequences of
appearances (i.e. actions or behavioral patterns) and is built
by a bottom-up analysis. In fact, given a sequence of im-
ages, we first map these images to a finite set of symbols
describing what is observed. Secondly, we analyze the se-
quence of symbols to characterize in which order the obser-
vations occur. We call these sequences micro-actions since
they usually correspond to basic body motions. Finally,
the evaluation could be augmented by learning the tempo-
ral (e.g. within a day or a week) and spatial dependencies.
All this together models the normal behavior of a person in
a scene. At runtime, this structure is used as a model of
normality to which unseen data is compared. The person
is tracked and statistical outliers with respect to appearance
and action are detected robustly at different hierarchical lev-
els. We additionally show how to update this model in order
to incorporate newly observed normal instances.

The paper is organized as follows: In Sec. 2 and Sec. 3
we introduce the hierarchical representations for appear-
ances and actions, respectively. Sec. 4 shows the tar-
get tracking and abnormal event detection on unseen data,
Sec. 5 discusses the model update procedure. Experiments
are presented in Sec. 6 and the paper is concluded in Sec. 7.

2. Appearance hierarchy (H1)
We start from an image stream

S = 〈x1, . . . , xT 〉, xt ∈ X (1)

of T frames which is described in an arbitrary feature space
X . The goal is to group similar image descriptors together
and create a finite number of clusters representing the data
in a compact form. Hence, we propose to use a k-means
clustering algorithm [11], applied hierarchically to the train-
ing data in a top-down procedure with a distance measure
d(xi, xj) defined in X . The root node cluster C(1) describes
all xt ∈ S . Moving down in the hierarchy, the data asso-
ciated to one cluster on layer l, i.e. C(l) ⊆ X is separated
into k sub-clusters on layer l + 1. This process is repeated
until a certain stopping criterion is met, for example when
the number of data points in a cluster gets too small. An
example of the resulting tree structure H1 is presented in
Fig. 2 using k = 2.

By creating a hierarchical representation, the clusters be-
come more specific when moving down the tree structure.

Figure 2. Illustration of the unsupervised learning approach, com-
posed of two hierarchies. In H1, a sequence of images is mapped
by clustering to a number of discrete symbols, in H2 the sequence
of these symbols is analyzed.

While the cluster at the root node has to describe all xt in
the training set and thus exhibits a large intra-cluster vari-
ance, clusters at lower layers only contain similar data and
therefore describe this data more precisely.

Eventually, each feature vector xt is mapped to a sym-
bol rt which is the number of its corresponding leaf node
cluster. The image stream is accordingly expressed by the
sequence of symbols, i.e.

S 7→ R = 〈r1, . . . , rT 〉, rt ∈ IN ∪ {]}. (2)

In order to obtain compact clusters, we remove statisti-
cal outliers at every clustering step with the formulation of
Sec. 4.1. The symbol r = ] is assigned to an xt that is not
matched to a leaf node cluster. For their use at runtime, all
obtained clusters C(l)i are represented with their centers ci
and the distribution D(l)

i of distances di = d(ci, x) of all
the samples x assigned to this cluster.

Illustration

We demonstrate the mapping of input images to clus-
ters in the tree structure. An indoor training sequence1 of
about 7, 100 images was recorded at 15 frames per second
in V GA resolution. It contains diverse ’every-day’ actions
such as walking, walking behind occluding objects, sitting
on different chairs, picking up small objects, etc., repeated
a few times.

1Data available from www.vision.ee.ethz.ch/fnater/.



Feature extraction. We apply background subtraction2

on the input images for the extraction of foreground blobs.
The resulting silhouettes are rescaled to a fixed number of
pixels (40 × 40 in our case) and a signed distance trans-
form is applied. Maximum and minimum pixel values
are bounded and an offset is added to obtain non-negative
values (c.f . Fig. 3). Finally, the rows are concatenated
in a vector that defines the fixed length image features x
(N = 1600), describing the appearance of one person in
the scene.

(a) (b) (c) (d)

Figure 3. Feature extraction: (a) original, (b) segmented, (c) post-
processed and rescaled, (d) distance transformed.

Distance measure. As a distance measure to compare the
feature vectors in the clustering procedure, we use the χ2

test statistic as in [3]. Two samples xu and xv with elements
xu(n) and xv(n), n = 1 . . . N are at a distance

d(xu, xv) =
1
2

N∑
n=1

[xu(n)− xv(n)]2

xu(n) + xv(n)
. (3)

This said, the silhouette features are extracted and clus-
tered (k = 2) in order to build H1. The outcome is visual-
ized in Fig. 4, where a random set of silhouettes is shown
for each cluster at different layers. Similar appearances are
grouped well into the same cluster for a hierarchcal depth
of l = 5 already.

3. Action hierarchy (H2)
As depicted in Fig. 2, we start from the sequence of sym-

bols R defined in Eq. (2). The goal is to exploit the infor-
mation in this sequence and extract frequent patterns which
we refer to as micro-actions. Their variable length naturally
defines a hierarchy, since longer actions automatically rep-
resent more information. Our approach is inspired by the
work of Fidler et al. [9], where neighboring generic visual
parts are combined in a hierarchy, in order to form entire
objects on higher levels. At each level only the statistically
relevant parts are chosen in order to omit noise. Since our
input is a one-dimensional state sequence, we combine tem-
porally adjacent generic parts (micro-actions) for the hier-
archical combination of new, more informative ones.

2We operate on static camera images and in scenes with few moving
objects, but other appearance features could be used similarly. However,
we did not notice any failures of our approach that were caused by bad
foreground segmentation.

Figure 4. Visualization of the proposed binary tree for the hierar-
chical appearance representation (H1). For each of the displayed
clusters at different layers C

(l)
i , randomly chosen silhouettes are

displayed.

More in detail, we first define a set of basic actions a(1)
i

that encode a state change rt → rt+1 in the sequence of
symbols:

A(1) = {a(1)
i := rt → rt+1 | rt 6= rt+1, P (a(1)

i ) > θact},
(4)

where P (ai) is the occurrence probability of the micro-
action ai. The parameter θact is defined such that only fre-
quently occurring symbol changes are considered, thereby
discarding spurious changes. From the second level on,
higher level micro-actions with length λ are the combina-
tion of lower level micro-actions, i.e.

