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Abstract: 
 
This deliverable presents methods for dynamic visual scene analysis in very challenging 
outdoor scenarios. Starting from a mobile sensing setup very similar to the AWEAR 
application scenario, we combine many different vision components and interface them to 
collaborate in cognitive feedback loops. Specifically, we integrate Structure-from-Motion 
(SfM), dense reconstruction, appearance-based object detection, trajectory estimation, and 
multi-object tracking into a combined system and show how those components can benefit 
from each other’s continuous support. We apply the resulting system to challenging video 
sequences of strolls through busy pedestrian zones and demonstrate that the proposed 
integration makes it possible to deliver stable scene analysis in such difficult settings. The 
presented results thus constitute a major step towards the envisioned DIRAC application 
scenario of a cognitive walking aid.  
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1. Introduction 

DIRAC’s envisioned application scenario is the development of an audio-visual device that 
would be either stationary surveying a room or mounted on a walking aid as a portable 
assistant for elderly care. It would be able to learn daily routines of its user, help him/her 
navigate around the environment, identify unfamiliar and/or potentially dangerous situations, 
and issue alarms when such a situation is encountered. In the context of this application 
scenario, it is important to visually analyze the environment by processing camera input. 
 
The DIRAC goal of detecting rare audio-visual events in such unconstrained scenarios 
necessitates an advanced level of scene understanding. In order to detect what is rare, one first 
needs to learn what is normal. In order to build up expectations about how other people will 
act, one first needs to learn their typical behaviors. This of course requires to detect them in 
the first place and to maintain an association of their identities over a certain time span. 
Context also plays a vital role for scene understanding. In order to interpret other people’s 
observed actions, it is necessary to know about the type of environment they act in, their 
relative positions in this environment, as well as about other objects and outside influences 
that act upon them. As we live in a 3D world, it is only natural that true scene understanding 
should incorporate a notion of this 3D space and its associated constraints. Building a system 
with such capabilities has been a far-end goal of scene understanding since the 1970ies, but so 
far the sheer complexity of many real-world scenes has often stymied progress in this 
direction. 
 
However, this does not mean that such an endeavor would be hopeless. Computer vision has 
made significant progress in recent years, and many of its individual disciplines have 
advanced to a state where algorithms are becoming applicable to real-world tasks. In this 
deliverable, we therefore explore how different visual components can be used for dynamic 
visual scene analysis in complex outdoor scenes and how they can be integrated in order to 
support each other. Specifically, we combine Structure-from-Motion (SfM), dense 
reconstruction, appearance-based object detection, trajectory estimation, and tracking into a 
combined system. We build upon the system for bottom-up 3D reconstruction described in 
D3-1 and extend it with the other components. As our results will show, the proposed 
integration makes it possible to deliver stable scene analysis performance in scenes of 
previously infeasible complexity. 
 
A central component in the proposed integration is the concept of cognitive feedbacks. The 
underlying idea is to derive higher-level semantic information from one vision module and 
feed it back to the other modules in order to improve performance there. In the work 
described in this deliverable, we incorporate several such feedback paths to interface the 
various components: from Structure-from-Motion (SfM) to recognition, from recognition to 
depth estimation, from tracking to recognition, and from both recognition and tracking back 
to SfM. As we will show, those cognitive loops are an important ingredient to delivering 
robust performance in very challenging real-world scenarios. 
 
At the current stage, the work presented in this deliverable is still based on perspective 
cameras. This is largely a consequence of our need to capture data at sufficiently high frame 
rates to enable tracking, which was not yet possible with the first prototype omni-directional 
setup developed in WP1. Based on the results obtained and the experiences made in Y2, this 
work will be extended to an omni-directional scenario for use with the next AWEAR 
prototype, which will allow data capture at higher frame rates. Results for this omni-
directional scenario will then be presented in the M36 deliverable D3-7. 
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Figure 1: The three prototype setups used to test out the different stages of our mobile vision system. 
(left) The car setup allows the simplest scenario with relatively stable platform motion, wide baseline, 
and high camera placement for optimal scene coverage. This is made more difficult when switching to 
the child stroller setups (middle, right). Here, camera motion is far more noisy; the setups allow only 
for  a smaller baseline; and the lower camera placement makes it harder to observe a sufficient portion 
of the scene. The third prototype (right) is already close in size to the envisioned AWEAR application 
scenario of an intelligent walking aid. 

