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Abstract: 

In the first year of the DIRAC project, partners in WP5 worked on general framework 

for information fusion in detection of unexpected audio-visual events (deliverable 

D5.2). One particular strategy emerged as a promising one, and has been pursued in 

WP2 as a technique for identification of unexpected words in machine recognition of 

speech. This Deliverable D2.6 reports on early and very promising results obtained 

by using the proposed strategy. The results are reported on a rather limited 

recognition task of recognizing ten American English digits with the eleventh one 

introduced as an unexpected word unknown to the machine. However, the applied 

technique is in principle extendable to larger more realistic speech recognition tasks, 

as well as to identification of audio-visual events. 
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1.  The Motivation 

In speech communication, the unexpected items (words) carry more information than the 

expected ones [6]. Over the years, sophisticated techniques for utilizing the prior knowledge 

in the form of text-derived language model and in pronunciation lexicon evolved. However, 

their use has one very undesirable effect: Unexpected lexical items (words) in the phrase are 

typically replaced by acoustically acceptable in-vocabulary items
 
[3]. This is the major source 

of error [7, 20].  Improving the machine ability to handle these unexpected words would 

considerably increase the utility of speech recognition technology.   

 

2.  Some Relevant Knowledge about Use of Context in Human 

Speech Recognition 

2.1 The Context of the Message 

No doubt that what we believe that we hear is heavily influenced by what we expect to hear. 

In other words, the context of the message in speech is an important element that contributes 

to the decoding of the message. It is the context that limits the number of possible alternative 

words that could most likely occur in a given part of the message. 

 

A simple experiment carried out more than a half century ago by Miller, Heise and Lichten 

[16] illustrates the point. In this experiment, listeners were given a list of words that will be 

presented and their task was to recognize the spoken words. The number of possible words in 

the lists varied between 2 and 1000. The noise of varying levels was added to the spoken 

material to make the task harder. As expected and as discussed by Miller et al., it was easier 

to discriminate between 2 words than to discriminate among 1000 words.  

 

As pointed out by Allen [22] there is a possible model that the collected data follow 

reasonably well. The model implies that error from the acoustic channel and the context 

channel multiply, i.e. the context contributes an independent parallel channel of information, 

which contributes to decoding of the message in addition to the sensory (acoustic) channel. 

Indeed, such a model has been proposed and tested earlier by Boothroyd and Nittrouer [17], 

where the probability of correct recognition of the words in context pW  relates to probabilities 

of the correct recognition of words without context pN  trough 

 

),1)(1(1 CNw ppp −−−=  

 

where pC  indicates the contribution of the probability due to the context channel. Since in the 

presence of distortions such as noise, both pC and pN are degraded equally (the target words 

get degraded in the same way as the words that provide the context), the equation above 

simplifies to 

.1,)1(1 >−−= Kpp K
Nw

 

 

The parallel architecture of the model is intuitively appealing. It implies that it is not 

necessary for the both channels to be correct. When either of the channels, the acoustic one or 

the context one, is providing the correct evidence, the system makes the correct decision. 

 

2.2 Unexpected Words 

Further, Allen also discusses physiological data of van Petten et al [19] that are very relevant 

in our quest for discovery of unexpected words. The data come from the EEG experiments 
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dealing with negative swing N400 in EEG potential observed about 400 ms after  encountering 

an unexpected word. The careful design of the experiment allows for discovery that the 

human hearing provides instantaneous indication when encountering the unexpected word, 

thus further supporting the parallel character of both the sensory and the context channels. 

 

3.   How ASR Works 

Current machines for automatic speech recognition (ASR) work differently than human 

system does. 

 

ASR uses context in the form of the lexicon and the so called language model. The use of the 

language model is quite essential. Without its use, almost an order-of-magnitude increase in 

word errors has been observed [21]. The acoustic (sensory)  and the language model (prior 

knowledge)  information sources are used serially since the recognized message wbest  is 

chosen as the most probable message through a search over all possible messages using the 

Bayes  rule 

(1)                                            ))}(()(|({maxarg ii
i

best wMPwMxpw =
 

 

where p(x|M(wi) denotes the likelihood of the data x given the  model of the i-th message 

M(wi) multiplied by the probability of  the model P(m(wi)). Since the probabilities 

(likelihood) of both information sources multiply, both need to be high for the final result to 

be high.  

