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Abstract: 

The modulation spectrum is a useful representation of a signal for incorporating 

dynamic information. In this work we investigate how to process different 

modulation spectrum frequencies from an ASR perspective. Parallel and hierarchical 

approaches are investigated. Parallel processing combines output of independent 

classifiers trained on different modulation frequency channels. Hierarchical 

processing uses different modulation frequencies at different level of the model in a 

sequential fashion. Experiments are run on a meeting transcription LVCSR task and 

results are reported on the RT05 evaluation data. Processing modulation frequencies 

channels with different classifiers provide a consistent reduction in WER. 

Furthermore hierarchical processing outperforms parallel processing. This model is 

consistent with several perceptual and physiological studies on auditory processing. 
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1. Introduction 

Conventional speech recognition features are based on short time Fourier transform(STFT) of 

the signal thus information about speech dynamics are lost. For this reason dynamic features 

are introduced (e.g. delta features) although they offer a very rough approximation of the 

temporal changes in the signal. An alternative consist in the study of long segments of critical 

band energies obtained by STFT i.e. the modulation spectrum of the signal. This approach has 

been shown to provide useful information on the speech dynamics and to increase noise 

robustness (e.g. [1],[2]). 

Previous studies showed the contributions of different parts of the modulation spectrum for 

word recognition and suggested the use of multiple resolution analysis ([3]). Gabor filters [4] 

and multi-resolution RASTA filters [5] have been proposed for extracting different 

modulation frequencies. Those techniques are generally used into conventional HMM/GMM 

systems using a TANDEM [6] approach. The multi-resolution representation of the speech 

signal is used as input into a Neural Network in order to estimate phoneme posterior 

probabilities then a Log/KLT transform is applied to posterior probabilities that are used as 

features into conventional ASR systems. 

However all previous studies have considered the problem using a single classifier i.e. all 

modulation frequency channels are processed simultaneously by the same classifier. 

Several perceptual [7] and physiological studies [8] suggest that in the auditory system, this 

processing is done separately for each channel. In this work we investigate from an ASR 

perspective if different modulation frequencies should be processed in parallel fashion or in 

sequential (hierarchical) fashion. 

Parallel processing uses an independent classifier for each modulation frequency channel. 

Phonemes posterior distributions are then recombined using a merger classifier. This is 

somehow similar to multi-band processing [9]. On the other hand, hierarchical processing 

uses a hierarchy of classifiers that incorporates different modulation frequency at different 

level in a sequential fashion. Hierarchical classifiers are very popular in the field of computer 

vision and recently some studies have been proposed on their application to simple phoneme 

recognition task [10]. 

In contrary to previous related works on multiple resolution modeling, we study here the use 

of those two different approaches in a LVCSR task for transcription of meetings. 

Training data consists in 100 hours of meetings and results are reported on RT05 evaluation 

data. The paper is organized as follows: in section 2 we describe multiple resolutions RASTA 

filtering (MRASTA), in section 3 we describe data and system used for experiments, in 

sections 4 and 5 we describe respectively parallel and hierarchical processing of modulation 

frequency channels with results on RT05 evaluation data and in section 6 we discuss 

conclusions on this work. 

 

2. MRASTA Processing 

 MRASTA filtering [5] has been proposed as extension of RASTA filtering trough the use of 

a two dimensional band-pass filter. Critical band auditory spectrum is extracted from short 

time Fourier transform of a signal every 10 ms. A one second long temporal trajectory is 

filtered with a bank of low-pass filters, represented by eight first derivatives (G1) and eight 

second derivatives (G2) of Gaussian functions with variance  varying in the range 8-130 ms 

(see figure 1 - for details see [5]). 

Filters are used for all bands. In contrary to [5] we use in this work only 6 filters. In the 

modulation frequency domain, they correspond to a filter-bank with equally spaced filters on 

a logarithmic scale. For instance figure 3 plots a critical band auditory spectrogram filtered 
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with the first, the fourth and the eight Gaussian derivative filters (G1). Those filters provide a 

multiple-resolution view of the time-frequency plane. 

Subsequently frequency derivatives are introduced with a context of three-Bark frequency. 

This results in a bank of spectro-temporal filters as in figure 2. MRASTA processing is 

consistent with a large number of studies on auditory processing i.e. perceptual studies on 

modulation frequencies [7] and spectro-temporal receptive fields (STRF) [11]. 

