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Abstract:

Understanding the statistical regularities in an environment may be cast as a
probabilistic model-building task. However, a key difficulty is that in many
situations the quantity of interest is only a part of the complex environment, and
therefore finding an appropriate signal decomposition is of considerable interest.

One case is when the signal of interest has been linearly mixed with other signals,
such as might occur when several people are speaking concurrently. A theoretical
contribution is made in which the signal is decomposed into approximately disjoint
subunits, and is shown to outperform classical Independent Components Analysis
approaches when the sources exhibit statistical dependencies.

Another important case is noise corruption. In order to tackle this issue one approach
is to build a model of both the signal of interest and also any corrupting ‘noise'
signals. In our approach we explicitly construct a forward-model and then use Bayes
rule to infer the feature distribution. One may interpret the latent variables in the
model as ‘features'. A potential advantage of this approach over the more traditional
approach is that, provided a sufficiently flexible noise model is incorporated, it
should be possible to separate features which are responsible for generating signal
from features which are responsible for generating noise.
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1 Overview

Understanding the statistical regularities in an environment may be cast as a probabilistic
model-building task. However, a key difficulty is that in many situations the quantity of in-
terest is only a part of the complex environment, and therefore finding an appropriate signal
decomposition is of considerable interest.

One case considered in the work here is when the signal of interest has been linearly mixed
with other signals, such as might occur in several people speaking concurrently. A theoretical
contribution is made in which the signal is decomposed into approximately disjoint subunits,
and is shown to outperform classical Independent Components Analysis approaches when the
sources exhibit statistical dependencies.

Another important case is noise corruption. For example, a speech signal may be embedded
within a corrupting noise signal. In order to tackle this issue one approach is to build a model
of both the signal of interest and also any corrupting ‘noise’ signals. In this way the joint
signal-noise model enables the extraction of signal from noise. In order to proceed with this
framework, explicit models of both the signal and noise processes need to be made.

‘Inverse’ versus ‘forward’ Feature Modelling

The traditional viewpoint of a feature is based on an inverse-model p(features|signal), see Figure
(1). Whilst this approach is undoubtedly successful, when the signal is heavily corrupted with
noise, finding ‘noise’ free features is difficult. Similarly, modelling explicitly the dynamics which
are corrupted with noise is highly complex. For this reason, many traditional approaches are
not robust to corrupting effects in the environment.

signal | = ‘features ‘ = ‘ model ‘

Figure 1: The traditional ‘forward’ approach to feature extraction and modelling. First features
are extracted from the signal which are subsequently modelled, p(features|signal, model). Noise
effects are dealt with by choosing appropriate features which are as ‘noise’ free as possible.

In the work carried out within the DIRAC project, the aim has been to study a different
modelling strategy in which a single consistent model of the joint noise and signal envi-
ronment is made, see Figure (2). In our approach we explicitly construct a forward-model
p(signallfeatures) and use Bayes rule to then infer the feature distribution. In this sense, one
can interpret the latent variables in the model as ‘features’. A potential advantage of this ap-
proach over the more traditional approach is that, provided a sufficiently flexible noise model
is incorporated, it should be possible to separate features which are responsible for generating
signal from features which are responsible for generating noise.



signal | < ‘ features ‘ = ‘ model ‘

Figure 2: The ‘inverse’ feature technique. Here a single consistent model
p(signal|features)p(features|model) generates features which in turn generate components of the
signal. If desired, features may be then extracted using Bayes rule p(features|signal, model) o
p(signal|features)p(features/model).

It should perhaps be emphasized that this ‘forward’ technique ultimately corresponds to ‘throw-
ing away useless information’ about the signal, as in the more standard feature extraction
technique since, in both cases, ultimately the underlying model of interest for tasks such as
ASR is the one generating the feature distribution. The two approaches are therefore just
different ways at extracting relevant features from a signal.

A particular focus of the work carried out has been to make specific models of acoustic signals,
based mainly on extensions of linear dynamical systems. In order to improve robustness and
flexibility, additional parameter priors have been incorporated leading to Bayesian treatments
of the related models.

The work is composed of novel theoretical components, including

e State-of-the-art method for inference in Switching Linear Dynamical Systems

Bayesian Switching Autoregressive Model

State-of-the-art technique for dealing with Bayesian Linear Dynamical Systems

Identification of independent dynamical processes underlying signal generation

e Stable inference techniques in large-scale Gaussian distributions
This work is described in detail in the following DIRAC publications:

1. D. Barber. Expectation Correction for smoothing in Switching Linear Gaussian State
Space models. Journal of Machine Learning Research, 2006.

2. S. Chiappa and D. Barber. Bayesian Linear Gaussian State Space Models for Biosignal
Decomposition. Signal Processing Letters, 2007.

3. D. Barber and B. Mesot. A Novel Gaussian Sum Smoother for Approximate Inference
in Switching Linear Dynamical Systems. In Advances in Neural Information Processing
Systems (NIPS), volume 20, 2006.

4. B. Mesot and D. Barber. A Bayesian Treatment of Gain Adaptation in Switching AR-
HMMs. ICASSP 2007

5. D. Barber and S. Chiappa. Unified Inference for Variational Bayesian Linear Gaussian
State-Space Models. In Advances in Neural Information Processing Systems (NIPS),
volume 20, 2006.

A brief summary of the projects comprising these works is detailed below.



Switching Linear Dynamical Systems for Noisy ASR

Most modern Automatic Speech Recognition systems perform pre-processing to extract fea-
tures. However, in noisy environments, such methods are often brittle since they are fine-tuned
to work only in clean-speech environments. A key issue therefore in advancing recognition in
real-world environments is to separate signal from noise. In our approach we use strong prior
knowledge of speech at the waveform level to help separate speech from noise and perform
more robust classification.

Our models are based on Switching Linear Dynamical Systems (SLDS), whereby each linear
system is responsible for generating the waveform over a period of roughly 100ms. In this
sense, each ‘feature’ is a linear signal generator. The traditional viewpoint of a feature is based
on an inverse-model p(feature|signal). In our approach we explicitly construct a forward-model
p(signallfeature) and use Bayes rule to then infer the feature distribution. In this sense, one
can interpret the latent variables in the SLDS as ‘features’ that are responsible for signal seg-
ments lasting up to several hundred milliseconds.

To deal with noise, we explicitly include additional additive components to the waveform,
resulting in a Dynamical Bayesian Network to model both speech and noise processes simul-
taneously. The advantage of this general approach is that the features for the signal can be
isolated from noise corrupting effects. We then trained such models to perform ASR on a sim-
ple problem, isolated TI-DIGITS, but corrupted with very large amounts of additive Gaussian
noise.

Whilst standard ASR systems perform well in low-noise environments, but degrade rapidly
with increasing noise, our system degrades gracefully under very large noise. A future di-
rection for such work is to extend the models to deal with more generic speech and noise
environments in order to make a more flexible technique for separating speech from noise.

Inference in Switching Linear Dynamical Systems

Whilst the SLDS framework is conceptually straightforward, learning and inference in an SLDS
is formally computationally intractable, and approximate techniques need to be developed. We
presented a state-of-the-art method for inference in the generic class of Switching Linear Dy-
namical Systems. The method is based on a novel mixture-of-Gaussians smoother.

From a theoretical perspective, of interest in this work is the approach taken to form an
approximation. In most approximation schemes an objective criterion is proposed, from which
an algorithm may be developed to optimise the criterion. In our approach we start rather
from the exact recursions that would result from intractable inference in the full system, and
approximate these recursions. Whilst this does not derive from a simple global objective,
it leads to a simple scheme that strives to remain faithful to the exact inference procedure.
Extensive experiments show that the method outperforms a wide-range of competing methods.

Bayesian Switching Autoregressive Model

One of the known difficulties in the implementation of waveform level models in acoustic signal
processing is the issue of gain adaptation, which refers to the changing volume levels in the
environment and also in the speech recordings. We discussed how to improve flexibility of
the switching linear models by placing a distribution on the noise levels, improving robustness



to the varying noise levels and thereby improving generalization performance. Our aim is to
extend this class of models to deal with a wider class of speech signals in order to deal more
effectively with changes in the environment.

Bayesian Linear Dynamical Systems

Linear Dynamical Systems (LDS) are one of the central tools in signal analysis. A Bayesian
treatment of this extensive class of models is therefore of considerable general interest. The
approximate Variational Bayesian method applied to these models is an attractive approach,
used successfully in acoustics applications. The most challenging aspect of implementing the
method is in performing inference on the hidden state sequence of the model. We show how
to convert the inference problem so that standard and stable Kalman Filtering/Smoothing
recursions from the literature may be applied. This is in contrast to previously approaches
based on Belief Propagation. Our framework both simplifies and unifies the inference problem,
so that future applications may be more easily developed. We hope that our approach will
be the standard technique for implementing the variational approximation to Bayesian Linear
Dynamical Systems.

