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Abstract: 

Understanding the statistical regularities in an environment may be cast as a 

probabilistic model-building task. However, a key difficulty is that in many 

situations the quantity of interest is only a part of the complex environment, and 

therefore finding an appropriate signal decomposition is of considerable interest. 

  

One case is when the signal of interest has been linearly mixed with other signals, 

such as might occur when several people are speaking concurrently. A theoretical 

contribution is made in which the signal is decomposed into approximately disjoint 

subunits, and is shown to outperform classical Independent Components Analysis 

approaches when the sources exhibit statistical dependencies. 

  

Another important case is noise corruption. In order to tackle this issue one approach 

is to build a model of both the signal of interest and also any corrupting `noise' 

signals.  In our approach we explicitly construct a forward-model and then use Bayes 

rule to infer the feature distribution. One may interpret the latent variables in the 

model as `features'. A potential advantage of this approach over the more traditional 

approach is that, provided a sufficiently flexible noise model is incorporated, it 

should be possible to separate features which are responsible for generating signal 

from features which are responsible for generating noise. 
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1 OverviewUnderstanding the statistial regularities in an environment may be ast as a probabilistimodel-building task. However, a key di�ulty is that in many situations the quantity of in-terest is only a part of the omplex environment, and therefore �nding an appropriate signaldeomposition is of onsiderable interest.One ase onsidered in the work here is when the signal of interest has been linearly mixedwith other signals, suh as might our in several people speaking onurrently. A theoretialontribution is made in whih the signal is deomposed into approximately disjoint subunits,and is shown to outperform lassial Independent Components Analysis approahes when thesoures exhibit statistial dependenies.Another important ase is noise orruption. For example, a speeh signal may be embeddedwithin a orrupting noise signal. In order to takle this issue one approah is to build a modelof both the signal of interest and also any orrupting `noise' signals. In this way the jointsignal-noise model enables the extration of signal from noise. In order to proeed with thisframework, expliit models of both the signal and noise proesses need to be made.
‘Inverse’ versus ‘forward’ Feature ModellingThe traditional viewpoint of a feature is based on an inverse-model p(features|signal), see Figure(1). Whilst this approah is undoubtedly suessful, when the signal is heavily orrupted withnoise, �nding `noise' free features is di�ult. Similarly, modelling expliitly the dynamis whihare orrupted with noise is highly omplex. For this reason, many traditional approahes arenot robust to orrupting e�ets in the environment.signal ⇒ features ⇐ modelFigure 1: The traditional `forward' approah to feature extration and modelling. First featuresare extrated from the signal whih are subsequently modelled, p(features|signal,model). Noisee�ets are dealt with by hoosing appropriate features whih are as `noise' free as possible.In the work arried out within the DIRAC projet, the aim has been to study a di�erentmodelling strategy in whih a single onsistent model of the joint noise and signal envi-ronment is made, see Figure (2). In our approah we expliitly onstrut a forward-model
p(signal|features) and use Bayes rule to then infer the feature distribution. In this sense, onean interpret the latent variables in the model as `features'. A potential advantage of this ap-proah over the more traditional approah is that, provided a su�iently �exible noise modelis inorporated, it should be possible to separate features whih are responsible for generatingsignal from features whih are responsible for generating noise.
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signal ⇐ features ⇐ modelFigure 2: The `inverse' feature tehnique. Here a single onsistent model
p(signal|features)p(features|model) generates features whih in turn generate omponents of thesignal. If desired, features may be then extrated using Bayes rule p(features|signal,model) ∝
p(signal|features)p(features|model).It should perhaps be emphasized that this `forward' tehnique ultimately orresponds to `throw-ing away useless information' about the signal, as in the more standard feature extrationtehnique sine, in both ases, ultimately the underlying model of interest for tasks suh asASR is the one generating the feature distribution. The two approahes are therefore justdi�erent ways at extrating relevant features from a signal.A partiular fous of the work arried out has been to make spei� models of aousti signals,based mainly on extensions of linear dynamial systems. In order to improve robustness and�exibility, additional parameter priors have been inorporated leading to Bayesian treatmentsof the related models.The work is omposed of novel theoretial omponents, inluding
• State-of-the-art method for inferene in Swithing Linear Dynamial Systems
• Bayesian Swithing Autoregressive Model
• State-of-the-art tehnique for dealing with Bayesian Linear Dynamial Systems
• Identi�ation of independent dynamial proesses underlying signal generation
• Stable inferene tehniques in large-sale Gaussian distributionsThis work is desribed in detail in the following DIRAC publiations:1. D. Barber. Expetation Corretion for smoothing in Swithing Linear Gaussian StateSpae models. Journal of Mahine Learning Researh, 2006.2. S. Chiappa and D. Barber. Bayesian Linear Gaussian State Spae Models for BiosignalDeomposition. Signal Proessing Letters, 2007.3. D. Barber and B. Mesot. A Novel Gaussian Sum Smoother for Approximate Inferenein Swithing Linear Dynamial Systems. In Advanes in Neural Information ProessingSystems (NIPS), volume 20, 2006.4. B. Mesot and D. Barber. A Bayesian Treatment of Gain Adaptation in Swithing AR-HMMs. ICASSP 20075. D. Barber and S. Chiappa. Uni�ed Inferene for Variational Bayesian Linear GaussianState-Spae Models. In Advanes in Neural Information Proessing Systems (NIPS),volume 20, 2006.A brief summary of the projets omprising these works is detailed below.
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Switching Linear Dynamical Systems for Noisy ASRMost modern Automati Speeh Reognition systems perform pre-proessing to extrat fea-tures. However, in noisy environments, suh methods are often brittle sine they are �ne-tunedto work only in lean-speeh environments. A key issue therefore in advaning reognition inreal-world environments is to separate signal from noise. In our approah we use strong priorknowledge of speeh at the waveform level to help separate speeh from noise and performmore robust lassi�ation.Our models are based on Swithing Linear Dynamial Systems (SLDS), whereby eah linearsystem is responsible for generating the waveform over a period of roughly 100ms. In thissense, eah `feature' is a linear signal generator. The traditional viewpoint of a feature is basedon an inverse-model p(feature|signal). In our approah we expliitly onstrut a forward-modelp(signal|feature) and use Bayes rule to then infer the feature distribution. In this sense, onean interpret the latent variables in the SLDS as `features' that are responsible for signal seg-ments lasting up to several hundred milliseonds.To deal with noise, we expliitly inlude additional additive omponents to the waveform,resulting in a Dynamial Bayesian Network to model both speeh and noise proesses simul-taneously. The advantage of this general approah is that the features for the signal an beisolated from noise orrupting e�ets. We then trained suh models to perform ASR on a sim-ple problem, isolated TI-DIGITS, but orrupted with very large amounts of additive Gaussiannoise.Whilst standard ASR systems perform well in low-noise environments, but degrade rapidlywith inreasing noise, our system degrades graefully under very large noise. A future di-retion for suh work is to extend the models to deal with more generi speeh and noiseenvironments in order to make a more �exible tehnique for separating speeh from noise.
Inference in Switching Linear Dynamical SystemsWhilst the SLDS framework is oneptually straightforward, learning and inferene in an SLDSis formally omputationally intratable, and approximate tehniques need to be developed. Wepresented a state-of-the-art method for inferene in the generi lass of Swithing Linear Dy-namial Systems. The method is based on a novel mixture-of-Gaussians smoother.From a theoretial perspetive, of interest in this work is the approah taken to form anapproximation. In most approximation shemes an objetive riterion is proposed, from whihan algorithm may be developed to optimise the riterion. In our approah we start ratherfrom the exat reursions that would result from intratable inferene in the full system, andapproximate these reursions. Whilst this does not derive from a simple global objetive,it leads to a simple sheme that strives to remain faithful to the exat inferene proedure.Extensive experiments show that the method outperforms a wide-range of ompeting methods.
Bayesian Switching Autoregressive ModelOne of the known di�ulties in the implementation of waveform level models in aousti signalproessing is the issue of gain adaptation, whih refers to the hanging volume levels in theenvironment and also in the speeh reordings. We disussed how to improve �exibility ofthe swithing linear models by plaing a distribution on the noise levels, improving robustness6