A(λ) = {a(λ)
i := a(λ−1)

p → a(λ−1)
q | P (a(λ)

i ) > θact}.
(5)

The frequency condition θact naturally introduces a limit
on the maximal length of the micro-actions (longer micro-
actions appear less frequently). The symbol r = ], at-
tributed to a feature vector which is not matched to any leaf
node cluster, is excluded from the description of any aλi .

We want to be independent of a labeling of the states
(they might even not be attributed a clear label as they are
learned through an unsupervised procedure) and the method
we propose relies much more on the assumption that, within
the target scenario, normal actions are likely to be repeated.
This fact is exploited for the extraction of usual temporal
patterns. Summarizing, we continuously replace the orig-
inal sequence of symbols 〈r1, . . . , rt〉 by frequent patterns
aλi and we can represent the image stream as a series of
micro-actions of different lengths λ:

S 7→ R 7→ 〈a(λ)
1 , . . . , a

(λ)
t 〉, a

(λ)
i ∈ A(λ). (6)

Note that in this formulation, micro-actions can overlap,
which is in line with the observation that often no clear-cut



Figure 5. Illustration of the micro-action hierarchy (H2) for the action recognition test dataset [13]: Micro-actions are extracted from
symbol transitions and can be combined gradually into higher level actions.

(a) ’walk’ (b) ’sit’ (c) ’pick up’

Figure 6. Examples of segmented actions as produced with our method. In an unsupervised manner repetitive microactions are extracted,
which can be labeled manually, if desired. Repetitions in the training dataset are presented in rows.

boundaries of actions can be defined [16].

Illustration

Action recognition We employ a publicly available ac-
tion recognition dataset [13] to illustrate the extraction of
micro-actions and select two right arm motions (’turn left’
and ’stop left’). The two sequences additionally have in-
troductory walking, they are sticked together and analyzed
as shown in Fig. 5. Binary silhouettes are provided in the
dataset. The plotted sequence of symbols is obtained with
the procedure of Sec. 2. In a next step, repeated patterns
in this sequence are extracted first on the basic level a(1)

(i.e. transitions, Eq. (5)), then growing in length on higher
levels (Eq. (6)). The finally meaningful micro-actions are
presented in the upper part of Fig. 5 and correspond to the
actions to be recognized.

Indoor surveillance If we apply the same procedure to
the previously described indoor training video, the sequence
of symbols is more complex and various repeated micro-
actions appear at different hierarchical levels. A selection
is shown in Fig. 6. In case the system would be required
to constantly report activities, they could be labeled manu-

ally for ease of human reference (‘walking’, ‘sitting down’,
’getting up’, ‘picking up from the floor’). This split into
units that intuitively correspond to basic actions, demon-
strates that within the repeated action context, it is possi-
ble to isolate and segment these actions in an unsupervised
manner.

4. Tracking and abnormality detection

In this section, we show how the established model of
normality is employed for the runtime analysis of unseen
images. H1 will be used for tracking and the interpreta-
tion of the appearance, H2 is used for the interpretation of
actions. In both hierarchies, abnormalities can be spotted.

4.1. Data-dependent inlier

Given a query image with extracted features x, we want
to determine its cluster membership Ci based on the distance
d(x, ci). According to the curse of dimensionality, distances
in high dimensional spaces tend to lose their significance
and it is therefore difficult to find a fixed distance threshold
for the classification of the query. Hence, we apply the con-
cept of data-dependent inlier [12], comparing d(x, ci) to the



distance distribution Di of the cluster Ci. The probability
that the query point x is an inlier to Ci is

pinlier (d(x, ci)) = 1−
∫ d(x,ci)

ξ=0

Di(ξ)dξ. (7)

For classifying a sample as inlier, its inlier probability must
exceed a certain threshold:

pinlier (d(x, ci)) ≥ θinlier. (8)

In the analysis of unseen data, we keep θinlier = 0.05
which means that x is classified as outlier if its distance to
the considered cluster center is larger than 95% of the data
in that cluster.

4.2. Tracking

In every frame we want to determine the location and
scale of the bounding box (i.e. find xt) that best matches
the trained model. This is important for a stable symbol
mapping as well as a precise tracking of the human target.
We apply a best search strategy in which the local neigh-
borhood of the output at the previous time step is exhaus-
tively scanned. Each feature representation x′t extracted
from a hypothesized location and scale is evaluated by us-
ing Eq. (8) and is propagated as far as possible in H1. With
this formulation, an x′t can sometimes be matched to more
than one cluster on the same layer. In that case, all con-
nected lower layer clusters are evaluated subsequently. As
tracking result xt, the hypothesis which applies to a cluster
at the lowest possible layer with maximal pinlier is searched
for. Ideally this is a leaf node cluster and its symbol rt is
attributed to xt. If no leaf node cluster is reached, no sym-
bol can be attached to this observation. Furthermore, if the
observation is already outlier to the root node cluster, the
target cannot be tracked in H1. In order not to lose the tar-
get, we simultaneously run a mode estimating tracker [5],
which specifies the output in this case. In our current im-
plementation, this tracker is also used to establish a prior
for the exhaustive search, which additionally speeds up the
procedure.

4.3. Abnormal appearance

An abnormal (or novel) appearance is identified in H1
on hierarchical level l if the tracking result xt is inlier to at
least one cluster at level l but is outlier to all of its connected
clusters in layer l+1. Since no leaf node can be matched to
xt in this case, the symbol rt = ] is attributed, characteriz-
ing an unknown (not matching) state. Of course, if xt is out-
lier at the root node already, it is also abnormal. Although
the tree-like model is learned in an unsupervised manner,
it helps to order and interpret anomalies. Completely new
poses tend to be outliers to clusters close to the tree root al-
ready, while not that different poses are matched on some

layers before being detected as outliers. Hence, and as we
will show in the experimental section, this hierarchy assists
with a semantic interpretation of the abnormal poses.