Independent Component Signal Analysis

We applied our Bayesian Linear Dynamical System framework to a factorized latent space,
which corresponds to analyzing a signal into independent components. In particular, we used
our Bayesian procedure to bias each independent component to be restricted to a particular
frequency band. This results in an analysis that breaks the signal into separate frequency
components. Unlike the FFT, the method is flexible in that there is a prior preference to
for each independent component to remain close to a desired frequency, resulting in a signal
decomposition that is able to adapt to moderate changes in frequencies in the signal.

Blind Signal Separation by Disjoint Component Analysis

A novel method for blind signal separation and analysis, disjoint component analysis (DCA),
is proposed which is based on minimizing the overlap of output signals, thereby making their
support maximally disjoint. Performance of DCA alone and in comparison to ICA is evaluated
in dependence to source overlap and source independence. It is concluded that DCA may be
of particular value in applications where independence is not fulfilled and where measurement
data is positive-valued.

A more detailed report of the above contributions follows.

2 Bayesian Autoregressive Hidden Markov Models

Models dealing with the raw acoustic speech signal directly are an alternative to conventional
feature-based Hidden Markov Models (HMMs). One of the most popular examples is the
Autoregressive (AR) Process which models a sample 3, of a speech signal represented as a
sequence of samples y;.7—as a linear combination of the R previous samples plus a Gaussian
distributed innovation 1

R
Yt = Zcryt—r + M with e ~ ,/\/'(0,0—2) (1)

r=1



Figure 3: DBN representation of the SAR-HMM. The squares and circles represent discrete
and continuous variables respectively—s; symbolises the state at time ¢ and y; the observed
sample at time .

where o2 is the variance of the innovation and ¢, are the AR coefficients. However, an AR pro-
cess is too simple to model the strong non-stationarities typically encountered in speech signals.
A possible way to deal with non-stationarity is to select at each timestep t a setting of the
AR parameters from a discrete set of possible parameter values, with the switching between
the parameters controlled by a Markov Model. This approach is at the root of the AR Hidden
Markov Model (AR-HMM) proposed by Poritz [1| and its modern-day counterpart the Switch-
ing AR-HMM (SAR-HMM), proposed by Ephraim and Roberts [2].

At the heart of the above models lies a standard AR-process. However, a fundamental limi-
tation of such AR models is that the innovation variance o? does not scale properly with the
signal. In particular, if the signal is scaled by a factor «, we would expect the innovation
variance to scale by a factor a? as well. In other words, the ‘gain’ of the sequence, o, needs to
be set for each sequence, and has a strong impact on the likelihood of an observed sequence. A
straightforward solution is to gain normalise the signal such that it always has unit variance.
An alternate and more effective solution is to replace o2 in Equation 1 by the variance which
maximises the likelihood of the speech signal yi.7

oL, = arg max p(yi.r | a?). (2)
o

This approach, called Gain Adaptation (GA), has been successfully used for isolated digit
recognition with AR-HMMs in clean and noisy environments |2, 3, 4]. Whilst useful in practice,
GA does not fit into the usual machine learning framework since, formally, model parameters
may only be set on the basis of training data. Otherwise, in flexible models, setting model
parameters on the basis of test data may lead to overfitting. We therefore consider a statistically
principled alternative Bayesian approach to gain adaptation which consists in specifying a
prior probability distribution on the model parameters. This approach has two potential
benefits over standard GA(i) the variations of the gain can be explicitly controlled, and (ii) the
AR coefficients are allowed to change, which may be useful to model inter and intra speaker
variations for example.

Here we present the Bayesian SAR-HMM which generalises the standard acoustic level SAR-
HMM, concurrently dealing with the issues of GA and parameter uncertainty in a computa-
tionally efficient and principled manner.

2.1 The SAR-HMM

The standard SAR-HMM]|2, 3, 4| has a discrete switch variable which can be in S different
states, each state representing a particular setting of the AR coefficients ¢, and innovation

variance o2 used in Equation 1. From a probabilistic viewpoint, the model defines a joint



distribution over the sequences of observed samples y1.7 and switch states s1.p of the form

T

P, sur) = [ [ pWel ye-re—1,s0) (st | 50-1) (3)
=1

where p(yt | yi—rit—1,5t) = Pyt |y1:0-1,5:) if ¢ < R and p(s1|so) = p(s1). The emission
probability, corresponding to Equation 1, is given by

5T csf} (4)

Pt | Yt—Rt—1,5t) o exp {—@
where ¥] = [yi—1...y_g) and cs, = [c1(s¢) - .. cr(se)]T.

In practice it is not desirable to allow the switch state to change at each time step because
we expect the dynamics to last for a minimal amount of time 1.75ms in our case'. In the
SAR-HMM, the speech signal is therefore considered as the concatenation of N fixed-length
segments over which the state cannot change. This corresponds to the joint distribution

N tn+1—1
pyrrssin) = [ p(snlsn1) [ p(wil3tsn) (5)
n=1 t=tn

where ¢, is the time step at which the n-th segment starts?.

Gain Adaptation in the SAR-HMM

Given a sequence of samples y1.7, GA is performed in the SAR-HMM by replacing the state in-
novation variances o2 in Equation 4 by the per segment and state variances o2, which maximise
the likelihood of the observed sequence yi.7, i.e.,

1 tnt1—1 )
07223 = T_n ; (yt _S’tcs)

where T,, = tp+1 — t, — 1 is the length of the n-th segment.

2.2 The Bayesian SAR-HMM

In the SAR-HMM the AR coefficients ¢ and innovation variances o2 are considered as free
parameters that have to be learned from data. In the proposed Bayesian approach we treat
them as random variables whose probability distributions are controlled by hyper-parameters.
Figure 4 shows the Dynamical Bayesian Network (DBN) representation of the Bayesian SAR-
HMM. A particular segment n is modelled by an R-th order AR process whose coefficients ¢,
and inverse innovation variance? v,, are drawn randomly from a prior distribution conditioned

on the switch state s,. Formally the Bayesian SAR-HMM defines the joint distribution

p(yl:Ty'Sl:NaCl:NyVl:N) — (6)
N
H p(yn ’S’tnycny Vn)p(cna Vn ’ Sn)p(sn ‘ Sn—l)
n=1

!This corresponds to 140 samples at a sampling frequency of 8 kHz.

To save space, we replaced y:_r:_1 by ¥: in Equation 5. Hence p(yt|¥+,s¢) is shorthand
for p(yt | yt—r:t—1, 5¢)-

To ease notation we prefer using the inverse variance v = 1/0>.



Sn—1 Sn Sn+1

Figure 4: DBN representation of the Bayesian SAR-HMM. The graph represents a model with
segments of 3 samples and an AR process of order 2. The index n represents the segment
number. Squares and circles represent discrete and continuous variables respectively.

which is a temporal extension of [5]. Explicitly,

tnt1—1
PWn | Ftoenivm) = [ el F1rcnovm). (7)
t=tn
The new factor
p(Cn, Vn | sn) = p(cn | Un, Sn)p(Vn | Sn)

defines priors on the AR coefficients and the inverse innovation variance of the n-th segment.

In order to keep the model tractable, we use the conjugate priors*

C|V7SNN(:Us,V_1Es) and V|SN’7(O‘saﬁs)

where N (p, 2) is the multivariate normal distribution with mean p and covariance 3, and («, )
is the gamma distribution defined as

o= gt

2.3 Training

The free parameters of the Bayesian SAR-HMM are, ug, 3s, as, 05, for each state s, and the
transition probability a;; = p(s, = j|sn—1 = i) for each pair (i,7) of switch states. Training
the model consists of maximising the likelihood of the observed training data

plyrr) = Y pyrr, SN, CLN, VLN). (8)
51:N;C1:N,V1: N

To achieve this, we use the standard Expectation Maximisation (EM) algorithm. Given the
current setting of the model parameters ¢, an updated setting ¢ is found by maximising (M-
step) the expected complete log-likelihood (E-step)

<10gp(y1:T731:N7C1:N,V1:N |¢§)>q (9)

where (-)4 is the average with respect to the posterior

q = p(s1:N, C1.N, V1:N | Y11, D). (10)

*The segment number has been dropped to simplify the notation.
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Model H Word Accuracy ‘

HMM (HTK) 100%
SAR-HMM (no gain) 88.3%
SAR-HHM (gain) 97.2% (98.5%)
Bayesian SAR-HMM 98.4%

Table 1: Word accuracy of three different models on a single digit recognition task on the
TI-DIGITS database; gain and no gain indicates whether or not gain adaptation has been
used. The performance of the gain adapted SAR-HMM reported in |2] is indicated between
parenthesis.