to the varying noise levels and thereby improving generalization performane. Our aim is toextend this lass of models to deal with a wider lass of speeh signals in order to deal moree�etively with hanges in the environment.
Bayesian Linear Dynamical SystemsLinear Dynamial Systems (LDS) are one of the entral tools in signal analysis. A Bayesiantreatment of this extensive lass of models is therefore of onsiderable general interest. Theapproximate Variational Bayesian method applied to these models is an attrative approah,used suessfully in aoustis appliations. The most hallenging aspet of implementing themethod is in performing inferene on the hidden state sequene of the model. We show howto onvert the inferene problem so that standard and stable Kalman Filtering/Smoothingreursions from the literature may be applied. This is in ontrast to previously approahesbased on Belief Propagation. Our framework both simpli�es and uni�es the inferene problem,so that future appliations may be more easily developed. We hope that our approah willbe the standard tehnique for implementing the variational approximation to Bayesian LinearDynamial Systems.
Independent Component Signal AnalysisWe applied our Bayesian Linear Dynamial System framework to a fatorized latent spae,whih orresponds to analyzing a signal into independent omponents. In partiular, we usedour Bayesian proedure to bias eah independent omponent to be restrited to a partiularfrequeny band. This results in an analysis that breaks the signal into separate frequenyomponents. Unlike the FFT, the method is �exible in that there is a prior preferene tofor eah independent omponent to remain lose to a desired frequeny, resulting in a signaldeomposition that is able to adapt to moderate hanges in frequenies in the signal.
Blind Signal Separation by Disjoint Component AnalysisA novel method for blind signal separation and analysis, disjoint omponent analysis (DCA),is proposed whih is based on minimizing the overlap of output signals, thereby making theirsupport maximally disjoint. Performane of DCA alone and in omparison to ICA is evaluatedin dependene to soure overlap and soure independene. It is onluded that DCA may beof partiular value in appliations where independene is not ful�lled and where measurementdata is positive-valued.A more detailed report of the above ontributions follows.2 Bayesian Autoregressive Hidden Markov ModelsModels dealing with the raw aousti speeh signal diretly are an alternative to onventionalfeature-based Hidden Markov Models (HMMs). One of the most popular examples is theAutoregressive (AR) Proess whih models a sample yt of a speeh signal�represented as asequene of samples y1:T�as a linear ombination of the R previous samples plus a Gaussiandistributed innovation η

yt =

R∑

r=1

cryt−r + ηt with ηt ∼ N (0, σ2) (1)7



st−1 st st+1

vt−1 vt vt+1Figure 3: DBN representation of the SAR-HMM. The squares and irles represent disreteand ontinuous variables respetively�st symbolises the state at time t and yt the observedsample at time t.where σ2 is the variane of the innovation and cr are the AR oe�ients. However, an AR pro-ess is too simple to model the strong non-stationarities typially enountered in speeh signals.A possible way to deal with non-stationarity is to selet at eah timestep t a setting of theAR parameters from a disrete set of possible parameter values, with the swithing betweenthe parameters ontrolled by a Markov Model. This approah is at the root of the AR HiddenMarkov Model (AR-HMM) proposed by Poritz [1℄ and its modern-day ounterpart the Swith-ing AR-HMM (SAR-HMM), proposed by Ephraim and Roberts [2℄.At the heart of the above models lies a standard AR-proess. However, a fundamental limi-tation of suh AR models is that the innovation variane σ2 does not sale properly with thesignal. In partiular, if the signal is saled by a fator α, we would expet the innovationvariane to sale by a fator α2 as well. In other words, the `gain' of the sequene, σ, needs tobe set for eah sequene, and has a strong impat on the likelihood of an observed sequene. Astraightforward solution is to gain normalise the signal suh that it always has unit variane.An alternate and more e�etive solution is to replae σ2 in Equation 1 by the variane whihmaximises the likelihood of the speeh signal y1:T

σ2
ML = arg max

σ2

p(y1:T |σ
2). (2)This approah, alled Gain Adaptation (GA), has been suessfully used for isolated digitreognition with AR-HMMs in lean and noisy environments [2, 3, 4℄. Whilst useful in pratie,GA does not �t into the usual mahine learning framework sine, formally, model parametersmay only be set on the basis of training data. Otherwise, in �exible models, setting modelparameters on the basis of test data may lead to over�tting. We therefore onsider a statistiallyprinipled alternative Bayesian approah to gain adaptation whih onsists in speifying aprior probability distribution on the model parameters. This approah has two potentialbene�ts over standard GA(i) the variations of the gain an be expliitly ontrolled, and (ii) theAR oe�ients are allowed to hange, whih may be useful to model inter and intra speakervariations for example.Here we present the Bayesian SAR-HMM whih generalises the standard aousti level SAR-HMM, onurrently dealing with the issues of GA and parameter unertainty in a omputa-tionally e�ient and prinipled manner.2.1 The SAR-HMMThe standard SAR-HMM[2, 3, 4℄ has a disrete swith variable whih an be in S di�erentstates, eah state representing a partiular setting of the AR oe�ients cr and innovationvariane σ2 used in Equation 1. From a probabilisti viewpoint, the model de�nes a joint8



distribution over the sequenes of observed samples y1:T and swith states s1:T of the form
p(y1:T , s1:T ) =

T∏

t=1

p(yt | yt−R:t−1, st) p(st | st−1) (3)where p(yt | yt−R:t−1, st) ≡ p(yt | y1:t−1, st) if t ≤ R and p(s1 | s0) ≡ p(s1). The emissionprobability, orresponding to Equation 1, is given by
p(yt | yt−R:t−1, st) ∝ exp

{

−
1

2σ2
st

(
yt − ỹTt cst

)2
} (4)where ỹTt = [yt−1 . . . yt−R] and cst = [c1(st) . . . cR(st)]
T.In pratie it is not desirable to allow the swith state to hange at eah time step beausewe expet the dynamis to last for a minimal amount of time�1.75ms in our ase1. In theSAR-HMM, the speeh signal is therefore onsidered as the onatenation of N �xed-lengthsegments over whih the state annot hange. This orresponds to the joint distribution

p(y1:T , s1:N ) =
N∏

n=1

p(sn | sn−1)

tn+1−1
∏

t=tn

p(yt | ỹt, sn) (5)where tn is the time step at whih the n-th segment starts2.
Gain Adaptation in the SAR-HMMGiven a sequene of samples y1:T , GA is performed in the SAR-HMM by replaing the state in-novation varianes σ2

s in Equation 4 by the per segment and state varianes σ2
ns whih maximisethe likelihood of the observed sequene y1:T , i.e.,

σ2
ns =

1

Tn

tn+1−1
∑

t=tn

(
yt − ỹtcs

)2where Tn = tn+1 − tn − 1 is the length of the n-th segment.2.2 The Bayesian SAR-HMMIn the SAR-HMM the AR oe�ients cs and innovation varianes σ2
s are onsidered as freeparameters that have to be learned from data. In the proposed Bayesian approah we treatthem as random variables whose probability distributions are ontrolled by hyper-parameters.Figure 4 shows the Dynamial Bayesian Network (DBN) representation of the Bayesian SAR-HMM. A partiular segment n is modelled by an R-th order AR proess whose oe�ients cnand inverse innovation variane3 νn are drawn randomly from a prior distribution onditionedon the swith state sn. Formally the Bayesian SAR-HMM de�nes the joint distribution

p(y1:T , s1:N , c1:N , ν1:N ) = (6)
N∏

n=1

p(yn | ỹtn , cn, νn) p(cn, νn | sn) p(sn | sn−1)1This orresponds to 140 samples at a sampling frequeny of 8 kHz.2To save spae, we replaed yt−R:t−1 by ỹt in Equation 5. Hene p(yt | ỹt, st) is shorthandfor p(yt | yt−R:t−1, st).3To ease notation we prefer using the inverse variane ν = 1/σ2.9



sn−1 sn sn+1

cn−1 cn cn+1

yt−2 yt−1 yt yt+1 yt+2

νn

Figure 4: DBN representation of the Bayesian SAR-HMM. The graph represents a model withsegments of 3 samples and an AR proess of order 2. The index n represents the segmentnumber. Squares and irles represent disrete and ontinuous variables respetively.whih is a temporal extension of [5℄. Expliitly,
p(yn | ỹtn , cn, νn) =

tn+1−1
∏

t=tn

p(yt | ỹt, cn, νn). (7)The new fator
p(cn, νn | sn) = p(cn | νn, sn) p(νn | sn)de�nes priors on the AR oe�ients and the inverse innovation variane of the n-th segment.In order to keep the model tratable, we use the onjugate priors4

c | ν, s ∼ N (µs, ν
−1Σs) and ν | s ∼ γ(αs, βs)whereN (µ,Σ) is the multivariate normal distribution with mean µ and ovariane Σ, and γ(α, β)is the gamma distribution de�ned as