4.4. Abnormal actions

Abnormal action analysis is based on the mapping S 7→
R and the hierarchical model of usual actions encoded in
the hierarchy H2. In that sense, the sequence R is scanned
for its correspondence to A(λ).

The sequence of symbols rt extracted at runtime is an-
alyzed as in Eq. (4) and Eq. (5) and combined into micro-
actions a(λ)

i with different lengths λ. Each micro-action is
then compared to the set of normal micro-actionsA(λ). If it
is found in the database, it is considered to be normal behav-
ior at level λ. The length of the action is used to know how
usual the behavior is. If xt is mapped to the unknown state
rt = ], no micro-action can be established and the sequence
analysis breaks down temporarily.

4.5. Scene context

Additionally, our approach can be embedded in a scene
context learning framework. There are a certain number
of events or actions which can be usual in one part of the
scene but are not in another one. Thinking of in-house vi-
sual surveillance, this might be the presence of a person ly-
ing on a couch vs. the person lying on the floor. Considering
only human appearances, the two scenarios might look the
same, but with additional scene information, they could be
told apart. Then, the second case could be pointed out as
abnormal.The same idea applies to actions performed at a
certain time of day, e.g. a person observed walking through
a living room at 4 a.m. should not necessarily be considered
normal. However, these techniques lie beyond the scope of
this paper.

5. Update procedure

After the training phase, the model of normal behavior
usually remains fixed. Obviously, not all possible appear-
ances and actions can be learnt off-line, due to the lack of
sufficient training data. Furthermore, the normality con-
cept might change over time and thus the model needs to
be adapted continuously. For example, a different walking
style like limping is (correctly) classified as abnormal since
it can not be modeled through a normal action sequence.
Yet, if it starts to appear frequently, it might turn into a
normal behavior, e.g. due to a lasting deterioration of the
person’s physical state. It is therefore desirable to design a
dynamic method, able to extend (or even shrink) the model
of normality.



5.1. Appearance update

The hierarchical model H1, can essentially be modified
in two ways. Firstly, new appearances which are classified
as outliers at runtime might need to be included if they oc-
cur often. Secondly, some existing cluster could be further
refined, e.g. for the distinction between two persons. Since
we focus on the scenario where a single person should be
monitored when left to his own devices, we will only deal
with the first case as yet. It is clear that for long-term, real-
world usage, the system should be enriched with a method
to identify the person of interest and to notice the presence
of others (like care-takers).

At runtime we collect all feature vectors that are outliers
at a certain layer in the hierarchy. During a supporting phase
(e.g. when the system is in an idle mode since no person
is in the room) we incrementally update the hierarchy. The
creation of new clusters is investigated at the specified layer,
besides the existing ones. To that end, we apply the same
hierarchical clustering approach to the set of outliers. It is
important not to change the existing hierarchy since already
established knowledge should not get lost. Assuming that
also ’real outliers’ could be in the update data, we follow
a restrictive policy and set the threshold θinlier (Eq. (8)) to
a high value already for clustering. Finally, new leaf node
clusters are established and new symbols are defined.

5.2. Micro-action update

Established micro-actions by definition have a sufficient
frequency of occurrence (Eq. (5)). We propose to estimate
these probabilities incrementally, by updating them with
new observations using the principle of exponential forget-
ting. Hence, frequent, new micro-actions become available
for the next level and less frequent micro-actions are re-
moved. Micro-actions using new symbols in H1 are in-
cluded automatically, since they will first get picked up by
lower levels (Eq. (4)) and then might be used for longer
micro-actions as soon as they occur often.

Summarizing, one could start with an empty database,
with everything considered abnormal at the beginning.
When humans (moving objects in general) are observed
several times, first appearances and later micro-actions are
added to the model of normality.

6. Experiments
In this section, we validate the proposed approach with a

series of experiments. To the best of our knowledge, there is
no standard dataset for testing in-the-home visual monitor-
ing techniques. As the experiments will show, the method
is successful at detecting salient appearances and behaviors
also from a human point of view. We want to re-emphasize
at this point, that the main goal of this work is to assist in
the prolonged, independent living of elderly or handicapped

people. Hence, we focus on scenarios with only that single
person in the scene. As such system would need to be de-
ployed in many homes, the unsupervised approach behind
it is of particular importance.

6.1. Behavior analysis

The test footage of about 1, 000 images was recorded in
the same setting as the training sequence (c.f . Sec 2), but
now contains abnormalities such as heavy waving, jump-
ing over the sofa and a fall. The model of normality was
established as explained previously (appearance clustering
in Fig. 4, extraction of frequent micro-actions like the ones
in Fig. 6), and we now want to explain the test sequence
by means of this model. The target person is tracked and
appearances and actions are interpreted. A selection of the
per-frame results are visualized in the top part of Fig. 7.

The color of the bounding box indicates the layer l inH1
farthest from the root, on which the observation is still con-
sidered normal according to Eq. (8). A red bounding box is
drawn if the observation is outlier to the root node, (its di-
mensions are in that case determined by the mode estimat-
ing tracker [5]), nuances of orange are used for intermediate
layers and green encodes an appearace that is described in
a leaf node.

The vertical black bar on the left side of the bounding
box represents the level λ in H2 on which the sequence
of symbols is normal. The bar is resized accordingly. In
case the appearance does not reach a leaf node in H1, i.e.
the bounding box is not green, the action level cannot be
calculated and therefore vanishes.

The plots on the bottom part of Fig. 7 indicate three tem-
poral characteristics: (i) The maximal inlier probability (in
the matching cluster) remains at high value and is stable as
long as one leaf node cluster is matched. We also show the
5% threshold θinlier which is used for the classification of
abnormalities. (ii) The matching cluster identity (symbol
rt) changes over time (0 = ]) which allows for the recog-
nition of (iii) micro-actions. They are matched hierarchi-
cally and the maximal length is visualized. Two patterns
(’walking’ and ’sitting’) are highlighted which in fact cor-
respond to the same micro-actions as shown in Fig. 6(a) and
Fig. 6(b).