2.4 Performance

We compared the Bayesian SAR-HMM to the original SAR-HMM proposed in [2], with and
without gain adaptation, and a standard feature-based HMM. The task was to recognise iso-
lated digits pronounced by various male speakers from the TI-DIGITS database [6]. The
training/test sets were composed of 110/112 utterances for each of the eleven digits (1-9,
‘zero’ and ‘oh’), spoken by 55/56 different speakers respectively. Each digit class was modelled
by a separate SAR-HMM and recognition performed by associating the utterance to the digit
whose model had the highest likelihood. Whilst this speech classification problem is relatively
easy, the effective volume on each utterance is different so that, for AR-based models, some
form of GA is crucial for good performance.

All SAR-HMMs were composed of 10 states with a left-right transition matrix and a 10-th
order AR process per state, in keeping with the optimal values found in [2]. The Bayesian
SAR-HMM was initialised with hyperparameter az = 10. The transition matrix of Bayesian
SAR-HMM was set to the trained standard SAR-HMM and, for each state, the priors on the
AR coefficients and the inverse variance were set such that their means («/3) corresponds to
the AR coefficients and inverse variance obtained from the trained SAR-HMM. The covariance
matrix ¥g was initialised to ﬁ[, where [ is the identity matrix.

The feature-based HMM was composed of 18 states with a left-right transition matrix, a
mixture of three Gaussians per state and used 13 MFCC features, including energy and im-
plemented using HTK [7].

Table 1 shows the word accuracy of each model. The performance of the gain adapted SAR-
HMM is reproduced from [2|. All the other results have been obtained by our own imple-
mentation of the respective models. Note that the accuracy we obtained for the gain adapted
SAR-HMM is slightly below that reported in [2|. The Bayesian and gain adapted SAR-HMM
have a word accuracy which is 10% higher than that of the non gain adapted SAR-HMM.
This demonstrates that dealing with the gain problem is crucial to ensure good performance.
The similar performance of the Bayesian and gain adapted SAR-HMM demonstrates that the
Bayesian approach is a sensible principled alternative to gain adaptation.

2.5 Discussion

Modeling the raw acoustic signal is an alternative strategy to using feature based HMMs for
speech recognition. A motivation for this is that strong signal models may be used to remove
noise, and can also form the basis of powerful hierarchical models of the signal. However,
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Figure 5: The independence structure of the aSLDS. Square nodes denote discrete variables,
round nodes continuous variables. In the SLDS links from h to s are not normally considered.

signal models based on AR-processes are over-sensitive to signal amplitude, and this problem
is typically healed using ad-hoc Gain Adaptation. In contrast, our Bayesian approach provides
a statistically principled and straightforward exact alternative to standard Maximum Likeli-
hood Gain Adaptation. The result is a simple update formula which correctly deals with the
uncertainty in the parameter estimates from the training set, and automatically computes the
posterior distribution of parameters in light of test data. This is an encouraging step towards
the development of more complex signal and noise models, in which the flexibility of the models
is every increasing.

3 Switching Linear Dynamical Systems

The Linear Dynamical System (LDS) [8] is a key temporal model in which a latent linear
process generates the observed series. For complex time-series which are not well described
globally by a single LDS, we may break the time-series into segments, each modeled by a
potentially different LDS. This is the basis for the Switching LDS (SLDS) |9, 10, 11, 12| where,
for each time t, a switch variable s; € 1,...,5 describes which of the LDSs is to be used. The
observation (or ‘visible’) v; € RV is linearly related to the hidden state h; € RH with additive
noise n by

ve = B(s))he +n"(st) = plvelhe, st) = N (B(s)he, 2¥(st)) (11)

where N (i, Y) denotes a Gaussian distribution with mean p and covariance ¥. The transition
dynamics of the continuous hidden state hy is linear,

ht = A(St)ht_l + Uh(St), = p(ht|ht_1, St) =N (A(St)ht_l, Eh(st)) (12)

The switch s; may depend on both the previous s;_; and hy;_1. This is an augmented SLDS
(aSLDS), and defines the model

T
porr, b, sir) = [ [ p(velhe, so)p(helheoy, se)p(silhu-—1, 50-1)
t=1
The standard SLDS|11] considers only switch transitions p(s¢|s;—1). At time ¢t = 1, p(s1|ho, So)
simply denotes the prior p(s1), and p(hy|ho, s1) denotes p(h1|s1). The aim of this article is to
address how to perform inference in the aSLDS. In particular we desire the filtered estimate
p(ht, st|v14) and the smoothed estimate p(hy, s¢|vi.p), for any 1 < ¢ < T. Both filtered and

smoothed inference in the SLDS is intractable, scaling exponentially with time |11].

3.1 Expectation Correction

Our approach to approximate p(h¢, s¢|v1.7) mirrors the Rauch-Tung-Striebel ‘correction’ smoother
for the simpler LDS [8].The method consists of a single forward pass to recursively find the fil-
tered posterior p(hy, s¢|v1.¢), followed by a single backward pass to correct this into a smoothed

12



posterior p(hy, s¢|vi.r). The forward pass we use is equivalent to standard Assumed Density
Filtering (ADF) [13]. The main contribution of this work is a novel form of backward pass,
based only on collapsing the smoothed posterior to a mixture of Gaussians. Together with the
ADF forward pass, we call the method Expectation Correction, since it corrects the moments
found from the forward pass.

3.1.1 Forward Pass (Filtering)

Readers familiar with ADF may wish to continue directly to Section (3.1.2). Our aim is to
form a recursion for p(s¢, h¢|vy.), based on a Gaussian mixture approximation of p(h|sy, vi.).
Without loss of generality, we may decompose the filtered posterior as

p(ht, St”Ul:t) = p(htfstavl:t)p(st\vlzt) (13)

The exact representation of p(hy|s, vi) is a mixture with O(S*) components. We therefore
approximate this with a smaller I-component mixture

I
p(ht‘sta ’Ul:t) ~ Z p(ht‘ita St, Ul:t)p(it’3t7 Ul:t)

=1

where p(h|ig, s¢,v1:¢) is a Gaussian parameterized with mean f(iz, s¢) and covariance F(i, $¢).
To find a recursion for these parameters, consider

p(ht+1 ’5t+17 ’Ul:t+1) = Z p(ht+1 \St, Uty St41, Ul:t—f—l)p(sta n ’5t+17 Ul:t+1) (14)

Styit

Evaluating P(hes1]Se, ity St415 Vi)

We find p(hy1]8¢, ¢, Se1, V1:441) by first computing the joint distribution p(hey1, vir1|Se, ity St+1, V1:¢),
which is a Gaussian with covariance and mean elements,

Shn = A(se11)F (i, s0) AT (s141) + 2" (s141), Swo = B(se41)ZpaBT (s141) + SV (5041)

Soh = B(st41)F(ie, st),  pho = B(ser1) A(se41) [ (is 5¢),  pn = A(se41) f (it 5¢) (15)
and then conditioning on vy41°. For the case S = 1, this forms the usual Kalman Filter
recursions|8§].

Evaluating p(s;, i¢|Si+1, V1:t41)

The mixture weight in Equation (14) can be found from the decomposition

P(St, U] St41, Vist1) < P(Vrs1|ie, St, Ser1, Vi) D(Se410t, St, U1:6)D (¢ |St, V1) (St v1:4) (16)

The first factor in Equation (16), p(vey1lit, St, St+1,v1:¢) 18 a Gaussian with mean p, and co-
variance Y,,, as given in Equation (15). The last two factors p(i¢|s¢, v14) and p(s¢|vy.e) are
given from the previous iteration. Finally, p(s¢y1lit, $¢,v1.¢) is found from

P(set1lie, se,v1:) = (P(Sta1|Pts ) piny i ,se01.0) (17)

where (-),, denotes expectation with respect to p. In the SLDS, Equation (17) is replaced by
the Markov transition p(si+1]s¢). In the aSLDS, however, Equation (17) will generally need to
be computed numerically.