Pose predict ion Object detect ion

Depth generat ion

Pose est imat ion

Object t racking

Visual odometry Tracking  
Figure 2. Overview of the functional relationship between the different components of our system. 

2. System Overview  

In the course of the work leading to this deliverable, we created a series of prototype data 
acquisition setups of steadily increasing difficulty, as shown in Figure 1. The first setup was 
built on a car, which provided stable camera motion, as well as a relatively wide baseline of 
1.5m. First results from this setup were already presented in D3-1. In order to obtain data that 
is more similar to the intelligent walking aid application envisioned in the AWEAR scenario, 
we scaled down this setup to two prototypes using a child stroller as mobile base (Figure 1 
middle and right). This considerably smaller setup results in far more difficult sensing 
conditions. Its size constraints only allow for a camera baseline of about 40cm, which 
strongly limits the achievable accuracy for stereo depth estimation. In addition, the lower 
camera placement implies that pedestrians will often block a much larger part of the vehicle’s 
field-of-view, making it harder to find static scene features for SfM. Finally, the smaller 
wheel size and uneven ground result in numerous bumps in the effective camera trajectory, 
which disturbs SfM estimation. Altogether, those effects pose significant challenges for all 
stages of our approach to achieve robust system performance.  
 
We address those challenges by integrating and closely coupling several different vision 
modalities: SfM, dense stereo estimation, appearance-based object detection, and detection-
based tracking. Figure 2 shows an overview how those components interact in our system. For 
each frame pair of the input video streams, we first estimate the camera location and scene 
geometry. This part is based on the bottom-up reconstruction framework developed in D3-1 
and will be briefly summarized in Section 3. In parallel, we perform appearance-based object 
detection on both input video streams in order to detect other traffic participants (pedestrians, 
cars, bicyclists, etc.) in the camera vehicle’s field of view. An automatically estimated ground 
plane from the reconstruction pathway is used in order to constrain object detection to 
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promising image locations, which considerably improves recognition performance. In 
addition, recognition is supported by dense stereo depth measurements, which are used to 
verify detections and localize them more accurately. This is described in Section 4. Using the 
estimated camera location from SfM, detection bounding boxes are converted into world 
coordinates, which are integrated over time in order to estimate physically plausible object 
trajectories, as explained in Section 5. In Section 6, we show how those last two steps, 
detection and trajectory estimation, can be coupled into a combined optimization problem in 
order to further improve robustness. Finally, we close the feedback cycle by supplying SfM 
with information from detection and tracking in order to obtain more accurate localization 
estimates (Section 7). The final integrated system is then presented in Section 8. Experimental 
results and references to more detailed explanations in the appended research papers will be 
given throughout this report. 
 

3. Online Scene Geometry Estimation 

Our approach makes the following two uses of automatically estimated scene geometry 
information. First, it employs the knowledge about the scene’s ground plane in order to 
restrict possible object locations during detection. Second, a camera calibration obtained from 
SfM allows us to integrate individual detections over time in a world coordinate frame and 
group them into trajectories over a spacetime window. As we will show in Section 5, this 
makes it possible to perform 3D object tracking from a moving vehicle. 
 
We investigated two different methods for estimating the current ground plane from visual 
data. In a joint ETH-KUL work [1, 4, both appended to this deliverable], we used the camera 
trajectory obtained from SfM in order to infer the ground plane location. Figure 3(a) 
visualizes this procedure. Taking as input the estimated camera locations from SfM, our 
approach assumes a rigid vehicle geometry to reconstruct the wheel contact points on the road 
surface at the time the images were taken. By connecting those wheel contact points into 
trapezoidal patches, we can obtain local normal measurements, which are further smoothed 
over a larger spatial window. Empirically, averaging the normals over a length of 3m (or 
roughly the wheel-base of the vehicle) turned out to be optimal for a variety of cases [1]. The 
obtained ground plane is then extrapolated to the distance in order to provide an estimate for 
the current frame. 
 