γ(α, β) =
βα

Γ(α)
να−1e−βν .2.3 TrainingThe free parameters of the Bayesian SAR-HMM are, µs, Σs, αs, βs, for eah state s, and thetransition probability aij ≡ p(sn = j | sn−1 = i) for eah pair (i, j) of swith states. Trainingthe model onsists of maximising the likelihood of the observed training data

p(y1:T ) =
∑

s1:N ,c1:N ,ν1:N

p(y1:T , s1:N , c1:N , ν1:N ). (8)To ahieve this, we use the standard Expetation Maximisation (EM) algorithm. Given theurrent setting of the model parameters φ, an updated setting φ̂ is found by maximising (M-step) the expeted omplete log-likelihood (E-step)
〈

log p
(
y1:T , s1:N , c1:N , ν1:N | φ̂

)〉

q
(9)where 〈·〉q is the average with respet to the posterior

q ≡ p(s1:N , c1:N , ν1:N | y1:T , φ). (10)4The segment number has been dropped to simplify the notation.10



Model Word AurayHMM (HTK) 100%SAR-HMM (no gain) 88.3%SAR-HHM (gain) 97.2% (98.5%)Bayesian SAR-HMM 98.4%Table 1: Word auray of three di�erent models on a single digit reognition task on theTI-DIGITS database; gain and no gain indiates whether or not gain adaptation has beenused. The performane of the gain adapted SAR-HMM reported in [2℄ is indiated betweenparenthesis.2.4 PerformanceWe ompared the Bayesian SAR-HMM to the original SAR-HMM proposed in [2℄, with andwithout gain adaptation, and a standard feature-based HMM. The task was to reognise iso-lated digits pronouned by various male speakers from the TI-DIGITS database [6℄. Thetraining/test sets were omposed of 110/112 utteranes for eah of the eleven digits (1�9,`zero' and `oh'), spoken by 55/56 di�erent speakers respetively. Eah digit lass was modelledby a separate SAR-HMM and reognition performed by assoiating the utterane to the digitwhose model had the highest likelihood. Whilst this speeh lassi�ation problem is relativelyeasy, the e�etive volume on eah utterane is di�erent so that, for AR-based models, someform of GA is ruial for good performane.All SAR-HMMs were omposed of 10 states with a left-right transition matrix and a 10-thorder AR proess per state, in keeping with the optimal values found in [2℄. The BayesianSAR-HMM was initialised with hyperparameter αs = 10. The transition matrix of BayesianSAR-HMM was set to the trained standard SAR-HMM and, for eah state, the priors on theAR oe�ients and the inverse variane were set suh that their means (α/β) orresponds tothe AR oe�ients and inverse variane obtained from the trained SAR-HMM. The ovarianematrix Σs was initialised to 1
〈νs〉

I, where I is the identity matrix.The feature-based HMM was omposed of 18 states with a left-right transition matrix, amixture of three Gaussians per state and used 13 MFCC features, inluding energy and im-plemented using HTK [7℄.Table 1 shows the word auray of eah model. The performane of the gain adapted SAR-HMM is reprodued from [2℄. All the other results have been obtained by our own imple-mentation of the respetive models. Note that the auray we obtained for the gain adaptedSAR-HMM is slightly below that reported in [2℄. The Bayesian and gain adapted SAR-HMMhave a word auray whih is 10% higher than that of the non gain adapted SAR-HMM.This demonstrates that dealing with the gain problem is ruial to ensure good performane.The similar performane of the Bayesian and gain adapted SAR-HMM demonstrates that theBayesian approah is a sensible prinipled alternative to gain adaptation.2.5 DiscussionModeling the raw aousti signal is an alternative strategy to using feature based HMMs forspeeh reognition. A motivation for this is that strong signal models may be used to removenoise, and an also form the basis of powerful hierarhial models of the signal. However,11



s1 s2 s3 s4

h1 h2 h3 h4

v1 v2 v3 v4Figure 5: The independene struture of the aSLDS. Square nodes denote disrete variables,round nodes ontinuous variables. In the SLDS links from h to s are not normally onsidered.signal models based on AR-proesses are over-sensitive to signal amplitude, and this problemis typially healed using ad-ho Gain Adaptation. In ontrast, our Bayesian approah providesa statistially prinipled and straightforward exat alternative to standard Maximum Likeli-hood Gain Adaptation. The result is a simple update formula whih orretly deals with theunertainty in the parameter estimates from the training set, and automatially omputes theposterior distribution of parameters in light of test data. This is an enouraging step towardsthe development of more omplex signal and noise models, in whih the �exibility of the modelsis every inreasing.3 Switching Linear Dynamical SystemsThe Linear Dynamial System (LDS) [8℄ is a key temporal model in whih a latent linearproess generates the observed series. For omplex time-series whih are not well desribedglobally by a single LDS, we may break the time-series into segments, eah modeled by apotentially di�erent LDS. This is the basis for the Swithing LDS (SLDS) [9, 10, 11, 12℄ where,for eah time t, a swith variable st ∈ 1, . . . , S desribes whih of the LDSs is to be used. Theobservation (or `visible') vt ∈ R
V is linearly related to the hidden state ht ∈ R

H with additivenoise η by
vt = B(st)ht + ηv(st) ≡ p(vt|ht, st) = N (B(st)ht,Σ

v(st)) (11)where N (µ,Σ) denotes a Gaussian distribution with mean µ and ovariane Σ. The transitiondynamis of the ontinuous hidden state ht is linear,
ht = A(st)ht−1 + ηh(st), ≡ p(ht|ht−1, st) = N

(

A(st)ht−1,Σ
h(st)

) (12)The swith st may depend on both the previous st−1 and ht−1. This is an augmented SLDS(aSLDS), and de�nes the model
p(v1:T , h1:T , s1:T ) =

T∏

t=1

p(vt|ht, st)p(ht|ht−1, st)p(st|ht−1, st−1)The standard SLDS[11℄ onsiders only swith transitions p(st|st−1). At time t = 1, p(s1|h0, s0)simply denotes the prior p(s1), and p(h1|h0, s1) denotes p(h1|s1). The aim of this artile is toaddress how to perform inferene in the aSLDS. In partiular we desire the �ltered estimate
p(ht, st|v1:t) and the smoothed estimate p(ht, st|v1:T ), for any 1 ≤ t ≤ T . Both �ltered andsmoothed inferene in the SLDS is intratable, saling exponentially with time [11℄.3.1 Expectation CorrectionOur approah to approximate p(ht, st|v1:T )mirrors the Rauh-Tung-Striebel `orretion' smootherfor the simpler LDS [8℄.The method onsists of a single forward pass to reursively �nd the �l-tered posterior p(ht, st|v1:t), followed by a single bakward pass to orret this into a smoothed12



posterior p(ht, st|v1:T ). The forward pass we use is equivalent to standard Assumed DensityFiltering (ADF) [13℄. The main ontribution of this work is a novel form of bakward pass,based only on ollapsing the smoothed posterior to a mixture of Gaussians. Together with theADF forward pass, we all the method Expetation Corretion, sine it orrets the momentsfound from the forward pass.3.1.1 Forward Pass (Filtering)Readers familiar with ADF may wish to ontinue diretly to Setion (3.1.2). Our aim is toform a reursion for p(st, ht|v1:t), based on a Gaussian mixture approximation of p(ht|st, v1:t).Without loss of generality, we may deompose the �ltered posterior as
p(ht, st|v1:t) = p(ht|st, v1:t)p(st|v1:t) (13)The exat representation of p(ht|st, v1:t) is a mixture with O(St) omponents. We thereforeapproximate this with a smaller I-omponent mixture
p(ht|st, v1:t) ≈

I∑

it=1

p(ht|it, st, v1:t)p(it|st, v1:t)where p(ht|it, st, v1:t) is a Gaussian parameterized with mean f(it, st) and ovariane F (it, st).To �nd a reursion for these parameters, onsider
p(ht+1|st+1, v1:t+1) =

∑

st,it

p(ht+1|st, it, st+1, v1:t+1)p(st, it|st+1, v1:t+1) (14)
Evaluating p(ht+1|st, it, st+1, v1:t+1)We �nd p(ht+1|st, it, st+1, v1:t+1) by �rst omputing the joint distribution p(ht+1, vt+1|st, it, st+1, v1:t),whih is a Gaussian with ovariane and mean elements,
Σhh = A(st+1)F (it, st)A

T(st+1) + Σh(st+1), Σvv = B(st+1)ΣhhBT(st+1) + Σv(st+1)

Σvh = B(st+1)F (it, st), µv = B(st+1)A(st+1)f(it, st), µh = A(st+1)f(it, st) (15)and then onditioning on vt+1
5. For the ase S = 1, this forms the usual Kalman Filterreursions[8℄.