*p(z|y) is a Gaussian with mean pe + $2y 2, (y — py) and covariance Sop — Say Sy Sya.
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Closing the recursion

We are now in a position to calculate Equation (14). For each setting of the variable s;11, we
have a mixture of I x .S Gaussians which we numerically collapse back to I Gaussians to form

1

plhesalsien,viapn) & Y plhugaliver, a1, vner)p(ig]see1, vie1)
ir41=1

Any method of choice may be supplied to collapse a mixture to a smaller mixture; our code
simply repeatedly merges low-weight components. In this way the new mixture coefficients
P(it41|St41, V1:441)5 Gt41 € 1,..., 1 are defined, completing the description of how to form a
recursion for p(hy11|S¢+1,v1441) in Equation (13). A recursion for the switch variable is given
by

p(3t+1 ”Ul:t+1) X Zp(vt+1\8t+17 it, St, Ul:t)p(5t+1 ’im St Ul:t)P(it\St, ’Ul:t)p(St\Ul:t)
St,it
where all terms have been computed during the recursion for p(hgy1|St41, V1:041)-
The likelihood p(vy.7) may be found by recursing p(vi.4+1) = p(vey1|vi4)p(vie), where

p(vt—l—l‘vt): Z p(vt+1’it7St,5t+17711:t)p(3t+1’it78t7Ul:t)p(it\snUl:t)p(stfvl:t)

it,5t,5t+1

3.1.2 Backward Pass (Smoothing)

The main contribution of our work is to find a suitable way to ‘correct’ the filtered posterior
p(s¢, hi|vi) obtained from the forward pass into a smoothed posterior p(s¢, h¢|vr.7). We derive
this for the case of a single Gaussian representation. We approximate the smoothed posterior
p(he|st, v1ir) by a Gaussian with mean g(s;) and covariance G(s;) and our aim is to find a
recursion for these parameters. A useful starting point for a recursion is:

p(he, selorr) = plseprlorr)p(hulse, sipr, vir)p(silsipr, vir)

St+1

The term p(h¢|st, St+1, v1.7) may be computed as

p(ht\8t75t+177)1:T) = / p(ht‘ht—i—laSta3t+17Ul:t)p(ht—i—l’Sm5t+177)1:T) (18)
hit1

The recursion therefore requires p(h¢t1|st, St+1, v1.7), which we can write as

p(hes1lst, Se41, v1.1) X P(hig1|Se41, v1:7)P(St|St41, M1, V1:t) (19)

The difficulty here is that the functional form of p(s¢|s¢t1, hit1,v1:¢) is not squared exponen-
tial in hyy1, so that p(hsy1]st, ser1, vir) will not be Gaussian®. One possibility would be to
approximate the non-Gaussian p(hy11|8¢, St+1, v1.7) by a Gaussian (or mixture thereof) by min-
imizing the Kullback-Leilbler divergence between the two, or performing moment matching in
the case of a single Gaussian. A simpler alternative (which forms ‘standard’” EC) is to make
the assumption p(hit1|se, St1,v1.7) = p(hig1|St+1,v1.7), where p(hit1|si+1,v1.r) is already
known from the previous backward recursion. Under this assumption, the recursion becomes

plhe, selvrr) = Y plsesavrr)p(selsesr, vir) (P(helhests 565601, V10)) pho s s ong) (20)

St+1

In the ezact calculation, p(het1]|st, St+1,v1:7) 4s a mixture of Gaussians. However, since in Equation (19)
the two terms p(h¢41|St+1,v1:7) will only be approximately computed during the recursion, our approximation
to p(het1]|st, St+1,v1.7) will not be a mixture of Gaussians.
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Evaluating (p(hi|hiy1, Se, St41, V1))

p(het1]se+1,01:7)

<p(ht|ht+1,St,8t+1,U1:t)>p(ht+1|8t+1 1) is a Gaussian in h;, whose statistics we will now com-

pute. First we find p(h¢|hey1, St, St+1,v14) which may be obtained from the joint distribution
P(he, hey1|se, se41,v1:0) = P(heg1|he, Se01)p(Pe] 5t v1:4) (21)

which itself can be found from a forward dynamics from the filtered estimate p(h¢|s¢, v1.¢). The
statistics for the marginal p(h¢|se, S¢+1,v1:¢) are simply those of p(hy|st, v1.¢), since sp41 carries
no extra information about h;. The remaining statistics are the mean of hyy 1, the covariance
of h;y1 and cross-variance between hy and hgy1, which are given by

(hes1) =A(se1) fe(50), Serree1=A(se01) Fr(s) AT (s041) + Z"(5141)s Serr,e=A(se11) Fo(s1)

Given the statistics of Equation (21), we may now condition on A1 to find p(h¢|his, Sty St41,V1:¢)-
Doing so effectively constitutes a reversal of the dynamics,

o
he = A(st, Se41)has1 + 1 (St, Se41)

where A (s, 8¢11) and " (8¢, Se41) ~ N (m(sg, s¢41), 2 (8¢, s¢.41)) are easily found using condi-
tioning. Averaging the above reversed dynamics over p(hy11|S¢+1,v1.7), we find that (p(h¢|hes1, St, St41, Ul:t)>p(
is a Gaussian with statistics

htt1

— — — T —
e = A(Sty3t+1)g(5t+1)+m(5t75t+1)7 Et,t = A(Stast—f—l)G(St—f—l)A (3t75t+1)+ E(<9t78t+1)

These equations directly mirror the standard RTS backward pass|8].

Evaluating p(s;|si11, vi.7)
The main departure of EC from previous methods is in treating the term

p(5t15t+1, ’Ul:T) = (p(st‘ht—i—ly St+1, Ul:t)>p(ht+1|st+17v1:T) (22)
The term p(s¢|his1, St+1,v1:¢) s given by

p(ht+1 |8t+1, St, Ul;t)p(St, St+1 |U1;t)
p(s¢|hia1, Sta1,01:4) = 23
( t| b EED t) Zggp(ht+1|8t+1,Siavlzt)p(82,8t+1|vlzt) ( )

Here p(s¢, st41|v1:t) = p(Set1]8t, v1:4)p(St|v1:), where p(si41]s¢, v1:4) occurs in the forward pass,
Equation (17). In Equation (23), p(h¢t1|St+1, St, v1:¢) is found by marginalizing Equation (21).

Computing the average of Equation (23) with respect to p(h¢t1|St4+1,v1.7) may be achieved by
any numerical integration method desired. A simple approximation is to evaluate the integrand
at the mean value of the averaging distribution p(h¢41|S¢+1,v1.7)-

Closing the Recursion

We have now computed both the continuous and discrete factors in Equation (18), which we
wish to use to write the smoothed estimate in the form p(hy, s¢|v1.7) = p(se|vi.7)p(he|se, viT).
The distribution p(h¢|s¢, v1.7) is readily obtained from the joint Equation (18) by conditioning
on s; to form the mixture

p(helse,vir) =D plsecalse, vir)p(halse, se41, vir)

St+1

which may then be collapsed to a single Gaussian (the mixture case is discussed in the published
version of this work). The smoothed posterior p(s;|vi.7) is given by

p(s¢lvrr) = Zp(3t+1|U1:T) (P(stlhts1s 41, V1:0)) (g 504 1,007) - (24)

St+1
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3.1.3 Relation to other methods

The EC Backward pass is closely related to Kim’s method [14]. In both EC and Kim’s method,
the approximation p(h¢t1|Se, St+1,v1.7) =~ p(hes1|St+1,v1.7), is used to form a numerically
simple backward pass. The other ‘approximation’ in EC is to numerically compute the average
in Equation (24). In Kim’s method, however, an update for the discrete variables is formed by
replacing the required term in Equation (24) by

(p(stlhet1, se41, vl:t)>p(ht+1|st+17v1:T) ~ p(stlsi+1, v1:t) (25)

Since p(s¢|st41,v1:4) X P(Sea1|5t)p(S¢|v1:¢)/P(St41|v1:¢), this can be computed simply from the
filtered results alone. The fundamental difference therefore between EC and Kim’s method is
that the approximation, Equation (25), is not required by EC. The EC backward pass therefore
makes fuller use of the future information, resulting in a recursion which intimately couples
the continuous and discrete variables. The resulting effect on the quality of the approximation
can be profound, as we will see in the experiments.

The Expectation Propagation (EP) algorithm makes the central assumption of collapsing the
posteriors to a Gaussian family [12]; the collapse is defined by a consistency criterion on over-
lapping marginals. In our experiments, we take the approach in [15] of collapsing to a single
Gaussian. Ensuring consistency requires frequent translations between moment and canoni-
cal parameterizations, which is the origin of potentially severe numerical instability [16]. In
contrast, EC works largely with moment parameterizations of Gaussians, for which relatively
few numerical difficulties arise. Unlike EP, EC is not based on a consistency criterion and a
subtle issue arises about possible inconsistencies in the Forward and Backward approximations
for EC. For example, under the conditional independence assumption in the Backward Pass,
p(hr|sT—1,s7,v1.7) = p(hr|sr,vi.r), which is in contradiction to Equation (15) which states
that the approximation to p(hp|sr—_1, s7,v1.7) will depend on sp_7. Such potential inconsis-
tencies arise because of the approximations made, and should not be considered as separate
approximations in themselves.