This approach performs well in practice, but it requires a small temporal look-ahead. The 
reason is that SfM estimates for forward-looking cameras are typically quite noisy because of 
numerical instabilities. They therefore need to be corrected by bundle adjustment over a 
certain (small) temporal window. This means that the SfM results will only be stable after the 
current window has been processed. Depending on data capture frame rate, the necessary 
minimum window size for bundle adjustment is typically between 3-6 frames, resulting in on 
average half that many frames before the results become available. In addition, abrupt 
changes of the ground plane (such as when driving over a speed bump) may only be reflected 
in the ground plane estimate after such a location has been passed by the vehicle’s front 
wheel. Taken together, those two effects result in an effective delay before the SfM 
measurements can be safely used, which is obviously undesirable for online applications. 
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(a) (b) 

Figure 3. The two approaches we employ for obtaining ground plane information in this deliverable. 
(a) Using the camera locations estimated by Structure-from-Motion for past frames, we reconstruct 
points on the road surface our vehicle traveled over and extrapolate the resulting ground surface to 
future frames. (b) We employ depth measurements from dense stereo in order to verify the consistency 
of ground plane hypotheses using a robust least-median-of-squares estimator. 

For this reason, we have also investigated a different method for estimating the ground plane 
described in [3, appended to this deliverable] and depicted in Figure 3(b). This approach 
computes a dense stereo depth map for every frame pair and then verifies how consistent a 
given ground plane hypothesis is with the observed depth measurements using a robust least-
median-of-squares estimator. This method works very well if there is enough texture on the 
ground surface to yield depth measurements. In addition, it is entirely causal, meaning it does 
not require a temporal look-ahead, but only relies on information from the current frame. 
However, it becomes less reliable in crowded scenes with many pedestrians at close ranges, 
where less of the ground is visible. In the following section, we therefore couple object 
detection and ground plane estimation in a common graphical model that allows both search 
problems to be solved together. 
  

4. Object Detection 

The object recognition system is based on a battery of single-view, single-category object 
detectors. In this work, we use the ISM detector from [7]. This approach lets local features, 
extracted around interest regions, vote for the object center in a 3-dimensional Hough space, 
followed by a top-down segmentation and verification step. For our application, we use the 
robust multi-cue extension from [8, D1-2], which integrates local Shape Context descriptors 
[11] computed at Harris-Laplace, Hessian-Laplace, and Difference-of-Gaussian interest 
regions [10, 11]. Those features have been selected based on an extensive evaluation 
performed as part of deliverable D1-2 in WP1. For a more detailed description, we refer to 
this deliverable and the corresponding publication [8]. 
 
In order to capture the varying object appearance from multiple viewpoints, we use 5 single-
view detectors for the different car orientations and one additional detector for pedestrians 
(see Figure 4(a)). We do not differentiate between pedestrians and bicyclists here, as they are 
often indistinguishable from a distance and our detector responds well to both categories. In 
the rest of this section, we present two different approaches for integrating the resulting object 
detections with the estimated scene geometry. 
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Figure 4. (a) Training viewpoints used for cars and pedestrians in our experiments. (b) The estimated 
ground plane significantly reduces the search space for object detections to a corridor in the (x,y,scale) 
volume. 

4.1 Integration of Ground Plane Constraints 
As already described in D3-1, the estimated scene geometry can be used to significantly 
constrain the search space for object detection to a corridor in the (x,y,scale) volume. This 
effect is shown in Figure 4(b). In the first approach presented here, we employ this strategy in 
order to achieve significant detector speed-ups and to filter out many false positives.  
 
Given a ground plane estimate from SfM, we limit object detection to the above-mentioned 
(x,y,scale) corridor. By projecting a ray through the base point of each detection bounding 
box and intersecting it with the ground plane, we can localize each detection hypothesis in 3D 
and estimate its real-world size. By comparing this size estimate to a learned distribution of 
real object sizes, we can then express the likelihood for a real-world object being present in 
this location given the observed image evidence. Details how this is formally done can be 
found in the appended paper [1]. The resulting verification procedure considerably improves 
object detection performance to a level where the obtained detections can be used for real-
world applications [1, 2, 4]. 