Evaluating p(st, it|st+1, v1:t+1)The mixture weight in Equation (14) an be found from the deomposition
p(st, it|st+1, v1:t+1) ∝ p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t) (16)The �rst fator in Equation (16), p(vt+1|it, st, st+1, v1:t) is a Gaussian with mean µv and o-variane Σvv, as given in Equation (15). The last two fators p(it|st, v1:t) and p(st|v1:t) aregiven from the previous iteration. Finally, p(st+1|it, st, v1:t) is found from
p(st+1|it, st, v1:t) = 〈p(st+1|ht, st)〉p(ht|it,st,v1:t)

(17)where 〈·〉p denotes expetation with respet to p. In the SLDS, Equation (17) is replaed bythe Markov transition p(st+1|st). In the aSLDS, however, Equation (17) will generally need tobe omputed numerially.5p(x|y) is a Gaussian with mean µx + ΣxyΣ−1
yy (y − µy) and ovariane Σxx − ΣxyΣ−1

yy Σyx.13



Closing the recursionWe are now in a position to alulate Equation (14). For eah setting of the variable st+1, wehave a mixture of I × S Gaussians whih we numerially ollapse bak to I Gaussians to form
p(ht+1|st+1, v1:t+1) ≈

I∑

it+1=1

p(ht+1|it+1, st+1, v1:t+1)p(it+1|st+1, v1:t+1)Any method of hoie may be supplied to ollapse a mixture to a smaller mixture; our odesimply repeatedly merges low-weight omponents. In this way the new mixture oe�ients
p(it+1|st+1, v1:t+1), it+1 ∈ 1, . . . , I are de�ned, ompleting the desription of how to form areursion for p(ht+1|st+1, v1:t+1) in Equation (13). A reursion for the swith variable is givenby

p(st+1|v1:t+1) ∝
∑

st,it

p(vt+1|st+1, it, st, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)where all terms have been omputed during the reursion for p(ht+1|st+1, v1:t+1).The likelihood p(v1:T ) may be found by reursing p(v1:t+1) = p(vt+1|v1:t)p(v1:t), where
p(vt+1|vt) =

∑

it,st,st+1

p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)3.1.2 Backward Pass (Smoothing)The main ontribution of our work is to �nd a suitable way to `orret' the �ltered posterior
p(st, ht|v1:t) obtained from the forward pass into a smoothed posterior p(st, ht|v1:T ). We derivethis for the ase of a single Gaussian representation. We approximate the smoothed posterior
p(ht|st, v1:T ) by a Gaussian with mean g(st) and ovariane G(st) and our aim is to �nd areursion for these parameters. A useful starting point for a reursion is:

p(ht, st|v1:T ) =
∑

st+1

p(st+1|v1:T )p(ht|st, st+1, v1:T )p(st|st+1, v1:T )The term p(ht|st, st+1, v1:T ) may be omputed as
p(ht|st, st+1, v1:T ) =

∫

ht+1

p(ht|ht+1, st, st+1, v1:t)p(ht+1|st, st+1, v1:T ) (18)The reursion therefore requires p(ht+1|st, st+1, v1:T ), whih we an write as
p(ht+1|st, st+1, v1:T ) ∝ p(ht+1|st+1, v1:T )p(st|st+1, ht+1, v1:t) (19)The di�ulty here is that the funtional form of p(st|st+1, ht+1, v1:t) is not squared exponen-tial in ht+1, so that p(ht+1|st, st+1, v1:T ) will not be Gaussian6. One possibility would be toapproximate the non-Gaussian p(ht+1|st, st+1, v1:T ) by a Gaussian (or mixture thereof) by min-imizing the Kullbak-Leilbler divergene between the two, or performing moment mathing inthe ase of a single Gaussian. A simpler alternative (whih forms `standard' EC) is to makethe assumption p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), where p(ht+1|st+1, v1:T ) is alreadyknown from the previous bakward reursion. Under this assumption, the reursion beomes

p(ht, st|v1:T ) ≈
∑

st+1

p(st+1|v1:T )p(st|st+1, v1:T ) 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (20)6In the exat alulation, p(ht+1|st, st+1, v1:T ) is a mixture of Gaussians. However, sine in Equation (19)the two terms p(ht+1|st+1, v1:T ) will only be approximately omputed during the reursion, our approximationto p(ht+1|st, st+1, v1:T ) will not be a mixture of Gaussians.14



Evaluating 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T )

〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) is a Gaussian in ht, whose statistis we will now om-pute. First we �nd p(ht|ht+1, st, st+1, v1:t) whih may be obtained from the joint distribution
p(ht, ht+1|st, st+1, v1:t) = p(ht+1|ht, st+1)p(ht|st, v1:t) (21)whih itself an be found from a forward dynamis from the �ltered estimate p(ht|st, v1:t). Thestatistis for the marginal p(ht|st, st+1, v1:t) are simply those of p(ht|st, v1:t), sine st+1 arriesno extra information about ht. The remaining statistis are the mean of ht+1, the ovarianeof ht+1 and ross-variane between ht and ht+1, whih are given by

〈ht+1〉=A(st+1)ft(st), Σt+1,t+1 =A(st+1)Ft(st)A
T(st+1)+Σh(st+1), Σt+1,t =A(st+1)Ft(st)Given the statistis of Equation (21), we may now ondition on ht+1 to �nd p(ht|ht+1, st, st+1, v1:t).Doing so e�etively onstitutes a reversal of the dynamis,

ht =
←−
A (st, st+1)ht+1 +←−η (st, st+1)where ←−A (st, st+1) and ←−η (st, st+1) ∼ N (←−m(st, st+1),

←−
Σ(st, st+1)) are easily found using ondi-tioning. Averaging the above reversed dynamis over p(ht+1|st+1, v1:T ), we �nd that 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1is a Gaussian with statistis

µt =
←−
A (st, st+1)g(st+1)+←−m(st, st+1), Σt,t =

←−
A (st, st+1)G(st+1)

←−
AT(st, st+1)+

←−
Σ(st, st+1)These equations diretly mirror the standard RTS bakward pass[8℄.