We now run through a number of interesting episodes in
the test video. In (a) everything is normal, the action level
is not so high yet since the sequence just started. (b) and
(i) are two abnormal events at different levels within H1,
whereas (e), (g) and (h) are outliers to the root node already.
In these cases, a practical system would probably generate
an alarm. Note that lying on the couch (g) was not present
in the training set, therefore it is judged abnormal at first.
On the other hand, occlusions were trained for and their
handling in (d) does not cause problems. It is interesting
to compare (c) and (f): Although the same appearances are



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Our method tracks the person, analyzes the appearance in H1 and interprets the micro-action in H2. Top: Various normal and
abnormal instances of the test sequence are presented. The color of the bounding box encodes the layer in H1, on which the observation
is normal, the length of the black bar on the left side of the bounding box indicates the micro-action level. Bottom: Three representative
values are plotted over time, the inlier probability at the leaf node level of H1, the matched symbol rt and the micro-action length a(λ).
Two actions are highlighted (see text for details, figure is best viewed in color).

present, (f) needs special attention, since it resulted from an
unknown action (jumping over the couch in (e)) and hence
holds a small black action bar.

6.2. Model update

A second experiment illustrates the benefit of the model
update. The video used for the update contains the repeated
‘abnormality’ of the person lying on the couch but also a
real irregular event (i.e. the person falls). This set of ap-
pearance feature vectors, outliers to the root node of H1, is
stored during the analysis of the sequence and a randomly
chosen sample is presented in Fig. 8(a). All abnormal ap-
pearances are used for updating the model though.

After this update, when analyzing yet another video
sequence, previously normal appearances stay normal
(Fig. 8(b)), lying is now included in the model of normal-
ity and handled accordingly (c), while other events remain
outliers (d). The model would need to see some more oc-
currences of lying on the couch in order to also recognize
the micro-action ’lying down’ as normal. This had not hap-
pened yet, whence the small black action bar in (Fig. 8(c)).

For a more precise analysis of the experiments, we man-

Figure 9. Recall-precision curves for the video sequence of Fig. 7
verifies the applicability of our technique.

ually annotated abnormal events per frame for the sequence
of Fig. 7. A RPC plot, depicted in Fig. 9 quantifies the per-
formance by sweeping parameter θinlier (Eq. (8)). By mov-
ing down in H1 (from layer 1 to layer 5), a higher precision
is achieved, which is essential for our task. At a precision
of 98%, the recall increases from 32% (root node level) to



(a) (b) (c) (d)
Figure 8. Illustration of the update procedure: (a) some feature vectors and their according image regions taken for the update of H1, (b)
normal appearances stay normal after the update, (c) lying turned normal after the update and (d) real outliers are still detected.

77% (leaf node level), respectively to 81% after the update.
These numbers show both, (i) the effect of using the hierar-
chical structure H1 and (ii) the benefit of updating.

7. Conclusion

We have presented an approach for the unsupervised
analysis of human action scenes. In particular, we have fo-
cused on an application to support prolonged independent
living. The ideas are very general however, and can be ex-
tended to other scenarios. The method involves two auto-
matically generated and updated hierarchies learned in an
unsupervised manner. One deals with the normal appear-
ances, and from appearance transitions, the second builds
up a database of normal actions or episodes. Due to the
hierarchical nature of this model of normality, it is easier
to name deviations from normality and to analyze those at
different semantic levels (a human would still have to give
such names to different cases, but that is a small effort). The
system is able to adapt itself and can include new modes of
normality. Hence, also the semantic level increases and af-
ter sufficiently long learning periods, it would become pos-
sible to detect deviations from certain routines. Thus, one
strategy allows for the detection of abnormal events at dif-
ferent levels of sophistication (e.g. falling or walking with
an abnormal gait).
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Figure 1: In videos, each frame strongly correlates with its neighbors. Examples are sport sequences, indoor activities, surveillance
scenarios or webcam streams. Our proposed approach builds a coarse to fine representation of the video sequences in a completely data-
driven manner. This enables the segmentation of the video into distinct activities, as well as the interpretation of unseen sequences. We are
able to detect abnormal patterns, such as the frame marked in red.

Abstract
Temporal consistency is a strong cue in continuous data

streams and especially in videos. We exploit this concept
and encode temporal relations between consecutive frames
using discriminative slow feature analysis. Activities are
automatically segmented and represented in a hierarchical
coarse to fine structure. Simultaneously, they are modeled
in a generative manner, in order to analyze unseen data.
This analysis supports the detection of previously learned
activities and of abnormal, novel patterns. Our technique is
purely data-driven and feature-independent. Experiments
validate the approach in several contexts, such as traffic
flow analysis and the monitoring of elderly people for as-
sisted living. The results are competitive with the state-of-
the-art in all cases.

1. Introduction
The analysis of activities from videos is of utmost impor-

tance in order to solve diverse tasks such as action recogni-
tion, scene analysis or abnormal event detection (see [11, 6]
for surveys). In most systems expert knowledge is required
to train specific models with labeled data. Arguably, a one-
time training process cannot anticipate all the possible ac-
tivities, and the monitored setups may vary considerably.
Hence, recent research tries to build or adapt such models
automatically and in an unsupervised manner.

In previous works, human actions [14] or surveillance
scenes [5, 9, 19] are analyzed automatically for the extrac-
tion of topics from spatio-temporal words. Their goal is
to find correlated motion in order to segment behavior in
space and time. Other approaches to video summariza-
tion [16, 23] cluster video streams into repeated activities.
Trained models can further be used to analyze unseen be-
havior. In such approaches, abnormal events are often de-
tected as outliers. This has been successfully applied to traf-
fic monitoring [5, 7], the surveillance of public places [1],
assisted living [12] or the analysis of motion patterns [15].
However, these methods often suffer from either (i) strong
constraints which limit their use to specific applications, (ii)
the need for prior knowledge (e.g., the number of activities)
and/or, (iii) being too abstract for easy interpretation.