Rather than using a global (consistency) objective, EC attempts to faithfully approximate the
exact Forward and Backward propagation routines. For this reason, as in the exact computa-
tion, only a single Forward and Backward pass are required in EC.

In [17] a related dynamics reversed is proposed. However, the singularities resulting from in-
correctly treating p(vit1.7|he, $¢) as a density are heuristically finessed.

In [18] a variational method approximates the joint distribution p(hq.7, s1.7|v1.7) rather than
the marginal inference p(hy, s¢|v1.7). This is a disadvantage when compared to other methods
that directly approximate the marginal.

Sequential Monte Carlo methods (Particle Filters)[19], are essentially mixture of delta-function
approximations. Whilst potentially powerful, these typically suffer in high-dimensional hid-
den spaces, unless techniques such as Rao-Blackwellization are performed. ADF is generally
preferential to Particle Filtering since in ADF the approximation is a mixture of non-trivial
distributions, and is therefore more able to represent the posterior.

3.2 Application to Noise Robust ASR

Here we briefly present an application of the SLDS to robust Automatic Speech Recognition
(ASR), for which the intractable inference is performed by EC, and serves to demonstrate

Y
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how EC scales well to a large-scale application. Fuller details are given in [20]. The standard
approach to noise robust ASR is to provide a set of noise-robust features to a standard Hidden
Markov Model (HMM) classifier, which is based on modeling the acoustic feature vector. For
example, the method of Unsupervised Spectral Subtraction (USS) [21] provides state-of-the-art
performance in this respect. Incorporating noise models directly into such feature-based HMM
systems is difficult, mainly because the explicit influence of the noise on the features is poorly
understood. An alternative is to model the raw speech signal directly, such as the SAR-HMM
model [2]| for which, under clean conditions, isolated spoken digit recognition performs well.
However, the SAR-HMM performs poorly under noisy conditions, since no explicit noise pro-
cesses are taken into account by the model.

The approach we take here is to extend the SAR-HMM to include an explicit noise process, so
that the observed signal v, is modeled as a noise corrupted version of a clean hidden signal v}':

v =l +7; with 7 ~ N(0,62)

The dynamics of the clean signal is modeled by a switching AR process

R
v = er(svp, + i (se), nt (st) ~ N(0,0%(s1))
r=1
where s; € {1,...,5} denotes which of a set of AR coefficients ¢, (s;) are to be used at time

t, and nl(s;) is the so-called innovation noise. When o2(s;) = 0, this model reproduces the
SAR-HMM of [2], a specially constrained HMM. Hence inference and learning for the SAR-
HMM are tractable and straightforward. For the case 0%(s;) > 0 the model can be recast as
an SLDS. To do this we define h; as a vector which contains the R most recent clean hidden
samples

he=[of o] (26)

and we set A(s;) to be an R x R matrix where the first row contains the AR coefficients —c,(s;)
and the rest is a shifted down identity matrix. For example, for a third order (R = 3) AR
process,

(27)

The hidden covariance matrix X (s) has all elements zero, except the top-left most which is
set to the innovation variance. To extract the first component of h; we use the (switch in-
dependent) 1 x R projection matrix B = [ 10 ... 0 ] The (switch independent) visible
scalar noise variance is given by X, = 2.

A well-known issue with raw speech signal models is that the energy of a signal may vary from
one speaker to another or because of a change in recording conditions. For this reason the
innovation Y is adjusted by maximizing the likelihood of an observed sequence with respect
to the innovation covariance, a process called Gain Adaptation [2].

3.2.1 Training & Evaluation

Following |2], we trained a separate SAR-HMM for each of the eleven digits (0-9 and ‘oh’) from
the TI-DIGITS database [6]. The training set for each digit was composed of 110 single digit
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Noise Variance | SNR (dB) | HMM | SAR-HMM | AR-SLDS
0 26.5 100.0% 97.0% 96.8%

1077 26.3 100.0% 79.8% 96.8%
10-6 25.1 90.9% 56.7% 96.4%
107° 19.7 86.4% 22.2% 94.8%
10~4 10.6 59.1% 9.7% 84.0%
1073 0.7 9.1% 9.1% 61.2%

Table 2: Comparison of the recognition accuracy of three models when the test utterances are
corrupted by various levels of Gaussian noise.

1 2 3 145678 9 10 1 2! 3 40506 7 189 10

“one” at SNR 0.7dB “five” at SNR 10.6dB

Figure 6: Two examples of signal reconstruction using the AR-SLDS; (top) original clean
signal taken from the TI-DIGITS database, (middle) noisy signal, i.e., clean signal artificially
corrupted by Gaussian noise, (bottom) reconstructed clean signal. The dashed lines and the
numbers show the most-likely state segmentation.

utterances down-sampled to 8 kHz, each one pronounced by a male speaker. Each SAR-HMM
was composed of ten states with a left-right transition matrix. Each state was associated with
a 10th-order AR process and the model was constrained to stay an integer multiple of K = 140
time steps (0.0175 seconds) in the same state. We refer the reader to [2| for a detailed expla-
nation of the training procedure used with the SAR-HMM.

An AR-SLDS was built for each of the eleven digits by copying the parameters of the cor-
responding trained SAR-HMM, i.e., the AR coefficients ¢,(s) are copied into the first row of
the hidden transition matrix A(s) and the same discrete transition distribution p(s;|s;—1) is
used. The models were then evaluated on a test set composed of 112 corrupted utterances of
each of the eleven digits, each pronounced by different male speakers than those used in the
training set. The recognition accuracy obtained by the models on the corrupted test sets is
presented in Table 2. As expected, the performance of the SAR-HMM rapidly decreases with
noise. The feature-based HMM with USS has high accuracy only for high SNR levels. In con-
trast, the AR-SLDS achieves a recognition accuracy of 61.2% at a SNR close to 0dB, while the
performance of the two other methods is equivalent to random guessing (9.1%). Whilst other
inference methods may also perform well in this case, we found that EC performs admirably,
without numerical instabilities, even for time-series with several thousand time-steps.
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3.3 Discussion

We presented a method for approximate smoothed inference in an augmented class of switching
linear dynamical systems. Our approximation is based on the idea that due to the forgetting
which commonly occurs in Markovian models, a finite number of mixture components may
provide a reasonable approximation. Clearly, in systems with very long correlation times our
method may require too many mixture components to produce a satisfactory result, although
we are unaware of other techniques that would be able to cope well in that case. The main
benefit of EC over Kim smoothing is that future information is more accurately dealt with.
Whilst EC is not as general as EP, EC carefully exploits the properties of singly-connected
distributions, such as the aSLDS, to provide a numerically stable procedure. We hope that the
ideas presented here may therefore help facilitate the practical application of dynamic hybrid
networks.

4 Bayesian Linear Gaussian State-Space Models

Linear Gaussian State-Space Models (LGSSMs)” are fundamental in time-series analysis [22,
23, 24]. In these models the observations v1.7% are generated from an underlying dynamical
system on hy.r according to

Ut:Bht‘{'n;}v nz)NN(OVvEV% ht:Aht—l_‘_n?’ U?NN(OH’EH) )

where N (u,Y) denotes a Gaussian with mean p and covariance X, and Oy denotes an X-
dimensional zero vector. The observation v; has dimension V and the hidden state h; dimension
H. Probabilistically, the LGSSM is defined by:

T

p(vrr, hir|©) = p(vi|hy)p(ha) T pCvil be)p (Rl 1)
i=2

with p(vi|he) = N (Bhy, Ev), p(h|hi—1) = N (Ahy—1,2h), p(h1) = N(p, ) and where © =
{A, B, Yy, Yy, u, X} denotes the model parameters. Because of the widespread use of these
models, a Bayesian treatment of parameters is of considerable interest [25, 26, 27, 28, 29].
An exact implementation of the Bayesian LGSSM is formally intractable [29], and recently
a Variational Bayesian (VB) approximation has been studied [25, 26, 27, 28, 30|. The most
challenging part of implementing the VB method is performing inference over hi.7, and previ-
ous authors have developed their own specialized routines, based on Belief Propagation, since
standard LGSSM inference routines appear, at first sight, not to be applicable.

A key contribution of this work is to show how the Variational Bayesian treatment of the
LGSSM can be implemented using standard inference routines. Based on the insight we pro-
vide, any standard inference method may be applied, including those specifically addressed to
improve numerical stability [31, 32, 23]. In this article, we decided to describe the standard
predictor-corrector and Rauch-Tung-Striebel recursions 23], and also suggest a small modifi-
cation that reduces computational cost.