Evaluating p(st|st+1, v1:T )The main departure of EC from previous methods is in treating the term
p(st|st+1, v1:T ) = 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (22)The term p(st|ht+1, st+1, v1:t) is given by
p(st|ht+1, st+1, v1:t) =

p(ht+1|st+1, st, v1:t)p(st, st+1|v1:t)
∑

s′t
p(ht+1|st+1, s′t, v1:t)p(s′t, st+1|v1:t)

(23)Here p(st, st+1|v1:t) = p(st+1|st, v1:t)p(st|v1:t), where p(st+1|st, v1:t) ours in the forward pass,Equation (17). In Equation (23), p(ht+1|st+1, st, v1:t) is found by marginalizing Equation (21).Computing the average of Equation (23) with respet to p(ht+1|st+1, v1:T ) may be ahieved byany numerial integration method desired. A simple approximation is to evaluate the integrandat the mean value of the averaging distribution p(ht+1|st+1, v1:T ).
Closing the RecursionWe have now omputed both the ontinuous and disrete fators in Equation (18), whih wewish to use to write the smoothed estimate in the form p(ht, st|v1:T ) = p(st|v1:T )p(ht|st, v1:T ).The distribution p(ht|st, v1:T ) is readily obtained from the joint Equation (18) by onditioningon st to form the mixture

p(ht|st, v1:T ) =
∑

st+1

p(st+1|st, v1:T )p(ht|st, st+1, v1:T )whih may then be ollapsed to a single Gaussian (the mixture ase is disussed in the publishedversion of this work). The smoothed posterior p(st|v1:T ) is given by
p(st|v1:T ) =

∑

st+1

p(st+1|v1:T ) 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) . (24)15



3.1.3 Relation to other methodsThe EC Bakward pass is losely related to Kim's method [14℄. In both EC and Kim's method,the approximation p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), is used to form a numeriallysimple bakward pass. The other `approximation' in EC is to numerially ompute the averagein Equation (24). In Kim's method, however, an update for the disrete variables is formed byreplaing the required term in Equation (24) by
〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) ≈ p(st|st+1, v1:t) (25)Sine p(st|st+1, v1:t) ∝ p(st+1|st)p(st|v1:t)/p(st+1|v1:t), this an be omputed simply from the�ltered results alone. The fundamental di�erene therefore between EC and Kim's method isthat the approximation, Equation (25), is not required by EC. The EC bakward pass thereforemakes fuller use of the future information, resulting in a reursion whih intimately ouplesthe ontinuous and disrete variables. The resulting e�et on the quality of the approximationan be profound, as we will see in the experiments.The Expetation Propagation (EP) algorithm makes the entral assumption of ollapsing theposteriors to a Gaussian family [12℄; the ollapse is de�ned by a onsisteny riterion on over-lapping marginals. In our experiments, we take the approah in [15℄ of ollapsing to a singleGaussian. Ensuring onsisteny requires frequent translations between moment and anoni-al parameterizations, whih is the origin of potentially severe numerial instability [16℄. Inontrast, EC works largely with moment parameterizations of Gaussians, for whih relativelyfew numerial di�ulties arise. Unlike EP, EC is not based on a onsisteny riterion and asubtle issue arises about possible inonsistenies in the Forward and Bakward approximationsfor EC. For example, under the onditional independene assumption in the Bakward Pass,

p(hT |sT−1, sT , v1:T ) ≈ p(hT |sT , v1:T ), whih is in ontradition to Equation (15) whih statesthat the approximation to p(hT |sT−1, sT , v1:T ) will depend on sT−1. Suh potential inonsis-tenies arise beause of the approximations made, and should not be onsidered as separateapproximations in themselves.Rather than using a global (onsisteny) objetive, EC attempts to faithfully approximate theexat Forward and Bakward propagation routines. For this reason, as in the exat omputa-tion, only a single Forward and Bakward pass are required in EC.In [17℄ a related dynamis reversed is proposed. However, the singularities resulting from in-orretly treating p(vt+1:T |ht, st) as a density are heuristially �nessed.In [18℄ a variational method approximates the joint distribution p(h1:T , s1:T |v1:T ) rather thanthe marginal inferene p(ht, st|v1:T ). This is a disadvantage when ompared to other methodsthat diretly approximate the marginal.Sequential Monte Carlo methods (Partile Filters)[19℄, are essentially mixture of delta-funtionapproximations. Whilst potentially powerful, these typially su�er in high-dimensional hid-den spaes, unless tehniques suh as Rao-Blakwellization are performed. ADF is generallypreferential to Partile Filtering sine in ADF the approximation is a mixture of non-trivialdistributions, and is therefore more able to represent the posterior.3.2 Application to Noise Robust ASRHere we brie�y present an appliation of the SLDS to robust Automati Speeh Reognition(ASR), for whih the intratable inferene is performed by EC, and serves to demonstrate16



how EC sales well to a large-sale appliation. Fuller details are given in [20℄. The standardapproah to noise robust ASR is to provide a set of noise-robust features to a standard HiddenMarkov Model (HMM) lassi�er, whih is based on modeling the aousti feature vetor. Forexample, the method of Unsupervised Spetral Subtration (USS) [21℄ provides state-of-the-artperformane in this respet. Inorporating noise models diretly into suh feature-based HMMsystems is di�ult, mainly beause the expliit in�uene of the noise on the features is poorlyunderstood. An alternative is to model the raw speeh signal diretly, suh as the SAR-HMMmodel [2℄ for whih, under lean onditions, isolated spoken digit reognition performs well.However, the SAR-HMM performs poorly under noisy onditions, sine no expliit noise pro-esses are taken into aount by the model.The approah we take here is to extend the SAR-HMM to inlude an expliit noise proess, sothat the observed signal vt is modeled as a noise orrupted version of a lean hidden signal vh
t :

vt = vh
t + η̃t with η̃t ∼ N (0, σ̃2)The dynamis of the lean signal is modeled by a swithing AR proess

vh
t =

R∑

r=1

cr(st)v
h
t−r + ηh

t (st), ηh
t (st) ∼ N (0, σ2(st))where st ∈ {1, . . . , S} denotes whih of a set of AR oe�ients cr(st) are to be used at time

t, and ηh
t (st) is the so-alled innovation noise. When σ2(st) ≡ 0, this model reprodues theSAR-HMM of [2℄, a speially onstrained HMM. Hene inferene and learning for the SAR-HMM are tratable and straightforward. For the ase σ2(st) > 0 the model an be reast asan SLDS. To do this we de�ne ht as a vetor whih ontains the R most reent lean hiddensamples

ht =
[

vh
t . . . vh

t−r+1

]T (26)and we set A(st) to be an R×R matrix where the �rst row ontains the AR oe�ients −cr(st)and the rest is a shifted down identity matrix. For example, for a third order (R = 3) ARproess,
A(st) =





−c1(st) −c2(st) −c3(st)
1 0 0
0 1 0



 . (27)The hidden ovariane matrix Σh(s) has all elements zero, exept the top-left most whih isset to the innovation variane. To extrat the �rst omponent of ht we use the (swith in-dependent) 1 × R projetion matrix B =
[

1 0 . . . 0
]. The (swith independent) visiblesalar noise variane is given by Σv ≡ σ2

v .A well-known issue with raw speeh signal models is that the energy of a signal may vary fromone speaker to another or beause of a hange in reording onditions. For this reason theinnovation Σh is adjusted by maximizing the likelihood of an observed sequene with respetto the innovation ovariane, a proess alled Gain Adaptation [2℄.3.2.1 Training & EvaluationFollowing [2℄, we trained a separate SAR-HMM for eah of the eleven digits (0�9 and `oh') fromthe TI-DIGITS database [6℄. The training set for eah digit was omposed of 110 single digit17



Noise Variane SNR (dB) HMM SAR-HMM AR-SLDS
0 26.5 100.0% 97.0% 96.8%

10−7 26.3 100.0% 79.8% 96.8%
10−6 25.1 90.9% 56.7% 96.4%
10−5 19.7 86.4% 22.2% 94.8%
10−4 10.6 59.1% 9.7% 84.0%
10−3 0.7 9.1% 9.1% 61.2%Table 2: Comparison of the reognition auray of three models when the test utteranes areorrupted by various levels of Gaussian noise.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10�one� at SNR 0.7 dB ��ve� at SNR 10.6 dBFigure 6: Two examples of signal reonstrution using the AR-SLDS; (top) original leansignal taken from the TI-DIGITS database, (middle) noisy signal, i.e., lean signal arti�iallyorrupted by Gaussian noise, (bottom) reonstruted lean signal. The dashed lines and thenumbers show the most-likely state segmentation.utteranes down-sampled to 8 kHz, eah one pronouned by a male speaker. Eah SAR-HMMwas omposed of ten states with a left-right transition matrix. Eah state was assoiated witha 10th-order AR proess and the model was onstrained to stay an integer multiple of K = 140time steps (0.0175 seonds) in the same state. We refer the reader to [2℄ for a detailed expla-nation of the training proedure used with the SAR-HMM.An AR-SLDS was built for eah of the eleven digits by opying the parameters of the or-responding trained SAR-HMM, i.e., the AR oe�ients cr(s) are opied into the �rst row ofthe hidden transition matrix A(s) and the same disrete transition distribution p(st | st−1) isused. The models were then evaluated on a test set omposed of 112 orrupted utteranes ofeah of the eleven digits, eah pronouned by di�erent male speakers than those used in thetraining set. The reognition auray obtained by the models on the orrupted test sets ispresented in Table 2. As expeted, the performane of the SAR-HMM rapidly dereases withnoise. The feature-based HMM with USS has high auray only for high SNR levels. In on-trast, the AR-SLDS ahieves a reognition auray of 61.2% at a SNR lose to 0 dB, while theperformane of the two other methods is equivalent to random guessing (9.1%). Whilst otherinferene methods may also perform well in this ase, we found that EC performs admirably,without numerial instabilities, even for time-series with several thousand time-steps.
18