In order to overcome these limitations, we seek for an
“invariant characteristic” that can underpin generic model
building and reasoning. Considering the different se-
quences in Fig. 1, one obvious observation is that incre-
ments between frames are quite small with respect to the
changes in the whole sequence (1st row). Moreover, the
behavior of a tracked person (2nd row) is composed of a
certain repertoire of activities with transitions in between
that are typically short in comparison. This can also be ob-
served at larger scales, like day-night changes or seasonal
changes (3rd and 4th row) and already suggests a hierarchi-
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Figure 2. Overview of the proposed
hierarchical model. We represent
the data in a coarse to fine man-
ner at different levels. As an exam-
ple, we consider indoor actions. At
the top, the behavior in general is
taken into account, while at lower
levels, more specific concepts, like
picking up, or walking leftwards
are segmented and modeled more
precisely. In order to automatically
split the data, temporal relations in
the image stream are exploited.

cal structure.
In this work, we make use of the temporal consistency in

image streams for model building. Activities are automati-
cally discovered and continuously refined. Additionally, we
are able to interpret unseen video sequences in order to re-
detect activities or spot abnormal events, such as the big tent
in a street festival (3rd row in Fig. 1).

The contributions of this paper are twofold:

• We propose an unsupervised technique to segment the
data into compact and meaningful activities. To this
end, we explore the strong temporal relations in the
video (Sec. 2). The automatically discovered activities
are efficiently represented and arranged in a hierarchi-
cal manner (Sec. 3).

• Analysis and interpretation of unseen data is demon-
strated as a result of the coarse to fine representation in
the hierarchy (Sec. 4).

Experimental results, presented in Sec. 5 for different video
surveillance scenarios, show the usefulness and generality
of the technique. We demonstrate activity segmentation,
the surveillance of public places, as well as the detection
of abnormalities in indoor scenarios.

2. Activities in data streams
Due to the large variety of observations in a data stream,

it often is difficult to build a single model which describes
the data and its dynamic behavior precisely. In this work,
we automatically split the data stream into meaningful sub-
sequences. If they are consistent and have low complexity,
they can be represented more easily and precisely. This con-
cept is similar to motion segments in [13] or micro-actions
in [12]. Since we do not restrict ourselves to human actions,
we call these subsequences activities.

From temporal relations to hierarchical models. In
data obtained from time series, as in videos, there is a strong
link between temporally adjacent observations. In this con-
text, we characterize activities to have a certain duration, to

be observed frequently, and to be interconnected by shorter
transitions. In other words, with high probability, neigh-
boring frames share their activity label. We opt to exploit
this principle by arranging the video data in a hierarchical
manner as outlined in Fig. 2. In a long data-stream, some
activities might be very distinctive and can be segmented
on a general level, while subtle concepts might need a more
precise view to be detected. The advantages of our approach
can be categorized as follows:

Definition of activities. Activities are automatically ex-
plored from their temporal characteristics based on discrim-
inative modeling techniques. No prior knowledge on the
boundaries or the total number or activities is required.

General vs. specific models. The dilemma between gen-
eralization capacity and precision of the model is naturally
handled in the hierarchy. Nodes higher up in our hierar-
chical model are very general and represent a broad variety
of activities (e.g., “an object is moving”), whereas lower
nodes only incorporate short and very specific activity pat-
terns (e.g., “a person walking to the right”).

Interpretation. If the model is applied to new, unseen data
at runtime, the search through the hierarchy is not only more
efficient, it also allows conclusions about the nature of the
unseen data. In particular, a new observation can either be
assigned to a known activity or is recognized as outlier at a
certain level in the hierarchy.

In the following section, we show how we establish such
a hierarchical activity model from an image stream.

3. Activity summarization
Our approach is inspired by the principle of invariant

or slowly varying features. Wiskott and Sejnowski [22]
have proposed Slow Feature Analysis (SFA) as an unsu-
pervised learning technique for continuous data streams, in-
spired by human learning capacities. Recently, Klampfl and
Maass [8] have shown that SFA yields the classification ca-
pacities of Fisher’s Linear Discriminant, if temporally adja-
cent samples in the data stream are likely to belong to the

2
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same class. This requirement is fulfilled in our setting, as
we analyze continuous streams of images and assume that
activities therein are performed over a certain time span.

Given an image stream, S = {I1, I2, . . . , IT } of T im-
ages, It ∈ IRn×m, we represent each image It by a D-
dimensional feature vector ft ∈ IRD. As we will show in
the experiments, the feature representation is not crucial.

3.1. Data segmentation

In the segmentation step, the goal is to split the data
stream into its composing activities. More generally speak-
ing, a broader set of activities is partitioned into subsets.

Slow Feature Analysis. The output signal zt of the
Slow Feature Analysis represents the slowest components
in ft, i.e., it minimizes the average temporal variation:

min JSFA := Et(∆zt), where ∆zt = ||zt−zt−1||2. (1)

To avoid the trivial solution z ≡ 0, additional constraints
for zero mean and unit variance are introduced. Multiple
slow features need to be decorrelated and they are ordered
by decreasing slowness.

Let yt = ft − Et(ft) be the zero-mean feature vector.
Considering only linear functions of the form z = ws

Ty, it
can be shown [21] that the objective becomes

min JSFA(ws) :=
wT
s Ḋws

wT
sDws

, (2)

where D = Et(ytyt
T) is the covariance matrix of the data

and Ḋ = Et

(
(yt − yt−1)(yt − yt−1)T

)
the covariance

matrix of the temporal differences.
The weight vectors ws which minimize Eq. (2) are the

solutions to the generalized eigenvalue problem

Ḋws = λsDws. (3)

The slowest varying components in y are their projections
onto the eigenvectors ws associated to the smallest eigen-
values λs [21].

Clustering. In the SFA subspace, distinct activities
are discriminatively clustered into distinct high density re-
gions with sparse transitions [8]. Hence, we apply Gaussian
Mixture Model (GMM) clustering to separate the activities.
By means of expectation maximization, the regions where
the data is densly scattered are found. The cluster index
assigned to a data point corresponds to the cluster num-
ber with maximal posterior probability [2]. Initialization
is done with k-means. Since the desired number of clusters
is not known a priori, a sweep over k is performed and the
sum of posterior probabilities over all datapoints is calcu-
lated. The second derivative of this sum characterizes the
curvature and we select its maximum as the desired number
of clusters. A postprocessing step ensures temporal smooth-
ness and discards very short sequences.