4.2 Simultaneous Object Detection and Ground Plane Estimation 
However, a potential problem with the approach described in the previous section is that it 
relies on a hard decision about the ground plane location at the very beginning of the sensing 
process. If this decision is wrong, potential object hypotheses will not be sampled from 
certain image regions, which may result in missing detections. In this section, we therefore 
present a method to avoid this hard decision. Using input from pedestrian detection and dense 
stereo, we want to jointly estimate both scene geometry and object locations. This is achieved 
by integrating the different cues in a graphical model, which allows inference in all directions. 
 
Figure 5 shows the graphical model we use for inference over object hypotheses. It is based 
on three different kinds of inputs: ground plane measurements πD  based on the dense stereo 
depth map described in Section 3; object hypotheses o1,...,on from an appearance-based object 
detector applied to the input image I; and a depth verification d1,...,dn flag that checks if the 
hypothesized object is consistent with the observed depth distribution D in the same image 
location. The model is parameterized over the hidden variable π defining the ground plane 
parameters. Please refer to the appended paper [3] for details of the implementation. 
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Figure 5. (top) The Graphical Model used for simultaneous object detection and ground plane 
estimation. (bottom) The three input cues for this model: (left) ground plane measurements based on 
the dense stereo depth map; (middle) depth verification for each object hypothesis; (right) output of the 
appearance-based object detector on image I. 

As stated above, the interesting property of this graphical model is that it can perform 
inference in both directions. Thus, if we observe a largely empty scene, the ground plane 
measurements can constrain object detection to promising object locations. If, on the other 
hand, we encounter a crowded scene with many people appearing at close ranges and only a 
small fraction of the ground surface being visible, successful object detections can in turn 
constrain the ground plane location. Thus, our approach implements another cognitive loop in 
which detection and geometry estimation closely collaborate towards a common goal. 
 
Figure 6 presents example detection results using this approach on several challenging video 
sequences from busy pedestrian zones in Zurich. The test data was acquired using the child 
stroller setup shown in Figure 1(b), which is already quite close to the target scenario of the 
final AWEAR demonstrator, just at this point still with perspective instead of omni-
directional cameras. As the results in Figure 6 show, our approach achieves very good 
detection results in such difficult scenes and successfully detects many of the pedestrians 
visible there with only few false positives. A detailed experimental evaluation of the different 
system components and a comparison to other state-of-the-art detectors can be found in [3, 
appended], confirming this result also quantitatively. 
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Figure 6. Example pedestrian detection results of our approach from Section 4.1 on three different test 
sequences. These results confirm that our simultaneous object detection and ground plane estimation 
method achieves very good detection performance with only few false positives (shown in red). 

5. Spacetime Trajectory Estimation 

The results from the previous section confirmed that our object detection framework reaches a 
suitable performance level for real-world applications. In this section, we now introduce an 
algorithm to integrate the detections over time and group them into object trajectories. The 
framework from the previous deliverable D3-1 could only perform such an integration for 
static scene objects, such as parked cars. In this section, we extend the approach described 
there to also handle dynamic objects and track their motion over time. 
 
The key idea behind our proposed tracking estimation procedure is that we accumulate object 
detections in a spacetime observation volume, which we subsequently analyze in order to find 
physically plausible object trajectories. Each detection is entered into this spacetime volume 
with its ground plane location and time stamp. If we now consider a static scene object, we 
would expect to see the corresponding detections to form a vertical trajectory. For a moving 
object, the trajectory will be tilted according to the motion speed. The basic idea of our 
approach is now to collect a large set of candidate trajectories and then apply model selection 
in order to choose the optimal subset that best explains the observed data.  
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Figure 7. (left) Detections and corresponding segmentations used to learn the object-specific color 
model. (right) Visualization of example event cones for (a) a static object with unknown orientation; 
(b) a holonomically moving object; (c) a non-holonomically moving object. 
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Figure 8. Visualization of the trajectory growing procedure. (a) Starting from an observation, we 
collect all detections that fall inside its event cone in the adjoining time steps and evaluate them under 
the trajectory model. (b) We adapt the trajectory based on inlier points and iterate this process both 
forward and backward in time. (c) This results in a set of candidate trajectories, which are passed to the 
hypothesis selection stage. (d) For efficiency reasons, trajectories are not built up from scratch at each 
time step, but are grown incrementally. 