 

Also, the words (represented by sequence of sub-models forming the model M(wi)) are not 

recognized one-by-one as they come but the decision about the best matching string of words 

is delayed until the last element of the recognized phrase is processed. This is because the 

likelihood p(x|M(wi)) of the whole sequence of words must be evaluated and the product with 

the prior probability of a given sequence P(M(wi)) must be formed to yield the final decision 

about the found sequence of words wbest. This principle of the delayed decision is one of the 

most fundamental and most powerful principles of the HMM-based ASR.  

 

4.  An Engineering System for Discovery of Unexpected Words 

An unexpected input to the conventional HMM-based ASR for which P(M(wi)) goes to zero, 

(e.g. the word that is not in the lexicon of the recognizer) is a significant source of error since, 

as long as the Eq. (1) is applied, the particular message containing this word can never be 

chosen. The recognizer in this case must substitute another, acoustically similar, word (or a 

sequence of shorter words) from its lexicon which has in the particular context a reasonable 

prior probability of occurrence. 

 

When a human listener encounters clearly pronounced and uncorrupted unknown word, she is 

typically immediately aware of its novelty and can choose an appropriate action. It would be 

very desirable to be able to identify the out-of-vocabulary word in ASR too and efforts in this 

direction are ongoing (see e.g. [20] for a review of recent efforts). 

 

We approach this problem in a principled way, following the general strategy illustrated in 

Fig. 1. This strategy assumes the existence of two parallel processing streams, one - the more 

powerful, employing the prior knowledge in addition to the information from the sensory 

data, the other one evaluating only the sensory data. When both streams yield the results in 



 

6 

the same form, the results can be compared. As long as the sensory data are consistent with 

the prior knowledge, results from both streams are similar. However, when the sensory data 

deviate from the prior knowledge (e.g. in the case when the prior knowledge disallows an 

existence of a certain word), the results in the streams may be different. This is indicated in 

the comparison module and a proper action might be taken. In the case of the unexpected 

word, an attempt may be made to describe the word in terms of its acoustic elements 

(phonemes). Such a phonetic description could be then used for updating the lexicon of the 

available models so when this word is encountered the next time, the upper (prior knowledge 

employing) stream may be able to recognize it. 

 

In the current work described in this report we are addressing the blocks with the bold 

lettering. Clearly, this scheme assumes the existence of the processing stream that could 

reliably describe the information in the input signal. As mentioned above, the prior 

knowledge (language model) constraints and the principle of the delayed decisions, both 

applied in the conventional (prior knowledge employing) system, are responsible for its 

reasonable performance. So it is a challenge to obtain useable recognition results without the 

use of the prior knowledge. Subsequently, the majority of the work is devoted to obtaining 

reasonable evaluation of the acoustic input without the use of the prior knowledge.  The 

adaptation, the description and the update of the lexicon schemes will be addressed in the 

future. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 General scheme of discovery and dealing with unexpected low prior probability stimuli 

Principles of our approach [5], shown schematically in Fig. 2, are briefly described below. 

Posterior probabilities of phonemes for each individual speech frame (i.e. in equally spaced 

intervals of 10 ms) are utilized to identify the unexpected words. The frame-level posterior 

probabilities of phonemes are derived from two levels of processing in a hybrid Hidden 

Markov Model (HMM) recognizer utilizing an artificial neural network (ANN) probability 

estimation (HMM/ANN ASR) [2]. In this technique, the context-unconstrained phoneme 

probabilities are estimated by the trained ANN.  These are subsequently being used in the 

search for the most likely stochastic model of the input utterance. Thus, one set of posterior 

probabilities is obtained directly from the ANN (context-unconstrained posteriors), another 

set comes from the Baum-Welch estimation procedure that, as outlined e.g. in [8,9], provides 

phoneme posteriors derived with the use of the prior constraints  such as the knowledge of the 

expected lexicon and prior word probabilities provided by the applied language model 

(context-constrained posteriors).  