3.2. Building the activity hierarchy

The segmentation is applied recursively on the data. In
the first step, we split according to the most dominant (slow-
est) cues in the entire datastream. In order to create a hierar-
chy, the segmentation process is repeated for each obtained
subset and other discriminative components may now ap-
pear. This is encouraged since we keep the dimensionality
of the SFA subspace fixed. Repeating the segmentation sets
up a hierarchical structure. At high levels, the established
nodes contain very broad activity concepts while at lower
levels in the hierarchy, specific actions are segmented.

Basic activities. The decision whether or not a node
is further refined is based on the representation in the SFA
space. The data is projected so that the average distance
between consecutive samples is minimized, c.f . Eq. (1). If
the distances are approximately equal across the whole se-
quence, the data is well described by its slowest compo-
nents [22]. In this case, we define a basic activity A and
the data is not split any further. This corresponds to a leaf
node in the hierarchy. On the other hand, if major parts of
the data are connected with short distances in the subspace,
there must be a few consecutive samples which lie far apart,
due to the unit variance constraint. This setting verifies the
discriminative assumption of [8], hence, splitting the data is
stimulated.

As a simple measure of data compactness, we use the
median of distances between consecutive samples in the
SFA space. It turns out to be robust against outliers, and re-
flects well the concept above. If we measure a small median
value, the data is further segmented. For a larger median, a
basic activity A is detected.

Illustration. To get an intuition of our summarization
technique, we now discuss it with respect to the activity
dataset from [16] and show how our results compare to
theirs. We use silhouette data from two views as provided
by the authors, apply a distance transform on both and con-
catenate the rows to one feature vector. The data exhibits
five actions (throw, bend, squat, bat, pick phone). Each of
them is repeated ten times with different execution speeds.
We randomly permutate the actions and the repetitions and
consider them as one input video to be segmented.

The data is analyzed by means of SFA and the first
two dimensions of the resulting manifold are displayed in
Fig. 3(a). In Fig. 3(b), the variations of these two slow-
est components are plotted over time. The subspace clearly
holds discriminative characteristics.

In Fig. 4, the first two dimensions of the clustered three-
dimensional SFA subspace are displayed. It is obtained at
the root node, where the data of all five actions is included.
As seen in the sketched hierarchy, four basic activities are
already extracted after the first split. The pink node is sub-
divided. In Fig. 5 the segmentation criterion is verified. The

3
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Figure 3. The data projections (a) and the evolution of the slowest
components (b) characterize the discriminative SFA subspace.
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Figure 4. GMM clustering in the SFA subspace, viewed in two
dimensions. The resulting activity hierarchy is sketched.
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Figure 5. Segmentation criterion based on the distribution of dis-
tances between consecutive samples in the SFA space. For basic
activities, the median is higher, and they are not further segmented.

empirical distribution of distances ∆zt is shown and their
medians are indicated. For nodes T 1

1 and T 2
5 , there is a

clear shift of the mode towards the origin, hence they are
split further. This is not the case for leaf nodes.

From the segmentation process, six basic activities are
automatically discovered, they precisely correspond to the
five ground truth actions (A1 − A5) plus the standing still
activity (A6). The latter is at the beginning and at the end
of each performed action. The samples that were filtered in
the modelling procedure (short sequences and outliers) are
collected in A0. The summarization results are reported in
Tab. 1 and Fig. 6. If we neglect the standing activity A6 as
well as A0, we notice a perfect match between our result
and the ground truth, and we outperform [16]. This demon-
states the great benefit of segmentation in the discriminative
SFA subspace.

Activity A0 A1 A2 A3 A4 A5 A6

Throw 2(.05) 10(.58) 0 0 0 0 10(.37)
Bend 3(.03) 0 10(.60) 0 0 0 10(.37)
Squat 8(.07) 0 0 10(.61) 0 0 10(.32)
Bat 10(.17) 0 0 0 10(.57) 0 9(.26)
Phone 3(.01) 0 0 0 0 10(.99) 1(.00)

Table 1. Composition of the automatically discovered basic activ-
ities (A0 − A6) vs. the ground truth. The number of occurrences
are counted, and the percentage of number of frames is reported in
brackets. A1−A5 perfectly match the ground truth.

(a) Automatically discovered activities

(b) Ground truth activities
Figure 6. Color coded labeling for the discovered and the ground
truth actions. The activity data from [16] is used.

3.3. Data modeling

As we want to use the hierarchy to classify the activi-
ties in previously unseen videos, the data underlying each
of its nodes is modeled with respect to shape and dynam-
ics. Biological studies on human motion perception suggest
that motion analysis is performed from a sequence of time
varying appearance snapshots [10]. We therefore create an
extended feature vector vt = (ft,ft−1, . . .ft−n)T as the
concatenation of the last n feature representations, similar
to [17]. Let further xt = vt − Et(vt) be the zero-mean
feature vectors to be encoded.

Principal Component Analysis. PCA is a well known
technique for low dimensional data representation. In order
to maximally capture the information in the D-dimensional
data, PCA projects this data into a linear subspace which
maximizes the variance [2], i.e.

max JPCA(wp) := Vart(wT
pxt) = wT

pCwp (4)

where C = Et(xtxT
t ) is the data covariance matrix. Again,

additional constraints on unit variance and orthonormality
exclude trivial solutions. PCA can also be formulated in
terms of minimizing the mean reconstruction error:

e = Et

(
(xt − x∗t )

2
)
, where x∗t =

d∑
i=1

at,iwp,i. (5)

Keeping only the first d < D principal components com-
presses the data. The reconstructed datapoint x∗t is then
an approximation of the original xt, but relies only on the
d-dimensional representation at. The general solution to
Eq. (4) is obtained by solving the eigenvalue problem

wp = λpCwp. (6)

The eigenvectors wp that correspond to the d largest eigen-
values λp are selected as projection basis. In Fig. 7(a), the
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Figure 7. (a) Two principal components in the PCA subspace. (b)
Two training images and one outlier projected and reconstructed.

two dimensional PCA manifold of the activity data at the
root node T 1

1 is shown. As seen from Fig. 7(b), this model
represents well the training data, but has a high reconstruc-
tion error for an unfamiliar shape.