3.3 DiscussionWe presented a method for approximate smoothed inferene in an augmented lass of swithinglinear dynamial systems. Our approximation is based on the idea that due to the forgettingwhih ommonly ours in Markovian models, a �nite number of mixture omponents mayprovide a reasonable approximation. Clearly, in systems with very long orrelation times ourmethod may require too many mixture omponents to produe a satisfatory result, althoughwe are unaware of other tehniques that would be able to ope well in that ase. The mainbene�t of EC over Kim smoothing is that future information is more aurately dealt with.Whilst EC is not as general as EP, EC arefully exploits the properties of singly-onneteddistributions, suh as the aSLDS, to provide a numerially stable proedure. We hope that theideas presented here may therefore help failitate the pratial appliation of dynami hybridnetworks.4 Bayesian Linear Gaussian State-Space ModelsLinear Gaussian State-Spae Models (LGSSMs)7 are fundamental in time-series analysis [22,23, 24℄. In these models the observations v1:T
8 are generated from an underlying dynamialsystem on h1:T aording to

vt = Bht + ηv
t , ηv

t ∼ N (0V ,ΣV ); ht = Aht−1 + ηh
t , ηh

t ∼ N (0H ,ΣH) ,where N (µ,Σ) denotes a Gaussian with mean µ and ovariane Σ, and 0X denotes an X-dimensional zero vetor. The observation vt has dimension V and the hidden state ht dimension
H. Probabilistially, the LGSSM is de�ned by:

p(v1:T , h1:T |Θ) = p(v1|h1)p(h1)

T∏

t=2

p(vt|ht)p(ht|ht−1) ,with p(vt|ht) = N (Bht,ΣV ), p(ht|ht−1) = N (Aht−1,ΣH), p(h1) = N (µ,Σ) and where Θ =
{A,B,ΣH ,ΣV , µ,Σ} denotes the model parameters. Beause of the widespread use of thesemodels, a Bayesian treatment of parameters is of onsiderable interest [25, 26, 27, 28, 29℄.An exat implementation of the Bayesian LGSSM is formally intratable [29℄, and reentlya Variational Bayesian (VB) approximation has been studied [25, 26, 27, 28, 30℄. The mosthallenging part of implementing the VB method is performing inferene over h1:T , and previ-ous authors have developed their own speialized routines, based on Belief Propagation, sinestandard LGSSM inferene routines appear, at �rst sight, not to be appliable.A key ontribution of this work is to show how the Variational Bayesian treatment of theLGSSM an be implemented using standard inferene routines. Based on the insight we pro-vide, any standard inferene method may be applied, inluding those spei�ally addressed toimprove numerial stability [31, 32, 23℄. In this artile, we deided to desribe the standardpreditor-orretor and Rauh-Tung-Striebel reursions [23℄, and also suggest a small modi�-ation that redues omputational ost.The Bayesian LGSSM is partiularly of interest when strong prior onstraints are needed to�nd adequate solutions. One suh ase is in EEG signal analysis, whereby we wish to extratsoures that evolve independently through time. Sine EEG is partiularly noisy [33℄, a priorthat enourages soures to have preferential spetral properties is advantageous in reovering7Also alled Kalman Filters/Smoothers, Linear Dynamial Systems.8v1:T denotes v1, . . . , vT . 19



meaningful soures. This appliation is disussed in Setion (4.3), and demonstrates the easeof applying our VB framework.4.1 A Bayesian treatmentIn the Bayesian treatment of the LGSSM, instead of onsidering the model parameters Θ as�xed, we de�ne a prior distribution p(Θ|Θ̂), where Θ̂ is a set of hyperparameters. Then:
p(v1:T |Θ̂) =

∫

Θ
p(v1:T |Θ̂,Θ)p(Θ|Θ̂) . (28)In a full Bayesian treatment we would de�ne additional prior distributions over the hyperpa-rameters Θ̂. Here we take instead the ML-II (`evidene') framework, in whih the optimal setof hyperparameters is found by maximizing p(v1:T |Θ̂) with respet to Θ̂ [27, 28, 30℄.For the parameter priors, we de�ne Gaussians on the olumns of A and B:

p(A|α,ΣH) ∝
H∏

j=1

e−
αj
2 (Aj−Âj)

T
Σ−1

H (Aj−Âj), p(B|β,ΣV ) ∝
H∏

j=1

e−
βj
2 (Bj−B̂j)

T
Σ−1

V (Bj−B̂j) ,whih has the e�et of biasing the transition and emission matries to desired forms Â and B̂.The onjugate priors for the ovarianes ΣH and ΣV are Inverse Wishart distributions [28℄9.In the simpler and more ommon ase of assuming diagonal ovarianes these beome InverseGamma distributions [28, 26℄. The hyperparameters are then Θ̂ = {α, β}10.
Variational BayesOptimizing Equation (28) with respet to Θ̂ is di�ult due to the intratability of the integrals.Instead, in VB, one onsiders the lower bound [27, 28, 30℄11:

L = log p(v1:T |Θ̂) ≥ Hq(Θ, h1:T ) +
〈

log p(Θ|Θ̂)
〉

q(Θ)
+

〈

E(h1:T ,Θ|Θ̂)
〉

q(Θ,h1:T )
≡ F ,where

E(h1:T ,Θ|Θ̂) ≡ log p(v1:T , h1:T |Θ, Θ̂).The notation Hd(x) signi�es the entropy of the distribution d(x), and 〈·〉d(x) denotes the ex-petation operator.The key approximation in VB is q(Θ, h1:T ) ≡ q(Θ)q(h1:T ), from whih one may show that, foroptimality of F ,
q(h1:T ) ∝ e

〈E(h1:T ,Θ|Θ̂)〉
q(Θ) , q(Θ) ∝ p(Θ)e

〈E(h1:T ,Θ|Θ̂)〉
q(h1:T ) .These oupled equations need to be iterated to onvergene. The updates for the parameters

q(Θ) are straightforward and are given in Appendies ?? and ??. One onverged, the hy-perparameters are updated by maximizing F with respet to Θ̂, whih lead to simple updateformulae [28℄.Our main onern is with the update for q(h1:T ), for whih this work makes a departure fromtreatments previously presented.9For expositional simpliity, we do not put priors on µ and Σ.10For simpliity, we keep the parameters of the Inverse Wishart priors �xed.11Stritly we should write throughout q(·|v1:T ). We omit the dependene on v1:T for notational onveniene.20



4.2 Unified Inference on q(h1:T )Optimally q(h1:T ) is Gaussian sine 〈

E(h1:T ,Θ|Θ̂)
〉

q(Θ)
is quadrati in h1:T , being namely12

−
1

2

T∑

t=1

[〈

(vt−Bht)
TΣ−1

V (vt−Bht)
〉

q(B,ΣV )
+

〈

(ht−Aht−1)
T Σ−1

H (ht−Aht−1)
〉

q(A,ΣH)

]

. (29)Optimally, q(A|ΣH) and q(B|ΣV ) are Gaussians (see the DIRAC publiation for fuller details),so we an easily arry out the averages. The further averages over q(ΣH) and q(ΣV ) are alsoeasy due to onjugay. Whilst this de�nes the distribution q(h1:T ), quantities suh as q(ht),whih are required for the parameter updates (see the Appendies), need to be inferred fromthis distribution. Clearly, in the non-Bayesian ase, the averages over the parameters are notpresent, and the above simply represents an LGSSM whose visible variables have been lampedinto their evidential states. In that ase, inferene an be performed using any standardmethod. Our aim, therefore, is to try to represent the averaged Equation (29) diretly as anLGSSM q̃(h1:T |ṽ1:T ), for some suitable parameter settings.
Mean + Fluctuation DecompositionA useful deomposition is to write