 
Each trajectory is defined via an object-specific appearance model and a dynamic model. The 
appearance model is represented as an 8x8x8 color histogram computed over the top-down 
segmentation returned by the object detector (see Figure 7(left)). The dynamic model is an 
Extended Kalman Filter (EKF) that specifies the event cone of an object, i.e. the spacetime 
volume that it can physically reach from its current position given its maximal velocity and 
turn rate. Here, we assume different motion models for pedestrians and cars. For pedestrians, 
we assume holonomic motion on the ground plane, meaning that they can move without 
external constraints. For cars, we use the knowledge that they can only move in the direction 
of their main axis and only turn while moving by adopting a non-holonomic motion model. 
Example event cones for different cases are shown in Figure 7(right). 
 
We thus search for plausible trajectories through the spacetime observation volume by linking 
up event cones, as shown in Figure 8. Starting from an observation Hi,t, we follow its event 
cone up and down the timeline and collect all observations that fall inside this volume in the 
adjoining time steps. Since we do not know the starting velocity vi,t yet, we begin with the 
case in Figure 7(a). In all subsequent time steps, however, we can reestimate the object state 
from the new evidence and adapt the growing trajectory according to the EKF equations. 
Although any single trajectory hypothesis is thus estimated by a bidirectional EKF, our 
approach goes beyond Kalman Filters in a very important respect: we are not restricted to 
tracking a single hypothesis. Instead, we start independent trajectory searches from all 
available observations (at all time steps) and collect the corresponding hypotheses. The final 
scene interpretation is then obtained by a global optimization criterion which selects the 
combination of trajectory hypotheses that best explains the observed data under the 
constraints that each observation may at most belong to a single object and no two objects 
may occupy the same physical space at the same time. This makes it possible to enforce 
physical exclusion constraints such that a pedestrian may not walk through a car and vice 
versa.  
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Figure 9. (left) Online 3D localization and trajectory estimation results of our system obtained from 
inside a moving vehicle. (right) Visualization of the corresponding spacetime trajectory estimates for 
this scene. 

Our basic mathematical tool for this step is a model selection framework as introduced in [9] 
and adapted in [7]. This framework is based on a formulation based on the Minimum 
Description Length (MDL) principle. Briefly stated, it assigns each trajectory hypothesis a 
merit term, based on how well this hypothesis explains the observed data, and a base cost that 
penalizes more complex hypotheses. As each data point can only be assigned to a single 
model, overlapping hypothetical models compete for data points. This competition translates 
to interaction costs, which apply only if both hypotheses are selected and which are then 
subtracted from the score of the hypothesis combination. Leonardis et al. [9] have shown that 
if only pairwise interactions are considered, then the optimal set of models can be found by 
solving a Quadratic Boolean Problem (QBP). In this work, we use the multibranch gradient 
ascent method from [13] to solve the optimization problem. 
 
This model selection procedure is performed after each frame (or frame pair) of the input 
sequence. As its result, we obtain a set of selected object trajectories that correspond to the 
best explanation of the current world state given all evidence available up to now. Each 
selected hypothesis comes with its own history, i.e. it reaches back into the past to 
observations that it could explain there. We can thus follow a trajectory back in time to 
determine where a pedestrian came from when he first stepped into view, even though no 
trajectory was selected for him back then. Figure 9 visualizes the estimated spacetime 
trajectories for such a case. 
 
Another important property of our method is that when several trajectory hypotheses compete 
for the same data, a different hypothesis may be selected after each frame. We are thus no 
longer bound by a Markovian assumption, but effectively obtain a non-Markovian multi-
object tracking framework that can compensate for previous errors and recover temporarily 
lost tracks. In contrast to previous multi-object tracking approaches such as Multi-Hypothesis 
Tracking (MHT) [12] and Joint Probabilistic Data Association Filters (JPDAFs) [6], which 
scale exponentially with the number of considered time steps, our approach can keep a 
significantly longer history, since only relatively few trajectory hypotheses need to be stored. 
This work was presented in a joint ETH-KUL paper [1] and was awarded the CVPR’07 Best 
Paper Award out of more than 1250 submissions and 352 accepted papers. 
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Figure 10. Influence of past trajectories on object detection in the coupled optimization problem. (left) 
a frame from one of our test sequences and detected pedestrians. (right) Top view of the detection prior 
for the next frame showing previous trajectories, predicted positions, and detection prior (brighter color 
means higher probability). 