The Bayesian LGSSM is particularly of interest when strong prior constraints are needed to
find adequate solutions. One such case is in EEG signal analysis, whereby we wish to extract
sources that evolve independently through time. Since EEG is particularly noisy [33], a prior
that encourages sources to have preferential spectral properties is advantageous in recovering

"Also called Kalman Filters/Smoothers, Linear Dynamical Systems.
8v1.7 denotes Vi,...,VT.
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meaningful sources. This application is discussed in Section (4.3), and demonstrates the ease
of applying our VB framework.

4.1 A Bayesian treatment

In the Bayesian treatment of the LGSSM, instead of considering the model parameters © as
fixed, we define a prior distribution p(©|0), where © is a set of hyperparameters. Then:

p(orr|®) = /@ p(017]6, ©)p(0]6). (25)

In a full Bayesian treatment we would define additional prior distributions over the hyperpa-
rameters ©. Here we take instead the ML-IT (‘evidence’) framework, in which the optimal set
of hyperparameters is found by maximizing p(v1.7|©) with respect to © [27, 28, 30].

For the parameter priors, we define Gaussians on the columns of A and B:

o H
I R B . B . _ ~
p(Ala, Sg) H e—%(Aj—Aj)TZHl(Aj—Aj)’ »(B|B,Tv) x H e—%(Bj—Bj)TEvl(Bj—Bj) :
Jj=1 Jj=1

which has the effect of biasing the transition and emission matrices to desired forms A and B.
The conjugate priors for the covariances Xy and Yy are Inverse Wishart distributions [28]°.
In the simpler and more common case of assuming diagonal covariances these become Inverse
Gamma distributions [28, 26]. The hyperparameters are then 6= {a, B}10.

Variational Bayes

Optimizing Equation (28) with respect to 0 is difficult due to the intractability of the integrals.
Instead, in VB, one considers the lower bound [27, 28, 30]*!:

£ = log p(vr.7|0) > Hy(©, hir) + <log p(@\é)>q(®) + <E(h1;T, e\é)>q(® =T

where
E(h12T7 ®|é) = Ing(vlzTy hl:T|@7 é)

The notation Hy(z) signifies the entropy of the distribution d(z), and (-), denotes the ex-
pectation operator.

The key approximation in VB is ¢(0, hy.7) = ¢(©)q(h1.7), from which one may show that, for
optimality of F,

(E(h17,016)) (E(h1.7,010))

q(h1.T) x e a®), q(©) x p(O)e a(hyr)

These coupled equations need to be iterated to convergence. The updates for the parameters
q(©) are straightforward and are given in Appendices ?? and ??. Once converged, the hy-
perparameters are updated by maximizing F with respect to é), which lead to simple update
formulae [28|.

Our main concern is with the update for ¢(hy.7), for which this work makes a departure from
treatments previously presented.

?For expositional simplicity, we do not put priors on x and X.
OFor simplicity, we keep the parameters of the Inverse Wishart priors fixed.
" Strictly we should write throughout q(-|v1:r). We omit the dependence on vi.7 for notational convenience.
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4.2 Unified Inference on ¢(hi.1)

Optimally g(h1.7) is Gaussian since <E(h1;T, @|@)> © is quadratic in hy.7, being namely'?
q

2 Z [< (ve=Bho)" (vt_Bht)>q(B7Zv) * <<ht_Aht‘1)T or (ht_Aht‘1)>q(A,zHJ - &)

Optimally, ¢(A|Xx) and ¢(B|Xy) are Gaussians (see the DIRAC publication for fuller details),
so we can easily carry out the averages. The further averages over ¢(X) and ¢(Xy) are also
easy due to conjugacy. Whilst this defines the distribution ¢(h1.7), quantities such as q(h),
which are required for the parameter updates (see the Appendices), need to be inferred from
this distribution. Clearly, in the non-Bayesian case, the averages over the parameters are not
present, and the above simply represents an LGSSM whose visible variables have been clamped
into their evidential states. In that case, inference can be performed using any standard
method. Our aim, therefore, is to try to represent the averaged Equation (29) directly as an
LGSSM ¢(hy.7|01.7), for some suitable parameter settings.

Mean + Fluctuation Decomposition

A useful decomposition is to write

— Bh) "S5 (v, — Bh = (v, — (B hy)T (=T} —(BYh h! Sph
<(’Ut 1) By (v t)>q(B,EV) (ve — (B) hy) ' (S31) (0 — (B) hy) + hy Sghy
mean fluctuation

and similarly

<(ht A1) TS5 (g Aht_1)>q(A72H)
— (= (A) he) T (S5") (= (A) hoy) +hT  Sabes

mean fluctuation

where the parameter covariances are Sp = VH;1 and Sy = HHIZ1 (see publication for details).
The mean terms simply represent a clamped LGSSM with averaged parameters. However, the
extra contributions from the fluctuations mean that Equation (29) cannot be written as a
clamped LGSSM with averaged parameters. In order to deal with these extra terms, our idea
is to treat the fluctuations as arising from an augmented visible variable, for which Equation
(29) can then be considered as a clamped LGSSM.

Inference Using an Augmented LGSSM

To represent Equation (29) as a LGSSM G(h1.7|01.7), we augment v; and B as'3
oy = vert(vy, 05,0), B =wvert((B),U4,Up),

where Uy is the Cholesky decomposition of S4, so that UXUA = S4. Similarly, Up is the
Cholesky decomposition of Sp. The equivalent LGSSM G(h1.7|01.7) is then completed by
specifying'

! 5.

~ . 1\ -1 - ~
) 2V:dzag(<EV > 7IH7[H)7 n=H, by
2For simplicity of exposition, we ignore the first time-point here.
13The notation vert(xi,...,xn) stands for vertlcally concatenatlng the arguments 1, ..., Zn.
' Strictly, we need a time- dependent emission B; = B fort=1,...,T—1. For time T, BT has the Cholesky
factor Ua replaced by Og, 5.

A= (A), Yy = <ZI_{1>
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The validity of this parameter assignment can be checked by showing that, up to negligible con-
stants, the exponent of this augmented LGSSM has the same form as Equation (29). Now that
this has been written as an LGSSM ¢(hy.7|01.7), standard inference routines in the literature
may be applied to compute q(hs) = G(h¢|v1.7) [22, 32, 23]'0.

Algorithm 1 LGSSM: Forward and backward recursive updates. The smoothed posterior
p(h¢|vr.7) is returned in the mean A7 and covariance P7 .
procedure FORWARD
la: P+ X
Ih: P (871 + 84+ Sp) " = (I = SUap (I + Ul zXUap) " Uly) = DS
2a: 1}(1) — U
2b: hY «— Dp
3: K — PBT(BPBT +%y)!, P! — (I — KB)P, hl — h9 + K (v; — Bh9)
for t — 2,7 do
4: PI7t e APIAT 43y
ba: P « Ptt_1
5b: P DyPI, where Dy = (I =PI Uap (I + UL,P Uap) " Ulp)
6a: fAli_l — Aili:%
6b: h!™' — D, AR/
7. K — PBT(BPBT +%y)"!, Pt — (I — KB)P, ht — hl™' + K (v, — Bhl™1)
end for
end procedure
procedure BACKWARD
fort—T—1,1do
«—
Ay — P AT(Ptt—i-l)_
Pl Pt+At( t+1 Pf+1)Z€T
hT — ht + At(htJrl Ahi)
end for
end procedure

For completeness, we decided to describe the standard predictor-corrector form of a Kalman
filter, together with the Rauch-Tung-Striebel recursions [23] for performing inference in an
LGSSM. These are given in Algorithm 1. To compute §(h¢|01.7), we then call the FORWARD
and BACKWARD procedures.

We present two variants of the FORWARD pass. Either we may call procedure FORWARD
in Algorithm 1 with parameters A B EH,EV“LL,E and the augmented visible variables 9; in
which we use steps 1a, 2a, 5a and 6a. This is exactly the predictor-corrector form of a Kalman
filter [23]. Otherwise, in order to reduce the computational cost, we may call procedure FOR-
WARD with the parameters (A) , (B) , <E;11>_1 ) <E‘_/1>_1 , 14, 2 and the original visible variable
v in which we use steps 1b (where UABUAB =S4+ Sp), 2b, 5b and 6b. The two algorithms
are mathematically equivalent. Computing q(h:) = ¢(h¢|01.7) is then completed by calling the
common BACKWARD pass.