MRASTA filtering is used as pre-processing step of the auditory spectrogram for TANDEM 

system. A Neural Network is used for deriving posterior probabilities of phonetic targets. 

Phoneme posterior probabilities are then transformed according to TANDEM scheme [6] and 

used as features in conventional HMM based systems. In next section we describe the ASR 

system used in this work. 

 

 

 

 

 

 

 

 

 

Figure 1.  Set of temporal filter obtained by first (G1) and second (G2 ) order derivation of Gaussian 

function. 

 

Figure2. Spectro-temporal filters used in MRASTA processing. 
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3. System description 

Experiments are run with the AMI LVCSR system for meeting transcription described in [12]. 

The training data for this system comprises of individual headset microphone (IHM) data of 

four meeting corpora; the NIST (13 hours), ISL (10 hours), ICSI (73 hours) and a preliminary 

part of the AMI corpus (16 hours). Acoustic models are phonetically state tied triphone 

models trained using standard HTK maximum likelihood training procedures. The recognition 

experiments are conducted on the NIST RT05s [13] evaluation data. We use the reference 

speech segments provided by NIST for decoding. The pronunciation dictionary is same as the 

one used in AMI NIST RT05s system [12]. Juicer large vocabulary decoder [14] is used for 

recognition with a pruned trigram language model. 

TANDEM-MRASTA features are obtained from the all training set. Table 1 reports results 

for the PLP system and the MRASTA-TANDEM system. 

 

Features TOT AMI CMU ICSI  NIST VT 

PLP 42.4 42.8 40.5 31.9 51.1 46.8 

MRASTA 45.8 47.6 41.9 37.1 53.7 49.7 

Table 1. RT05 WER for Meetings data. Baseline PLP system and MRASTA features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Critical band auditory spectrogram filtered with six Gaussian derivatives filters. 
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4. Parallel Processing 

Let us assume that modeling in each modulation frequency channel is independent; a separate 

classifier can be trained for each channel and outputs from classifiers recombined into a single 

posterior stream. This processing would be equivalent to multi-band approach into frequency 

domain [9]. The filter banks G1 and G2 (6 filters each) are split into two filter banks of 3 

filters : the first set (referred as F-high) composed of short filters that capture high modulation 

frequencies while the second one (referred as F-low) composed of long filters that capture low 

modulation frequencies. Two independent neural networks are trained on output of filterbanks 

F-high and F-low and the output is recombined using a neural network merger classifier. The 

merger neural network takes as input 9 consecutive frames from previous neural networks. 

The procedure is depicted in figure 6. Final posterior distributions are used into LVCSR 

system according to TANDEM approach. Table 2 reports results for high and low modulation 

frequencies and for combination of high/low frequencies. 

 

 

Features TOT AMI CMU ICSI NIST VY 

High 45.9 48.7 41.9 37.3 53.3 49.2 

Low 50.0 51.9 47.6 40.7 57.5 53.1 

Combination 41.4 42.7 38.3 32.5 47.4 47.1 

Table 2.  RT05 WER for high, low modulation frequencies and combination 

Out of the two filter-banks, F-high (high modulation frequencies) largely outperforms F-low 

(low modulation frequencies). Combination of high and low modulation frequencies using a 

merger classifiers reduces by 4.4%  WER w.r.t. the single classifier approach and by 1%  

absolute w.r.t. the PLP baseline. 

This experiment shows that independent processing of different modulation frequencies 

channels can significantly reduce overall WER w.r.t. single Neural Network classifier. 

 

5. Hierarchical Processing of Modulation Frequencies 

In [15], we showed how to incorporate different features through a hierarchical structure: this 

work can be extended to incorporate low and high modulation frequencies. The proposed 

system is described in figure 7.  Modulation spectrogram is first filtered trough a first filter 

bank presented as input to a Neural Network that is trained to obtain phoneme posteriors. 

Output from the first NN is then presented into a second NN concatenated with features 

obtained by processing the modulation spectrogram with a second filter-bank. In such a way, 

estimates from the first net are modified by second net, using different modulation 

frequencies. This allow for introducing different features in the system in a sequential fashion. 

In contrary to parallel processing approaches, the order in which modulation frequencies are 

presented matters. In table 4 we report WER for features obtained both moving from high to 

low and from low to high frequencies. 