6. Coupled Detection and Tracking 

In the two previous sections, we developed methods for detecting objects and for grouping 
those detections into spacetime trajectories. However, the two tasks are closely coupled: the 
merit of a putative trajectory depends on the number and strength of the underlying 
detections, while the merit of a putative detection depends on the current object trajectories, 
which impose a prior on object locations. These dependencies lead to further interactions 
between detections and trajectories. In the spirit of the work in DIRAC, we therefore want to 
close another cognitive loop by coupling the two processes and thus allow feedback from 
tracking to detection. 
 
However, we have to keep in mind that the relationship between detections and trajectories is 
not entirely symmetric: trajectories ultimately rely on detections to be propagated, but new 
detections can occur without a trajectory to assign them to (e.g. when a new object enters the 
scene). We therefore need to enable detections to survive without contributing to an actual 
trajectory. In [2 ,4], we therefore developed a novel mechanism that couples detection and 
trajectory estimation in a jointly optimized combined QBP. We accomodate the above-
mentioned asymmetry by introducing a list of virtual trajectories, one for each detection in the 
current image, which can explain detections whose score outweighs the base cost, but which 
are not claimed by any selected trajectory. 
 
Thus, coupling has the following beneficial effects. First, it supports novel object detections 
that are consistent with existing trajectories. Existing trajectories effectively impose a prior on 
certain object locations, which raises the chance of generating novel detections there above 
the uniform background level (see Figure 10). Second, the evidence from novel detections 
aids trajectories with which those detections are consistent by allowing them to account the 
new information as support. As our experiments from [2, 4] show, the resulting feedback 
from tracking to detection improves total system performance and yields more stable tracks.  

6.1 Identity Management 
The hypothesis selection framework helps to ensure that all available information is used at 
each time step. However, it delivers an independent explanation at each time step and hence 
does not by itself keep track of object identities. Frame-to-frame propagation of tracked object 
identities is a crucial capability of tracking (as opposed to frame-by-frame detection).  
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Figure 11. Example tracking results in very crowded scenes that are only made possible by feeding 
back information from object detection and tracking to Structure-from-Motion. Details of this feedback 
are described in deliverable D1-4. 

Propagating identity is trivial in the case where a trajectory has been generated by extending 
one from the previous frame, where the hypothesis ID is simply passed on, as in a recursive 
tracker. However, one of the core strengths of the presented approach is that it does not rely 
on stepwise trajectory extension alone. If at any time a newly generated hypothesis provides a 
better explanation for the observed evidence than an extended one, it will replace the older 
version. However, in this situation the new trajectory should inherit the old identity, in order 
to avoid an identity switch. 
 
In [2, 4], we have proposed a simple identity management strategy based on the associated 
data points: the identities of all selected trajectories are written into a buffer, together with the 
corresponding set of explained detections. This set is continuously updated as the trajectories 
grow. Each time a new trajectory is selected for the first time, this trajectory is compared to 
the buffer, and if its set of explained detections is similar to a buffer entry, it is identified as 
the new representative of that ID, replacing the older entry. If it does not match any known 
trajectory, it is added to the buffer with a new ID. This strategy works well in practice and 
yields stable person identities over long test sequences, as verified by quantitative 
experiments in the appended papers [2, 4]. 