 

Comparing ‘in context posteriors’ and ‘out of context posteriors’ provides an indication of the 

effect of the context. The comparison is done based on measuring Kullback-Leibler (KL) 

divergence between the posterior probability distributions in the sensory and context 

channels. When encountering an unexpected word, the context-constrained posteriors 

significantly deviate from the context-unconstrained posteriors because the unexpected word 

is not supported by the prior knowledge.  
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Conventional confidence estimation techniques [10,11,12,13] are based on segmenting the 

utterance into phones and words and evaluating a likelihood or posterior based measure for 

the hypothesized word inside the detected segments. Our technique does not require any 

explicit segmentation and subsequently  it is not affected by the problems that may be 

encountered while doing so.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Discovery of out-of-vocabulary words using hybrid HMM-NN ASR system, in which the out-of-

context posterior probabilities estimated by the ANN are also directly used in the constrained search for 

the best model sequence. 

4.1  Context-unconstrained Posteriors 

The basic principles of deriving context-unconstrained posterior probabilities of phonemes are 

illustrated in Figs. 3 and 4. Feed-forward ANN is trained on phoneme labeled speech data. It 

uses as an input a segment xi of the data X that carries the local information about the identity 

of the underlying phoneme at the instant i. This segment is projected on 448 time-spectral 

basis. The output from the ANN represents a vector of context-unconstrained posterior 

probabilities of phonemes p(qti | xt). As seen in the middle part of Fig. 5, estimate from the 

ANN can be different that the estimate from the context-constrained stream since it is not 

dependent of the constraints L.  
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Fig. 3 Illustration of the technique for obtaining reliable estimate of posterior probability density 

functions pi(Q|X) without the use of top-down constraints L. Short-term critical band spectrogram, 

illustrated in the left part of the figure, is derived by weighted summation of appropriate components of 

the short-term spectrum of speech. A segment of this spectrogram is projected on 448 different time-

frequency bases (shown in Fig. 3), centred at the time instant i, yielding 448 point vector that forms the 

input to the MLP neural net, trained on about 2 hours of hand-labeled telephone-quality speech to 

estimate a vector of posterior probabilities pi(Q|X). A set of pi(Q|X) for all time instants forms the so-

called posteriogram, shown for the utterance “one-one-three-five-eight” in the lower part of the figure, 

higher posterior probabilities being indicated by warmer colors (see  [4] for more details).  

 
Fig. 4 The time-frequency bases that attempt to emulate some very basic properties of auditory cortical 

receptive fields. They are formed as outer products of first and second derivatives of truncated 

Gaussian functions of 8 different widths in the time domain, and by summation and differentiation over 

three frequency components (3 critical bands), centred at 14 different frequencies  in the frequency 

domain (see [4] for more details). 

 

4.2  Context-Constrained Posteriors  

The context-unconstrained phoneme probabilities are used in a search for the most likely 

Hidden Markov Model (HMM) sequence that could have produced the given speech phrase. 

As a side product, the HMM can also yield, for any given instant i of the message, its 

estimates of posterior probabilities of the hypothesized phonemes  

 

),|(),( :1 Mxqpti T
i
ti =γ  

 

given the whole observation sequence x1:T , and constrained by a set of constraints M implied 

by the training speech data, model architecture, pronunciation lexicon, and the applied 

language model. Here xt denotes a feature vector at time t, x 1:T = {x1, …., xT}, is an acoustic 

observation sequence, qi  indicates the i-th HMM state, and  q
i
t indicates that the model is in 

the state qi at the time t. In the following, we drop the indication M, however,  bearing in mind 

that all the operations are carried under the constrains implied by the model M. 

 

The in-context state posteriors γ(i ,t) can be estimated by using HMM forwards and backward 

recursions using the local emission likelihood p(xt|q
i
t) derived from GMM model in the case 
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of the conventional HMM or  probability p(q
i
t| xt) derived from ANN in our case of the hybrid 

ANN/HMM system. 
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Assuming that a phoneme is represented by one state q in the HMM architecture, then γ(i,t) = 
p( q

i
t|x1:T,M) is the in-context phoneme posterior for the phone i at the time t. Otherwise, when 

a phoneme is represented by more than one state of the HMM model, the in-context posterior 

can be obtained by adding posteriors from all states that form the phoneme. 