〈

(vt −Bht)
TΣ−1

V (vt −Bht)
〉

q(B,ΣV )
= (vt − 〈B〉ht)

T 〈
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V

〉
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︸ ︷︷ ︸
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+ hTt SBht
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,and similarly
〈
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TΣ−1
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︸ ︷︷ ︸

fluctuation

,where the parameter ovarianes are SB = V H−1
B and SA = HH−1

A (see publiation for details).The mean terms simply represent a lamped LGSSM with averaged parameters. However, theextra ontributions from the �utuations mean that Equation (29) annot be written as alamped LGSSM with averaged parameters. In order to deal with these extra terms, our ideais to treat the �utuations as arising from an augmented visible variable, for whih Equation(29) an then be onsidered as a lamped LGSSM.
Inference Using an Augmented LGSSMTo represent Equation (29) as a LGSSM q̃(h1:T |ṽ1:T ), we augment vt and B as13:

ṽt = vert(vt,0H ,0H), B̃ = vert(〈B〉 , UA, UB),where UA is the Cholesky deomposition of SA, so that UT
AUA = SA. Similarly, UB is theCholesky deomposition of SB. The equivalent LGSSM q̃(h1:T |ṽ1:T ) is then ompleted byspeifying14

Ã ≡ 〈A〉 , Σ̃H ≡
〈
Σ−1

H

〉−1
, Σ̃V ≡ diag(

〈
Σ−1

V

〉−1
, IH , IH), µ̃ ≡ µ, Σ̃ ≡ Σ.12For simpliity of exposition, we ignore the �rst time-point here.13The notation vert(x1, . . . , xn) stands for vertially onatenating the arguments x1, . . . , xn.14Stritly, we need a time-dependent emission B̃t = B̃, for t = 1, . . . , T −1. For time T , B̃T has the Choleskyfator UA replaed by 0H,H . 21



The validity of this parameter assignment an be heked by showing that, up to negligible on-stants, the exponent of this augmented LGSSM has the same form as Equation (29). Now thatthis has been written as an LGSSM q̃(h1:T |ṽ1:T ), standard inferene routines in the literaturemay be applied to ompute q(ht) = q̃(ht|ṽ1:T ) [22, 32, 23℄15.Algorithm 1 LGSSM: Forward and bakward reursive updates. The smoothed posterior
p(ht|v1:T ) is returned in the mean ĥT

t and ovariane P T
t .proedure Forward1a: P ← Σ1b: P ← (Σ−1 + SA + SB)−1 = (I − ΣUAB

(
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)−1
UT
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1 + K(vt −Bĥ0
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AB)6a: ĥt−1
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t)end forend proedureFor ompleteness, we deided to desribe the standard preditor-orretor form of a Kalman�lter, together with the Rauh-Tung-Striebel reursions [23℄ for performing inferene in anLGSSM. These are given in Algorithm 1. To ompute q̃(ht|ṽ1:T ), we then all the FORWARDand BACKWARD proedures.We present two variants of the FORWARD pass. Either we may all proedure FORWARDin Algorithm 1 with parameters Ã, B̃, Σ̃H , Σ̃V , µ̃, Σ̃ and the augmented visible variables ṽt inwhih we use steps 1a, 2a, 5a and 6a. This is exatly the preditor-orretor form of a Kalman�lter [23℄. Otherwise, in order to redue the omputational ost, we may all proedure FOR-WARD with the parameters 〈A〉 , 〈B〉 , 〈Σ−1
H

〉−1
,
〈
Σ−1

V

〉−1
, µ,Σ and the original visible variable

vt in whih we use steps 1b (where UT
ABUAB ≡ SA + SB), 2b, 5b and 6b. The two algorithmsare mathematially equivalent. Computing q(ht) = q̃(ht|ṽ1:T ) is then ompleted by alling theommon BACKWARD pass.The important point here is that the reader may supply any standard Kalman Filtering/Smoothingroutine, and simply all it with the appropriate parameters. In some parameter regimes, or invery long time series, numerial stability may be a serious onern, for whih several stabilized15Note that, sine the augmented LGSSM q̃(h1:T |ṽ1:T ) is designed to math the fully lamped distribution

q(h1:T ), �ltering q̃(h1:T |ṽ1:T ) does not orrespond to �ltering q(h1:T ).22



algorithms have been developed over the years, for example the square-root forms [31, 32, 23℄.By onverting the problem to a standard form, we have therefore uni�ed and simpli�ed infer-ene, so that future appliations may be more readily developed.4.2.1 Relation to Previous ApproachesAn alternative approah to the one above, and taken in [28, 26℄, is to reognize that theposterior is
log q(h1:T ) =

T∑

t=2

φt(ht−1, ht) + const.for suitably de�ned quadrati forms φt(ht−1, ht). Here the potentials φt(ht−1, ht) enode theaveraging over the parameters A,B,ΣH ,ΣV . The approah taken in [28℄ is to reognize thisas a pairwise Markov hain, for whih the Belief Propagation reursions may be applied.The bakward pass from Belief Propagation makes use of the observations v1:T , so that anyapproximate online treatment would be di�ult. The approah in [26℄ is based on a Kullbak-Leibler minimization of the posterior with a hain struture, whih is algorithmially equivalentto Belief Propagation. Whilst mathematially valid proedures, the resulting algorithms donot orrespond to any of the standard forms in the Kalman Filtering/Smoothing literature,whose properties have been well studied [34℄.4.3 An Application to Bayesian ICA

Figure 7: The strutureof the LGSSM for ICA.

A partiular ase for whih the Bayesian LGSSM is of interest isin extrating independent soure signals underlying a multivariatetime-series [35, 26℄. This will demonstrate how the approah de-veloped in Setion (4.2) makes VB easily to apply. The soures siare modeled as independent in the following sense:
p(si

1:T , sj
1:T ) = p(si

1:T )p(sj
1:T ), for i 6= j, i, j = 1, . . . , C.Independene implies blok diagonal transition and state noise ma-tries A, ΣH and Σ, where eah blok c has dimension Hc. A onedimensional soure sc

t for eah independent dynamial subsystem isthen formed from sc
t = 1Tc hc

t , where 1c is a unit vetor and hc
t is thestate of dynamial system c. Combining the soures, we an write

st = Pht, where P = diag(1T1 , . . . ,1TC), ht = vert(h1
t , . . . , h

C
t ). Theresulting emission matrix is onstrained to be of the form B = WP ,where W is the V ×C mixing matrix. This means that the observa-tions are formed from linearly mixing the soures, vt = Wst + ηv

t .The graphial struture of this model is presented in Figure (7).To enourage redundant omponents to be removed, we plae a zero mean Gaussian prior on
W . In this ase, we do not de�ne a prior for the parameters ΣH and ΣV whih are insteadonsidered as hyperparameters. More details of the model are given in [35℄.4.4 DemonstrationAs a simple demonstration, we used a LGSSM to generate 3 soures sc

t with random 5 × 5transition matries Ac, µ = 0H and Σ ≡ ΣH ≡ IH . The soures were mixed into threeobservations vt = Wst + ηv
t , for W hosen with elements from a zero mean unit varianeGaussian distribution, and ΣV = IV . We then trained a Bayesian LGSSM with 5 soures and23



0 50 100 150 200 250 300(a) 0 50 100 150 200 250 300(b) 0 50 100 150 200 250 300() 0 50 100 150 200 250 300(d)Figure 8: (a) Original soures st. (b) Observations resulting from mixing the original soures,
vt = Wst + ηv

t , ηv
t ∼ N (0, I). () Reovered soures using the Bayesian LGSSM. (d) Souresfound with MAP LGSSM.