7. Feedback to 3D Localization 

The previous sections have shown that Structure-from-Motion can considerably help tracking 
in the envisioned AWEAR scenario by allowing our system to operate in 3D world 
coordinates. In this section, we will complete this interaction to a loop by also feeding back 
information from tracking to help visual odometry. As we will show, such a feedback is 
crucial for robust performance in crowded scenes, such as the one depicted in Figure 11. 
Here, many people are walking through the system’s field of view, crossing and occluding 
each other, undergoing large scale changes, and occasionally even blocking almost the entire 
scene. Such a scenario is very problematic for standard SfM algorithms, which assume a 
predominantly static scene and treat moving objects just the same as incorrect 
correspondences. Most systems use robust hypothesize-and-test frameworks such as 
RANSAC or Least-Median-of-Squares for removing such outliers. We show that the use of 
basic scene understanding can effectively stabilize visual odometry by constraining 
localization efforts on regions that are likely to be part of the rigid scene. 
 
However, the creation of feedback loops always carries the danger that measurement noise 
may be picked up and amplified to the point that the entire system becomes unstable (as in the 
case when a microphone is held too close to a connected loudspeaker). An important design 
question is therefore how to avoid such instabilities and guarantee robust performance. We 
specifically address this question by incorporating automatic failure detection and correction 
mechanisms into our system and show how they interact to stop error amplification. As our 
experiments in [5] demonstrate, the resulting system achieves robust multi-object tracking 
performance on very challenging video data. In this section, we will outline the basic ideas 
behind the proposed integration. For details of its implementation, we refer to deliverable D1-
4 and [5]. 
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7.1 Failure Detection 
For systems to be deployed in real-life scenarios, failure detection is an often overlooked, but 
critical component. In our case, ignoring odometry failures can lead to erratic tracking 
behavior, since tracking is performed in 3D world coordinates. As tracking is in turn used to 
constrain VO, those errors may be amplified further. Similarly, the feedback from object 
tracking as a spatial prior to detection can potentially lead to resonance effects if false 
detections are integrated into an increasing number of incorrect tracks. Finally, our system’s 
reliance on a ground plane to constrain object detection may lead to incorrect or dropped 
detections if the ground plane is wrongly estimated. As our system relies on the close 
interplay between all components, each of these failure modes could in the worst case lead to 
system instability and must be addressed. 
 
To detect visual odometry failures, we consider two measures: firstly the deviation of the 
calculated camera position from the smoothed filter estimate and secondly the covariance of 
the camera position. Thresholds can be set for both values according to the physical properties 
of the moving platform, i.e. its maximum speed and turn rate. Note that an evaluation of the 
covariance is only meaningful if based on rigid structures. Moving bodies with well 
distributed points could yield an equally small covariance, though for an incorrect position. 
With estimation based only on rigid structures, the covariance gives a reliable quality estimate 
for the feature distribution. 
 
In case of a detected odometry failure, the filter estimate is used instead of the measurement; 
all scene points are cleared; and the Structure-from-Motion system starts anew. This allows us 
to keep the object tracker running without resetting it. While such a procedure may introduce 
a small drift, a locally smooth trajectory is more important for our application than accurate 
global localization, which can also be obtained through other cues such as GPS. 

7.2 Feedback from Scene Understanding to SfM 
The intuition behind our proposed procedure is to remove features on pedestrians using the 
output of the object tracker. For each tracked person, we mask out its projection in the image. 
If a detection is available for the person in the current frame, we use the confidence region 
returned by the object detector. If this region contains too large holes or if the person is not 
detected, we substitute an axis-aligned ellipse at the person’s predicted position. Given this 
object mask for a frame, we then adapt the sampling of corners in order to ensure that a 
constant number of features is sampled from each unmasked image region. Even with 
imperfect segmentations, this approach improves localization by sampling the same number 
of feature points from regions where one is more likely to find useful structure. Together with 
the automatic failure detection, this results in considerably improved robustness of the SfM 
subsystem, as our experiments in [5] demonstrate.  
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Figure 12. Putting it all together. In this work, we integrate appearance-based object detection, 
Structure-from-Motion, dense stereo verification, ground plane estimation, trajectory estimation, and 
multi-object tracking. 

8. Putting it all together... 

Figure 12 depicts the vision we pursue in DIRAC to put all of the above components together 
and closely interface them in order to tackle tasks that none of the individual components 
could handle on its own. In the course of this deliverable, we have developed a series of 
building blocks for such an endeavor – now we can connect them and explore the potential of 
cognitive feedback loops for visual scene understanding in the AWEAR scenario. 
 