 

The acoustic evidence that obeys these constraints is emphasized and the evidence that does 

not support it is suppressed.  Thus, the search, when e.g. encountering an unknown item in the 

phoneme string (e.g. the word `three’ in Fig. 5), it assumes it is one of the well known items. 

Note that these ‘in context’ posterior probabilities, even when wrong, are estimated with high 

confidence. 

4.3  Comparing In-Context and Out-of-Context Posteriors 

To detect unexpected words, the difference between the two channels is evaluated. The large 

difference may indicate the unexpected word. In this work, we use Kullback-Leibler (KL) 

divergence to evaluate the difference between the two vectors of posteriors. 
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Here St indicates the out-of-context posterior vector at the time t, and Ct the in-context 

posterior vector at the time t, and S
i
t and C

i
t are i-th elements of the respective vectors of 

posteriors. 

 

Here we somehow arbitrarily have chosen KL(St,Ct). The KL(Ct, St) or the symmetrized version 

of the KL divergence could have been probably chosen with a similar effect. 

 

The frame level KL divergence as a function of time is then smoothed by a moving average 

filter to emphasize word-level mismatch between two posterior streams. An unexpected word 

is indicated by increase in smoothed KL divergence above the pre-set threshold.  

 

An example of in context and out of context posteriors and the smoothed divergence as a 

function of time is shown in Fig. 5. The utterance contains ‘five three zero’ where the word 

‘three’ represents an unexpected word, not present in the vocabulary. The upper part shows 

the out-of-context posteriors, the middle part the in-context posteriors, and the lower part 

shows the smoothed  KL divergence between two. As it can be seen, there is a region with 

major divergence corresponding to the word ‘three’ (which is marked roughly by dashed 

lines). 
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Fig. 5 Posterior probabilities (posteriograms) of phonemes estimated by an HMM-based system (the 

upper part of the Figure), and by ANN (the middle part of the Figure). In this example, the HMM 

model inconsistency was introduced by removing the word `three’ from the recognizer vocabulary. The 

correct phoneme sequence for the word `three’ is misrepresented in the HMM-derived posteriogram 

(replaced by a sequence /z/iy//r//oh/ of the in-vocabulary word `zero’). The ANN derived probabilities 

indicate in this case the correct sequence /th//r//iy/ for the out-of-vocabulary word `three’. Comparison 

of the respective posterior probability density functions by evaluating their relative entropy (KL 

divergence), shown smoothed by 100 ms square time window as a function of time in the lower part of 

the figure, indicates HMM model inconsistency in the neighbourhood of the out-of-vocabulary word 

`there’ (The figure is adopted from
  
 [5] that also gives more details). 

An example of a typical result is shown in Fig. 5. As seen in the lower part of the Fig. 5, an 

inconsistency between these two information streams could indicate unexpected out-of-

vocabulary word. 

 

5. Experiments and Results 

In this section, we report the initial results in detecting unexpected words. We have used OGI 

digits database [15] for the experiments. The digits contain only 29 context-independent 

phones (monophones). We have introduced each of the words individually as an unexpected 

word by removing it from the vocabulary. The MLP based MRASTA method [4] was used to 

estimated phone posteriors for the sensory channel. 

 

There are 2169 utterances in the test set and 2547 utterances in the training set. For the 

context channel, the phone posteriors in the sensory channel are used as emission probabilities 

for an HMM/ANN block. The role of this block is to integrate prior and contextual knowledge 

to estimate ‘in context posteriors’. The topology of this HMM/ANN block contains all the 

words in the vocabulary except the one that was removed. The phone posterior vectors in the 

two channels are compared frame by frame by measuring the KL divergence. The divergence 
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measures are then smoothed by a moving average filter with the length of 10 frames. The 

smoothed divergence measures are used as confidence measures and compared with a 

threshold to make a decision on detecting the unexpected word.  