The formulations of SFA and PCA are similar, however,
PCA creates a generative data model while SFA encodes
differences and delivers a discriminative characterization.

Tracker hierarchy. Since form and motion are modeled
jointly, every node follows the data and is in fact a tracker
T ji (the i-th tracker on level j). To enforce the idea of gen-
eral vs. specific trackers, we keep the dimensionality d of
the PCA subspace fixed for each of them. If a node high up
in the hierarchy describes its large amount of data with the
same number of dimensions d as a node specifically tuned
to one activity, the latter incorporates a much preciser rep-
resentation. Hence, we dispose of a set of more general and
more specific trackers.

If a basic activity is detected, we add one additional PCA
model to this leaf node. We abandon the fixed dimensional-
ity d and increase it to d′ > d to capture a certain percentage
of the total variance in the subspace. This tunes this node
even more specifically to the segmented basic activity A.

4. Analysis of unseen data
Once the training data has been modeled as just de-

scribed, the hierarchical model can be applied for the in-
terpretation of new data. In this section we show how to
detect and classify activities as well as how to report abnor-
mal activities at multiple levels.

4.1. Activity classification and tracking

Given a new sequence x′ and a set of basic activities
A, the task is to identify A ∈ A, which best explains the
data. To this end, x′ is projected into the corresponding
PCA subspaces and the reconstruction errors are calculated
as in Eq. (5). The tracker TA with be lowest reconstruction
error eTA

defines the discovered activity

A? = arg min
A
eTA

(x′). (7)

The hierarchical description makes sure that not all PCA
models need to be tested, as discussed in the next section.

Simultaneous tracking and activity reasoning In cer-
tain applications, only a sub-region of the entire scene might
be considered, for example if the activities of a person are
analyzed. Tracking the person throughout the video se-
quence means determining his location within each image.
This search for an optimally estimated location can be in-
corporated in the previous formulation. Each activity is
evaluated at various image locations and scales ρ, and the
according reconstruction error eTA

(x′|ρ) is obtained. In an
exhaustive search procedure the optimal location and activ-
ity are determined simultaneously:

(ρ?, A?) = arg min
A,ρ

eTA
(x′|ρ). (8)

For efficiency reasons and since temporal consistency is as-
sumed in tracking, only the local neighborhood of ρ∗t−1 is
scanned.

4.2. Hierarchical interpretation

We now show how the hierarchical model paves the way
for a more sophisticated and efficient analysis. Since the hi-
erarchy consists of a set of more general and more specific
trackers, we can apply the anomaly reasoning as proposed
in [20]. In their terminology, we dispose of a disjunctive hi-
erarchy on multiple layers and every more general node has
a number of more specific sub-nodes. For a consistent rea-
soning, we need to transform each tracker into a classifier.
Any tracker T ji in the hierarchy is considered active for an
observation x′ based on its normalized reconstruction error:

active(T ji ) =

 1 if
eT j

i
(x′)− µT j

i

σT j
i

< θ

0 otherwise
, (9)

where µT j
i

and σT j
i

are respectively the mean and the stan-

dard deviation of the reconstruction error for tracker T ji ob-
tained during training.

As long as the observations are according to expecta-
tions, there is always a leaf node tracker (i.e. basic activ-
ity) which is able to explain the data. To respect the hier-
archy, each observation is propagated from the root node to
the leaves as sketched in Fig. 8(a). Only subnodes of active

(a) Valid activity (b) Abnormal event at level 3
Figure 8. Interpretation of new data within the learned hierarchical
model. (a) Known activities, represented by leaf node trackers are
detected. (b) A reasoning on abnormal conditions in the hierarchy
is performed from active and inactive trackers on different levels.
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trackers need to be considered, which additionally increases
the efficiency.

If a more general node tracker validates the observations,
but none of its more specific sub-node trackers does, then
this signals an abnormal activity (Fig. 8(b)). Such abnor-
mality can occur at any level. From the location in the hi-
erarchy where this happens, interpretations about the nature
of the abnormality can be made.

5. Experiments
5.1. Implementation details

Noise reduction. As we deal with noisy data in practice,
noise reduction is applied in the training phase. At every
node in the hierarchy we apply PCA and keep the amount
of dimensions in order to describe 95% of the the total data
variance. Segmentation (SFA) and modelling (PCA) is per-
formed thereafter. Furthermore, at each step down the hier-
archy, we eliminate samples that were outliers in the PCA
space (i.e. e > µT j

i
+ 3σT j

i
). This is necessary, as the train-

ing data is not assumed to be free from anomalies.

Parameters. We use the following parameters: SFA
and PCA subspaces are modeled in d = 3 dimensions and
n = 5 last frames are used for motion encoding. PCA mod-
els of basic activities keep 80% of the data variance, which
results in most cases in d′ = 5 to 10 dimensional subspaces.
For hierarchical reasoning, the threshold θ = 3 is applied.
We also tested different parameter sets, without observing
significant changes.

Runtime. Due to its low complexity, the runtime analy-
sis is performed in real-time for surveillance scenarios. On
a standard PC, our current matlab implementation runs at
more than 10 frames per second. The exhaustive search in
the person tracking case slows down evaluation by approxi-
mately a factor of 10. The time consumption model building
is in the order of a few minutes for our cases.

5.2. Surveillance of public places

We show how our technique performs on three different
visual surveillance datasets.

QMU junction [5] (360 × 288 pixels, 25 fps, 1 hour).
This data has previously been used for learning spatio-
temporal scene topics [5]. We show how our approach can
produce similar results but by using a holistic scene descrip-
tor. As car and pedestrian motion is of importance in this
scene, we use motion monitors [18] augmented with a mo-
tion history factor. We use 18 × 18 pixel patches and a
forgetting rate of 0.95. Training is done on 50, 000 images,
the runtime evaluation takes into account all 90, 000 frames.
The model extracts 19 basic activities within the 48 nodes.