 

Features TOT AMI CMU ICSI NIST VT 

Low to High 45.8 48.3 43.5 37.0 52.5 48.5 

High to Low 40.0 40.5 37.3 32.2 47.8 42.9 

Table 4. RT05  WER for hierarchical modulation frequencies processing: from low to high and from 

high to low frequencies 
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When moving in the hierarchy from low modulation to high modulations performance does 

not improve. On the other hand, moving from high to low modulations produce a significant 

reduction into final WER 5.8% w.r.t. single classifier approach. Thus recognition 

improvement is verified also in case of hierarchical processing but only when the processing 

moves from high to low modulation frequencies. 

 

This is consistent with physiological experiments in [8] in which it is shown that different 

levels of auditory processing may attend different rates of the modulation spectrum, the 

higher levels emphasizing lower modulation frequency rates. To verify that improvements in 

the previous structure is coming from the sequential processing of modulation frequencies and 

not simply from a hierarchy of Neural Networks we propose another experiments. Posterior 

features from the MRASTA net that processes all frequency modulation simultaneously are 

presented as input to a second NN. The second NN does not use any further information from 

other frequency representations and simply re-process the posterior features. We also 

investigate the impact of time-context in the second net. 

 

Features TOT AMI CMU ICSI NIST VT 

Hier 

MRASTA 
44.2 46.2 41.9 34.6 51.3 48.1 

Table 5. RT05 WER for hierarchical modeling. 

Table 5 reports WER on RT05 for those hierarchical features. Hierarchical processing 

improves performances w.r.t. single net MRASTA of 1.6% absolute. However performances 

do not reach those of architecture in figure 7. This means that the improvements are actually 

coming from the sequential processing of modulation frequencies and not from the 

hierarchical classifier itself. 

 

 

Figure 6. Parallel processing of modulation spectrum frequencies. 
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Figure 7. Hierarchical Processing of modulation spectrum frequencies. 

 

6. Summary and Discussions 

In this work we discuss parallel and hierarchical processing of different parts of the 

modulation spectrum domain. Use of modulation frequency filter bank is motivated by 

perceptual and physiological evidence e.g. [7],[11] and has been proposed in [5] for ASR 

application. In previous related works, experiments have been conducted from a single 

classifier perspective. 

However studies like [7] and [8] suggests that modulation frequencies channels are processed 

separately. 

We investigate here the processing of different modulation frequencies in both parallel and 

hierarchical fashion. Experiments are run in a LVCSR task using TANDEM approach. Table 

3 summarize results of all previous experiments. Baseline PLP system outperforms single net 

MRASTA features. 

 

In order to consider high and low modulation frequencies each the G1 and G2 filter-banks are 

split in two filter-banks of three filters. In parallel processing (see figure 6) two independent 

Neural Networks are trained on it and outputs combined. 

This approach reduces WER of 4.4% absolute w.r.t. the single Neural Network approach. 

On the other hand, we investigated the use of hierarchical processing as in figure 2 in which 

different modulation frequencies are processed in a hierarchical fashion. When the processing 

order goes from high to low frequencies a 5.8% improvement is obtained while when 

processing order goes from low to high frequencies, overall WER is similar to the single NN 

MRASTA. Furthermore High to low frequencies processing outperforms baseline PLP system 

of 2.4% .  In order to verify that the improvement is actually coming from processing 

different modulation frequencies at different level of the hierarchy we reprocessed MRASTA 

posteriors with another NN without adding any another information from the time-frequency 

plane. This further reduces WER of 1.6% but does not achieve recognition rates of 

architecture in figure 7. 

 

To summarize, separate processing of modulation frequencies improves considerably 

performances compared to approaches that uses single classifier. Out of the two proposed 

methods, hierarchical processing is outperforming parallel processing. In those experiments 

we found that in the hierarchical architecture best performance is obtained when high 

modulation frequencies are used first and subsequently low frequencies are processed. This is 

consistent with physiological observation on auditory system [8] in which early auditory stage 
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emphasizes high modulation frequencies and higher stage emphasizes low modulation 

frequencies. 

 

 
Features PLP MRASTA Hier 

MRASTA 

High Low Comb High to 

Low 

Low to 

High 

WER 42.4 45.8 44.2 50.0 45.9 41.4 40.0 45.8 
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