 

 
 
Fig. 6 Receiver operating curves (ROC curves) for our confidence measurement approach and 

conventional methods (phone-based and frame-based NPCM). The y axis is showing the percentage of 

true alarms and the x axis is showing the percentage of false alarms. Our approach shows significantly 

better trade off (larger area under the ROC curve). 

 

We have compared our posterior based confidence measure with a group of conventional 

posterior based confidence measures presented in the literature [12, 13]. These confidence 

measures (and many basically similar ones [10, 11]) are based on recognition and 

segmentation of the utterance into phonemes and words (by back-tracking alignment of the 

recognized utterance), and evaluating a posterior based measure inside the detected segments 

for the hypothesized word [12, 13]. The most typical ones, word-based and frame-based 

Normalized Posterior Based Confidence Measures), are defined as follows: 
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where J in number of phones in the hypothesized word, and ej and bj are the beginning and the 

end of each phoneme. The performance of the individual systems is measured in terms of the 

trade off between true and false alarms for detecting unexpected words. Fig. 6 shows the 
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Receiver Operating Characteristic (ROC) curves obtained by our method, and conventional 

posterior based methods. Our approach shows noticeably larger area under the ROC curve 

(much better trade off between true and false alarms). 

6. Discussion and Conclusion 

A new technique for discovery of unexpected out-of-vocabulary words, which is based on 

comparison of two phoneme posterior streams derived from the identical acoustic evidence 

while using two different sets of prior constraints, and which does not require any segment 

boundary decisions, has been proposed and evaluated on a small vocabulary task, where it 

leads to better performance than some earlier reported posterior based confidence measures.  

 

In this technique, the phone posteriors in the sensory channel are estimated by an MLP. The 

phone posteriors in the context channel are estimated using an HMM integrating prior and 

contextual knowledge. This HMM layer uses the MLP posteriors in the sensory channel as the 

state emission probabilities. The content of the two channels (‘in context’ and ‘out of context’ 

posteriors) are compared based on measuring KL divergence at each frame. The divergence 

measure is considered as a frame level confidence measures for the correctness of the 

recognizer output. The divergence measures are then smoothed and compared with a 

threshold to decide if there is an unexpected word 

 

Unexpected word detection can be essential for small vocabulary tasks (specific applications), 

as well as large vocabulary. The conventional confidence measurement methods usually 

explicitly segment the utterance into phonemes and words, then they evaluate likelihood or 

posterior based measure for the expected words inside the detected segment boundaries. The 

accuracy of these measures are very sensitive to correct and precise detection of segment 

boundaries. In contrast, in our approach, there is no need for explicit segmentation and 

boundary detection. This is one of advantages which could lead to the observed better 

performance of our system. The other possible advantage is that our technique compares two 

phoneme posterior streams derived using different prior constrains but using identical 

acoustic evidence. This could alleviate inherent inconsistency of confidence estimates based 

on absolute posterior or likelihood measures.  

 

Another interesting consequence of comparing the results from two parallel posterior streams 

is that the large divergence between the two streams could be also an indication of the correct 

decision in the context-constrained stream and the incorrect one in the sensory stream. Thus, 

one possibly fruitful extension of the current technique would be to investigate it as a general 

confidence measure technique. 

 

6.1  Several Additional Thoughts  

Being able to identify which words are not in the lexicon of the recognizer, and being able to 

provide an estimate of their pronunciation, may allow for inclusion of these new words in the 

pronunciation dictionary, thus leading to an ASR system that would be able to improve its 

performance as being used over time, i.e. to learn. 

 

The inconsistency between in-context and out-of-context probability streams does not have to 

indicate only the presence of unexpected lexical item but could also indicate any other 

inadequacy of the model.  

 

Further, it may also indicate corrupted input data when the in-context probability estimation 

using the prior L could yield more reliable estimate than the unconstrained out-of-context 

stream.  Providing and using a measure of confidence in the estimates from the two individual 
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information streams would allow for a disambiguation. Such a confidence measure is a topic 

of our current research interest. 
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