The important point here is that the reader may supply any standard Kalman Filtering/Smoothing
routine, and simply call it with the appropriate parameters. In some parameter regimes, or in
very long time series, numerical stability may be a serious concern, for which several stabilized

Note that, since the augmented LGSSM §(hi1.7|01.7) is designed to match the fully clamped distribution
q(hi.7), filtering G(hi.7|01.7) does not correspond to filtering g(hi.7).
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algorithms have been developed over the years, for example the square-root forms [31, 32, 23].
By converting the problem to a standard form, we have therefore unified and simplified infer-
ence, so that future applications may be more readily developed.

4.2.1 Relation to Previous Approaches

An alternative approach to the one above, and taken in [28, 26|, is to recognize that the
posterior is

T
IOg Q(hlzT) = Z ¢t(ht—1, ht) + const.
t=2

for suitably defined quadratic forms ¢;(hi—1,h;). Here the potentials ¢;(h,—1,ht) encode the
averaging over the parameters A, B, Yy, Yy . The approach taken in 28] is to recognize this
as a pairwise Markov chain, for which the Belief Propagation recursions may be applied.
The backward pass from Belief Propagation makes use of the observations vy.7, so that any
approximate online treatment would be difficult. The approach in [26] is based on a Kullback-
Leibler minimization of the posterior with a chain structure, which is algorithmically equivalent
to Belief Propagation. Whilst mathematically valid procedures, the resulting algorithms do
not correspond to any of the standard forms in the Kalman Filtering/Smoothing literature,
whose properties have been well studied [34].

4.3 An Application to Bayesian ICA
A particular case for which the Bayesian LGSSM is of interest is
in extracting independent source signals underlying a multivariate
@_-) time-series [35, 26]. This will demonstrate how the approach de-
veloped in Section (4.2) makes VB easily to apply. The sources s’
are modeled as independent in the following sense:

p(st.r, S{:T) = p(sil:T)p(s{:T), for i # j, i,j=1,...,C.

Independence implies block diagonal transition and state noise ma-
@ trices A, ¥y and X, where each block ¢ has dimension H.. A one
dimensional source s{ for each independent dynamical subsystem is
@ then formed from s§ = 1] h¢, where 1, is a unit vector and h¢ is the
state of dynamical system c¢. Combining the sources, we can write

@ ° @ s; = Phy, where P = diag(1],...,1%), hy = vert(h},...,hY). The
resulting emission matrix is constrained to be of the form B = WP,

where W is the V' x C' mixing matrix. This means that the observa-

Figure 7: The structure i ¢ 41 formed from linearly mixing the sources, vy = Wsy + 7.
of the LGSSM for ICA. e graphical structure of this model is presented in Figure (7).
To encourage redundant components to be removed, we place a zero mean Gaussian prior on

W. In this case, we do not define a prior for the parameters Xy and 3y which are instead
considered as hyperparameters. More details of the model are given in |35].

4.4 Demonstration

As a simple demonstration, we used a LGSSM to generate 3 sources s with random 5 x 5
transition matrices A% p = 0y and ¥ = Yy = Ig. The sources were mixed into three
observations vy = Wsy + nf, for W chosen with elements from a zero mean unit variance
Gaussian distribution, and Xy = Iy. We then trained a Bayesian LGSSM with 5 sources and
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Figure 8: (a) Original sources s;. (b) Observations resulting from mixing the original sources,

vy =Ws+n7, nf ~N(0,I). (c) Recovered sources using the Bayesian LGSSM. (d) Sources
found with MAP LGSSM.

7x 7 transition matrices A°. To bias the model to find the simplest sources, we used A¢ = O0m, H.
for all sources. In Figure (8a) and Figure (8b) we see the original sources and the noisy
observations respectively. In Figure (8c) we see the estimated sources from our method after
convergence of the hyperparameter updates. Two of the 5 sources have been removed, and the
remaining three are a reasonable estimation of the original sources. Another possible approach
for introducing prior knowledge is to use a Maximum a Posteriori (MAP) procedure by adding a
prior term to the original log-likelihood log p(vi.7| A, W, ©)+log p(A|a) +1og p(W|5). However,
it is not clear how to reliably find the hyperparameters « and (8 in this case. One solution is to
estimate them by optimizing the new objective function jointly with respect to the parameters
and hyperparameters (this is the so-called joint map estimation see for example [36]). A
typical result of using this joint MAP approach on the artificial data is presented in Figure
(8d). The joint MAP does not estimate the hyperparameters well, and the incorrect number
of sources is identified.

4.5 Discussion

We considered the application of Variational Bayesian learning to Linear Gaussian State-Space
Models. This is an important class of models with widespread application, and finding a simple
way to implement this approximate Bayesian procedure is of considerable interest. The most
demanding part of the procedure is inference of the hidden states of the model. Previously,
this has been achieved using Belief Propagation, which differs from inference in the Kalman
Filtering/Smoothing literature, for which highly efficient and stabilized procedures exist. A
central contribution of this work is to show how inference can be written using the standard
Kalman Filtering/Smoothing recursions by augmenting the original model. Additionally, a
minor modification to the standard Kalman Filtering routine may be applied for computational
efficiency. We demonstrated the elegance and unity of our approach by showing how to easily
apply a Variational Bayes analysis of temporal ICA. We hope that this simple and unifying
interpretation of Variational Bayesian LGSSMs may therefore facilitate the further application
to related models.

5 Blind Signal Separation by Disjoint Component Analysis

5.1 Introduction

Representation of measured data in terms of a number of generating causes or underlying
“sources" is an important problem that has gained widespread attention in recent years, either
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with the goal of extracting known-to-exist sources from measurements (blind source separa-
tion), or in order to find an efficient—possibly lower-dimensional—description of given data
(exploratory data analysis).

We propose and investigate a novel technique, “disjoint component analysis" (DCA) that is
based on the goal of extracting components with maximally disjoint support from given data.
L.e., it is sought to describe the data in terms of components of which as few as possible should
be activated at any single time (or sample) point. Ideally, only a single source process would
account for a single sample of measured data, a goal that clearly is too strong for real-world
data. We demonstrate that it can be significantly relaxed while still retaining the beneficial
characteristics of the method.

Disjoint support between generating source processes may constitute a relevant general princi-
ple in domains where other assumptions, e.g., statistical independence and the implied effective
physical separation of generating source processes, have to be postulated or justified post-hoc
rather than deduced a-priori. In some cases such as communicating speakers or densely in-
terconnected nervous cells in the brain, theoretical considerations argue in favor of dependen-
cies between source processes. Even though such dependencies might turn out to be largely
negligible in some domains, it does appear to be worthwhile to consider the implications of
incorporating such dependencies into the models.

In the opposite direction (and with a different intention than ours), some authors have argued
that sources that are often regarded as independent can effectively be modeled as being “w-
disjoint orthogonal™ [37].

5.2 Disjoint component analysis

5.2.1 Derivation of algorithm

We consider N observed signals x(t) = [z1(t),...,2x(t)]T which may be thought to have
been generated from (for convenience) N underlying sources s(t) = [s1(t),...,sn(t)]T by
multiplication with a mixing system A as

x(t) = As(t) (30)
It is sought to linearly transform the observations by a matrix W to obtain output signals
y(t) = Wx(t) (31)

with components y(t) = [y1(t),...,yn(t)]T. When source reconstruction is desired, these
should resemble the sources up to arbitrary rescaling and permutation. When an exploratory
data analysis view is adopted, the output signals should convey a signal representation that is
meaningful in some to-be-specified sense.

A central notion in our approach is the overlap

0ij = E(|yil ly;]) (32)

between two output signals y; and y; with ¢ # j, where E(-) denotes expectation and sample
index ¢ is omitted where convenient. With o0;; > 0 and o;; = 0 if and only if y;(t) y;(¢t) = 0 for
all t and 7 # j, two signals y; and y; have disjoint support if o;; = 0. In this case, y; and y;
are called disjoint, i.e., at most one of the signals is non-zero at any time.
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For strictly disjoint source signals s(¢) and a non-singular matrix A, strictly disjoint outputs
can be obtained that resemble the sources up to arbitrary permutation and rescaling.

Note that in this case sources are not mutually independent but exhibit statistical dependencies
through the negative correlations of their signal envelopes or signal power time-courses.