Figure 13 shows the graphical model that represents the core of our integrated system. It 
builds upon the ideas for single-frame scene analysis developed in Section 4.2, but extends 
them with temporal information from the tracking-by-detection approach described in 
Section5. Both object detection and trajectory estimation are tightly coupled in a combined 
optimization problem, as shown in Section 6. 
 
Briefly stated, the graphical model operates as follows. For each frame, a set of object 
hypotheses is provided by an object detector. Based on these, an additional stereo depth map, 
and prior information, the model structure is built up. Belief propagation is then used to find a 
geometrically consistent set of object hypotheses. At the same time, the spacetime volume of 
previous detections is analyzed to find a set of trajectory hypotheses. Both object and 
trajectory hypotheses are then considered together in a coupled global optimization step, 
using the approach from Section 6. The effect of this coupling is to add a spatial prior for 
object locations that are supported by candidate trajectories from tracking. As shown in 
Figure 13, this dependency is non-Markovian due to the employed tracking framework. 
 
The output from object tracking is in turn used for stabilizing SfM, which updates the pose 
estimate for the platform and the detections, before running the tracker on these updated 
detections. The whole system is held entirely causal, i.e. at any point in time, we only use 
information from the current and previous frame pairs. 
 
 



 

17 

 
Figure 13. The Graphical Model that integrates appearance-based detection with stereo depth 
measurements and probabilistic multi-object tracking at the core of our approach. 

 

 

 

 
Figure 14. Example tracking results of our combined system on several challenging test sequences. 

We have implemented this integrated system in [5], where we also present a performance 
evaluation on several very challenging test sequences showing strolls with the AWEAR 
prototypes from Figure 1(middle, right) through busy pedestrian zones. Altogether, our test 
set consists of 5 sequences with a total of 4,217 frames spanning 367m travel distance and 
containing several hundred pedestrians in the vehicle’s field of view.  
 
Figure 14 shows example tracking results for several of those test sequences. Our system’s 
ability to track through occlusion is demonstrated in the top row: note how the woman 
entering from the left has temporarily occluded almost every part of the image. Still, the 
tracker manages to pick up the trajectory of the woman on the right again (in red). In the third 
row, a pedestrian gets successfully tracked on his way around a few standing people, and two 
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pedestrians are detected at far distances. The final row again demonstrates tracking through 
major occlusion. Altogether, those results show that our system manages to produce long and 
stable tracks in complex scenarios. 

9. Conclusion 

The aim of this deliverable was to provide basic building blocks for dynamic visual scene 
analysis in the AWEAR application scenario, as well as to explore ways to connect them in 
cognitive feedback loops. This goal has been achieved by the research presented above. We 
proposed an architecture to integrate the different vision components (Structure-from-Motion, 
dense stereo reconstruction, appearance-based object detection, trajectory estimation, and 
multi-object tracking) and closely coupled them by building up cognitive feedback loops. 
This proved to be a key factor in improving system performance. We showed that special care 
has to be taken to prevent system instabilities caused by erroneous feedback. Therefore, a set 
of failure prevention, detection, and recovery mechanisms was proposed. The resulting 
system can handle very challenging scenes and thus constitutes a valuable building block for 
the AWEAR application scenario.  
 
As already stated above, the work presented in this deliverable is still based on perspective 
cameras. The main reason for this was that the current AWEAR prototype can only capture 
omni-directional images at 3 frames per second, which is not sufficient to guarantee stable 
tracking in difficult settings. However, this issue will be resolved by using better cameras in 
the final AWEAR platform, and the next steps will therefore be concerned with transferring 
the developed vision capabilities to such a setup. Using omni-directional cameras will bring 
considerable advantages for the envisioned outdoor application scenario. With their wider 
field-of-view, those sensors are better suited for SfM and self-localization, since they can 
capture a far larger portion of the surrounding rigid scene. Consequently, moving objects will 
not present as much of an obstacle as in the current setup with perspective cameras. Still, the 
targeted walking aid application implies that cameras will be mounted in a similar location at 
hip height on the mobile platform, so that people at close range may still block a large portion 
of the cameras’ view. This will still make it necessary to incorporate the proposed cognitive 
feedback from detection and tracking to geometry estimation. 
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