Some discovered basic activities are depicted in
Fig. 9(a). In fact, the hierarchical model nicely groups con-

(a) Discovered activities: Driving left to right, right to left, straight
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(b) Activities over time at the first two levels in the hierarchy

(c) Anomalies: Ambulance, bus and truck collision course, wrong direction)
Figure 9. Activities, their temporal variation and detected anoma-
lies for the QMU junction [5]. Regions with high reconstruction
error are shaded in red. (Figures are best viewed in color.)

sistent traffic patterns in leaf nodes. Other activities char-
acterize empty streets with pedestrian motion, cars accel-
erating, and different turn configurations. In Fig. 9(b) we
show the obtained activity segmentation over time, for the
second and third level in the hierarchy. Without enforcing
any larger scale temporal relations, we discover pseudo-
repeated patterns in the data that correspond to different
traffic activities. As successfully done for example in [9],
these patterns can be additionally learned for the detection
of irregular ordering of different familiar activities.

Three exemplary abnormal situations are presented in
Fig. 9(c), two of which have also been reported in [5]. Since
our technique analyzes the entire scene at once, unseen con-
figurations, like the middle example, are also reported as
abnormal. Among all the detected abnormal events, there
are hardly any that have no plausible interpretation.

HUJI street crossing [4] (320 × 240 pixels, 10 fps, 2
hours). Without modifications from above, we apply our
technique to the street crossing data from [4]. The model is
trained on the first hour and has 27 nodes of which 11 are
basic activities. A selection of abnormal events from the
second hour is reported in Fig. 10.

Figure 10. Anomalies on the HUJI crossing [4]: Taxi driving back-
wards, collision course, driving on pedestrian crossing.
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(a) Discovered activities and semantic interpretation in the hierarchy

(b) Anomalies (same as [3]): Heavy rain, festival tent, shadow shape.

(c) Anomalies (other): Camera failure, jam with reflections, strong light.
Figure 11. Activities and anomalies detected for the Times Square
webcam data [3].

Times Square [3] (640 × 480 pixels, approximately
0.3 fps, 2 months). In this dataset, images from a webcam
overlooking Times Square in New York are taken at low
frame rate over a long period. The relation between adja-
cent frames is thus to be handled on a larger time scale. We
simply describe the original color images in downsampled
(24×32 pixel) grayscale images. Due to the low frame rate,
no motion is included in the PCA model.

We construct the hierarchical model with data from 17
days (150, 000 images, every 3rd image). The obtained hi-
erarchy has 65 tracker nodes, thereof 26 basic activities. In
Fig. 11(a), we display the tree-like structure for the first four
levels, and show typical instances of second level and leaf
nodes. Apparently, day-night changes are the most domi-
nant cues, which are segmented in the first step. The ob-
tained activities are mostly well interpretable, as the pro-
vided examples show.

In Fig. 11(b) and (c) we show six illustrative abnormal
events that are detected among more than 250, 000 eval-
uated frames. In general, we detect similar anomalies as
reported in [3], as the ones in Fig. 11(b). In addition to
their work, we also report many cases of incomplete frames,
camera failures, water on the lens and other salient situa-
tions.

5.3. Human behavior analysis

In this section a person is being tracked within the scene
and simultaneously his behavior is analyzed. We use the
data from [12] (640×480 pixels, 15 fps) and their silhouette
features. The training video is provided with normal daily
activities, and the model is evaluated on a test sequence that
contains abnormal events, motivated for monitoring elderly
people in their homes.

We trained the model from 7, 100 frames in the training
set. The obtained hierarchy is visualized in Fig. 12, and for
each leaf node tracker, the corresponding activity is shown.
The model nicely encodes the different aspects of human
behavior. At higher levels, it distinguishes between upright
and other poses, at low levels, sitting, picking up, walking
leftwards or rightwards are segmented as basic activities.

Results and comparison. The hierarchy is applied to
the test video which consists of 1, 030 frames. In Fig. 13(a-
e) some selected frames from this sequence are displayed,
they show three normal activities and two detected anoma-
lies. The observed person is tracked in space and the match-
ing activity is determined simultaneously. The plot on the
lower part of Fig. 13 characterizes the evolution of the
tracker membership over time. The y-axis in this plot in-
dicates the number that training has assigned to the ongoing
basic activity (Fig. 12). A0 groups the outliers. At each
frame, the activity best explaining the observations, is reli-
ably determined by our tracking method.

We quantitatively compare the overall performance of
our approach to the results of [12]. The recall - precision
curve is obtained by sweeping the parameter θ which de-
termines whether a tracker is active or not. The obtained
characteristic is displayed in Fig. 14. Our technique clearly
outperforms the previous state-of-the-art, in particular we
increase the recall from 68% to approximately 83% at 99%
precision.

Figure 12. Learned hierarchical model: The nine emerged basic
activities are visualized in correspondence to the leaf nodes.
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(a) Walking leftwards (b) Sitting (c) Occluded walking (d) Fall (e) Heavy waving
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Figure 13. (a-e) Sample frames which illustrate detected familiar activities and abnormal events. In the lower part, the detected activities
are reported over time. The numbering of basic activities on the y-axis is the same as in Fig. 12, A0 corresponds to an anomaly. The
location of frames (a-e) is indicated. Please refer to the supplemental material for videos.
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Figure 14. Our approach significantly outperforms previous state-
of-the-art in terms of RPC in the in-house scenario.

6. Conclusion
In this paper, we presented a data-driven approach to ac-

tivity segmentation that exploits temporal relations present
in video sequences. The small changes from frame to frame
are discriminatively analyzed, in order to set up a powerful
hierarchical model. We have shown how this model is ap-
plied to unseen videos at runtime and that the hierarchy can
be used to explain the observations. Due to two linear tech-
niques of low computational complexity (SFA for clustering
and PCA for modeling) we are able to efficently detect nor-
mal and abnormal activities. Finally, qualitative and quan-
titative results demonstrate the validity of our technique.
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