While it is not possible in general to linearly transform an arbitrary signal x(¢) into a signal
y(t) with only disjoint components, finding minimally overlapping outputs is a natural goal as
it corresponds to a signal description in terms of processes out of which only a small number is
active at any given time. In this sense, disjoint component analysis bears similarities with both
parts-based approaches and sparse coding assumptions. A natural choice to obtain maximally
disjoint, minimally overlapping output signals is minimization of the function

1 1
H=g3 > o= 3 > E(lyil ;1) (33)
i#j i#j
The global minimum H = 0 is attained only for strictly disjoint signals where for all ¢ any
signal y;(t) # 0 if and only if y;(t) = 0 for all j # . Substituting 31 into 33, the partial
derivatives are given by

O — B(sient) e Y ) (34)

Owij k£i

which in matrix notation reads
VH = E (—yx" + [ly||1sign(y)x") (35)

where ||y||1 = >, |ui| denotes the 1-norm of y.
A natural gradient [38] may be derived by right-multiplication with W7 W | yielding

VH = E (—yy™ + |ly|isign(y)y™) W (36)

Without regularization the gradients converge to the trivial solution W = 0. To remove the
scaling ambiguity each row w; of matrix W is fixed to unit-norm ||w;||2 = 1. Hence, each row
A; of VH is projected according to

A=A — (ATw) w; (37)

resulting in the projected gradient matrix AL that is then used for gradient descent. The final
update rule for matrix W with a step size of n is

W —W-—pA+ (38)
for the ordinary gradient and similarly for the natural gradient. Periodic row re-normalization
of W is applied to keep it on the constraint manifold for non-infinitesimal 7.

5.3 Evaluation
5.3.1 Synthetic data generation

Disjoint sources s;(t) may be generated from mutually independent signals (;(¢) by multiplying
them with disjoint masking functions y;(t) € {0, 1} for all 4,¢ and

si(t) = pi(t) Gi(t) (39)
E(uip) =0 if i#j (40)
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Figure 9: Disjoint component analysis of four sources (left panel) which are not strictly disjoint
but exhibit significant overlap. Sources were mixed with a randomly chosen 4 x4 mixing matrix
to yield observation signals (center panel) which were successfully separated into the original
sources up to arbitrary permutation, rescaling and sign flip (right panel) using DCA.

These sources may then be used to generate observations by multiplication with a matrix A
according to Eq. 30.

Strictly disjoint sources with zero overlap are not expected to be an appropriate model for real
data. Hence, sources with variable masker overlap «;;, which may depend on the source pair

(4,7),
ij = Blpisg) | B(13) (41)

with E(u?) = const for all i are also generated. In the experiments reported below masker
overlap ;5 is chosen such that a value of 7;; = 1 corresponds to a source pair (s;, s;) exhibiting
mutual statistical dependence through maskers with positive correlation. The value ~;; = 0
corresponds to strictly disjoint sources that exhibit mutual statistical dependence through
maskers with negative correlation. Finally, a value of ;; = 0.5 coincides with statistically in-
dependent sources (s;, s;) because of uncorrelated maskers (and statistically independent (;(t)).

The signal generation scheme was inspired by a functional magnetic resonance imaging (fMRI)
experiment design [39].

5.3.2 Separation of synthetic sources

Four sources were generated according to the scheme described above, mixed with a randomly
chosen mixing matrix and processed with the natural gradient disjoint component analysis
algorithm (Eq. 36) with regularization (Eq. 37). The underlying mutually independent signals
Ci(t) were chosen as a speech signal ((1), i.i.d. noise from a normal distribution with zero-mean
and unit-variance ({2), i.i.d. noise from a uniform distribution on the interval [0, 1] ((3), and a
sine wave ((4). The maskers p;(t) were chosen such that ;; = 0.6 for source pairs (1,2), (2,3),
(3,4), (1,4), and 7;; = 0.4 for source pairs (1,3), (2,4). Source signals, observed (mixed)
signals and output signals are displayed in Fig. 9, demonstrating that the algorithm performs
successful separation even though sources are not strictly disjoint but show significant overlap.
Similarly, the algorithm successfully separates mixtures of four strictly disjoint sources with
vi; = 0 for all i # j (data not shown here).

5.3.3 Variable degree of overlap

The goal of this experiment was to systematically study the influence of the degree of overlap
on the performance of the disjoint component analysis algorithm. Results are reported for the
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Figure 10: Separation performance of DCA and ICA in terms of signal-to-interference ratio
(SIR) in dB after separation. Performance is given for data class 1 (left panel, sources with
positive and negative observation values) and data class 2 (right panel, sources with positive
only observation values) as a function of overlap . A value of v = 0 corresponds to strictly
disjoint sources (statistical dependencies between sources through negative correlation of signal
envelopes); v = 0.5 corresponds to statistically independent sources; and v = 1.0 corresponds
to fully overlapping, not disjoint sources (statistical dependencies through positive correlation
of signal envelopes). Mean and variance of performance for 100 separation runs, each with
independently generated data, are given for each condition.

gradient version of the algorithm (Eq. 35) with regularization (Eq. 37). Results for the natural
gradient version are virtually identical and not reported separately.

Sources were generated based on two different underlying signal classes. In the first part of
the experiment (“data class 1"), two sources s; and sg were generated from (; and (y that
were drawn as i.i.d. signals from a zero-mean and unit-variance normal distribution, hence
containing positive and negative values.

In the second part of the experiment (“data class 2"), {1 and (s were chosen to be i.i.d. signals
from a uniform distribution on the interval [0, 1], hence containing only positive values.

For both data sets the single overlap parameter v was varied from 0 (no overlap, source de-
pendence through negative masker correlation) via 0.5 (50% overlap, statistically independent
sources) to 1.0 (full overlap, source dependence through positive masker correlation) in steps

of 0.1.

Hence, 11 data set conditions were generated for each of the two data classes. For each
condition, disjoint component analysis was performed on 100 individual datasets drawn inde-
pendently according to the description above. This resulted in a total of 2200 datasets each
with 10000 samples for each of the two sources.

Fig. 10 shows the results with mean and variance of signal separation in dB signal-to-interference
ratio (SIR) after separation separately for data class 1 (left panel) and data class 2 (right panel).
For data class 1 with sources that adopt positive and negative values, DCA separation perfor-
mance shows no significant dependence on the overlap parameter 7 except (as expected) for
complete overlap at v = 1 where the algorithm essentially attempts to separate two i.i.d. nor-
mally distributed sources which is ill-posed. In all other cases of data class 1, DCA separation
is excellent with about 100 dB SIR.
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The results look different for data class 2 with positive only source values. Separation remains
excellent for data sets with a small overlap (0.0 <~ < 0.4), with again about 100 dB SIR. In
the case of independent sources at v = 0.5, separation is still very good at 80 dB. Performance
breaks down for large overlaps (1.0 > v > 0.6), an effect which we attribute to the positivity
of the sources.

5.3.4 Comparison with independent component analysis

The same data generated for subsection 5.3.3 was re-analyzed with natural gradient infomax
ICA [40, 38| using the ICA toolbox |41, 42| with logistic function non-linearity. For com-
parison, a simple gradient approach with fixed step size and sign function non-linearity was
also used and gave virtually identical results for data class 1. On data class 2, the fixed step
gradient approach gave qualitatively similar results but was outperformed by the referenced
ICA toolbox in terms of SIR separation performance. All source signals have been checked to
have positive kurtosis.

Results in Fig. 10 show that in most cases ICA results in a poorer SIR than DCA. For data class
2, ICA performs best when sources are independent (v = 0.5) with a drop off in performance
towards both lower and higher source overlaps, which is plausible due to ICA’s independence
assumption.

For data class 1, ICA shows excellent signal separation for strictly disjoint sources (v = 0.0).
Performance is significantly lower, though still good, for independent sources, which seems to
stand in contradiction to the independence assumption. As expected, performance decreases
towards sources with strong overlap (y = 1.0).

5.4 Conclusion

Disjoint component analysis (DCA) has been shown to yield excellent performance for strictly
disjoint and moderately disjoint data sets. For data with high overlap between sources (weakly
disjoint), performance depends on the specific type of data, with excellent performance for data
sets with sources that take positive and negative observation values, and a break-down of per-
formance in case of purely positive source data.

The empirical algorithm evaluation showed a better separation performance for DCA than for
ICA under most conditions. Interestingly, ICA produced the best performance not for sta-
tistically independent sources but for strictly disjoint ones (cf. also ICA 2006 presentation of
I.C. Daubechies).

While far from being conclusive, the results presented here appear to warrant a closer inves-
tigation of the differences and similarities of both algorithm classes. It would be desirable to
gain experience with a wider range of synthetic and natural data than could be presented here.

We are tempted to speculate that DCA might be appropriate in particular for analyzing data
where the independence assumption is not strictly fulfilled, where a data representation in
terms of disjoint components is preferable to independent components, and where signals are
comprised of positive only measurement values. This could be the case, e.g., for brain signals
such fMRI, for data from dialog speech signals, and for comparably short signal sequences
where independence cannot be fully attained due to finite sample effects.
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