7×7 transition matries Ac. To bias the model to �nd the simplest soures, we used Âc ≡ 0Hc,Hcfor all soures. In Figure (8a) and Figure (8b) we see the original soures and the noisyobservations respetively. In Figure (8) we see the estimated soures from our method afteronvergene of the hyperparameter updates. Two of the 5 soures have been removed, and theremaining three are a reasonable estimation of the original soures. Another possible approahfor introduing prior knowledge is to use a Maximum a Posteriori (MAP) proedure by adding aprior term to the original log-likelihood log p(v1:T |A,W,Θ)+log p(A|α)+log p(W |β). However,it is not lear how to reliably �nd the hyperparameters α and β in this ase. One solution is toestimate them by optimizing the new objetive funtion jointly with respet to the parametersand hyperparameters (this is the so-alled joint map estimation � see for example [36℄). Atypial result of using this joint MAP approah on the arti�ial data is presented in Figure(8d). The joint MAP does not estimate the hyperparameters well, and the inorret numberof soures is identi�ed.4.5 DiscussionWe onsidered the appliation of Variational Bayesian learning to Linear Gaussian State-SpaeModels. This is an important lass of models with widespread appliation, and �nding a simpleway to implement this approximate Bayesian proedure is of onsiderable interest. The mostdemanding part of the proedure is inferene of the hidden states of the model. Previously,this has been ahieved using Belief Propagation, whih di�ers from inferene in the KalmanFiltering/Smoothing literature, for whih highly e�ient and stabilized proedures exist. Aentral ontribution of this work is to show how inferene an be written using the standardKalman Filtering/Smoothing reursions by augmenting the original model. Additionally, aminor modi�ation to the standard Kalman Filtering routine may be applied for omputationale�ieny. We demonstrated the elegane and unity of our approah by showing how to easilyapply a Variational Bayes analysis of temporal ICA. We hope that this simple and unifyinginterpretation of Variational Bayesian LGSSMs may therefore failitate the further appliationto related models.5 Blind Signal Separation by Disjoint Component Analysis5.1 IntrodutionRepresentation of measured data in terms of a number of generating auses or underlying�soures" is an important problem that has gained widespread attention in reent years, either24



with the goal of extrating known-to-exist soures from measurements (blind soure separa-tion), or in order to �nd an e�ient�possibly lower-dimensional�desription of given data(exploratory data analysis).We propose and investigate a novel tehnique, �disjoint omponent analysis" (DCA) that isbased on the goal of extrating omponents with maximally disjoint support from given data.I.e., it is sought to desribe the data in terms of omponents of whih as few as possible shouldbe ativated at any single time (or sample) point. Ideally, only a single soure proess wouldaount for a single sample of measured data, a goal that learly is too strong for real-worlddata. We demonstrate that it an be signi�antly relaxed while still retaining the bene�ialharateristis of the method.Disjoint support between generating soure proesses may onstitute a relevant general prini-ple in domains where other assumptions, e.g., statistial independene and the implied e�etivephysial separation of generating soure proesses, have to be postulated or justi�ed post-horather than dedued a-priori. In some ases suh as ommuniating speakers or densely in-teronneted nervous ells in the brain, theoretial onsiderations argue in favor of dependen-ies between soure proesses. Even though suh dependenies might turn out to be largelynegligible in some domains, it does appear to be worthwhile to onsider the impliations ofinorporating suh dependenies into the models.In the opposite diretion (and with a di�erent intention than ours), some authors have arguedthat soures that are often regarded as independent an e�etively be modeled as being �w-disjoint orthogonal" [37℄.5.2 Disjoint omponent analysis5.2.1 Derivation of algorithmWe onsider N observed signals x(t) = [x1(t), . . . , xN (t)]T whih may be thought to havebeen generated from (for onveniene) N underlying soures s(t) = [s1(t), . . . , sN (t)]T bymultipliation with a mixing system A as
x(t) = As(t) (30)It is sought to linearly transform the observations by a matrix W to obtain output signals
y(t) = Wx(t) (31)with omponents y(t) = [y1(t), . . . , yN (t)]T . When soure reonstrution is desired, theseshould resemble the soures up to arbitrary resaling and permutation. When an exploratorydata analysis view is adopted, the output signals should onvey a signal representation that ismeaningful in some to-be-spei�ed sense.A entral notion in our approah is the overlap
oij = E(|yi| |yj |) (32)between two output signals yi and yj with i 6= j, where E(·) denotes expetation and sampleindex t is omitted where onvenient. With oij ≥ 0 and oij = 0 if and only if yi(t) yj(t) = 0 forall t and i 6= j, two signals yi and yj have disjoint support if oij = 0. In this ase, yi and yjare alled disjoint, i.e., at most one of the signals is non-zero at any time.25



For stritly disjoint soure signals s(t) and a non-singular matrix A, stritly disjoint outputsan be obtained that resemble the soures up to arbitrary permutation and resaling.Note that in this ase soures are not mutually independent but exhibit statistial dependeniesthrough the negative orrelations of their signal envelopes or signal power time-ourses.While it is not possible in general to linearly transform an arbitrary signal x(t) into a signal
y(t) with only disjoint omponents, �nding minimally overlapping outputs is a natural goal asit orresponds to a signal desription in terms of proesses out of whih only a small number isative at any given time. In this sense, disjoint omponent analysis bears similarities with bothparts-based approahes and sparse oding assumptions. A natural hoie to obtain maximallydisjoint, minimally overlapping output signals is minimization of the funtion

H =
1

2

∑

i6=j

oij =
1

2

∑

i6=j

E(|yi| |yj |) (33)The global minimum H = 0 is attained only for stritly disjoint signals where for all t anysignal yi(t) 6= 0 if and only if yj(t) = 0 for all j 6= i. Substituting 31 into 33, the partialderivatives are given by
∂H

∂wij

= E
(

sign(yi)xj

∑

k 6=i

|yk|
) (34)whih in matrix notation reads

∇H = E
(
−yxH + ||y||1sign(y)xH

) (35)where ||y||1 =
∑

i |ui| denotes the 1-norm of y.A natural gradient [38℄ may be derived by right-multipliation with WT W, yielding
∇̃H = E

(
−yyH + ||y||1sign(y)yH

)
W (36)Without regularization the gradients onverge to the trivial solution W = 0. To remove thesaling ambiguity eah row wi of matrix W is �xed to unit-norm ||wi||2 = 1. Hene, eah row

∆i of ∇H is projeted aording to
∆⊥

i = ∆i − (∆H
i wi)wi (37)resulting in the projeted gradient matrix ∆⊥ that is then used for gradient desent. The �nalupdate rule for matrix W with a step size of η is

W←W − η ∆⊥ (38)for the ordinary gradient and similarly for the natural gradient. Periodi row re-normalizationof W is applied to keep it on the onstraint manifold for non-in�nitesimal η.5.3 Evaluation5.3.1 Syntheti data generationDisjoint soures si(t) may be generated from mutually independent signals ζi(t) by multiplyingthem with disjoint masking funtions µi(t) ∈ {0, 1} for all i, t and
si(t) = µi(t) ζi(t) (39)

E(µi µj) = 0 if i 6= j (40)26
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γij = E(µiµj) /E(µ2
i ) (41)with E(µ2
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The results look di�erent for data lass 2 with positive only soure values. Separation remainsexellent for data sets with a small overlap (0.0 ≤ γ ≤ 0.4), with again about 100 dB SIR. Inthe ase of independent soures at γ = 0.5, separation is still very good at 80 dB. Performanebreaks down for large overlaps (1.0 ≥ γ ≥ 0.6), an e�et whih we attribute to the positivityof the soures.5.3.4 Comparison with independent omponent analysisThe same data generated for subsetion 5.3.3 was re-analyzed with natural gradient infomaxICA [40, 38℄ using the ICA toolbox [41, 42℄ with logisti funtion non-linearity. For om-parison, a simple gradient approah with �xed step size and sign funtion non-linearity wasalso used and gave virtually idential results for data lass 1. On data lass 2, the �xed stepgradient approah gave qualitatively similar results but was outperformed by the referenedICA toolbox in terms of SIR separation performane. All soure signals have been heked tohave positive kurtosis.Results in Fig. 10 show that in most ases ICA results in a poorer SIR than DCA. For data lass2, ICA performs best when soures are independent (γ = 0.5) with a drop o� in performanetowards both lower and higher soure overlaps, whih is plausible due to ICA's independeneassumption.For data lass 1, ICA shows exellent signal separation for stritly disjoint soures (γ = 0.0).Performane is signi�antly lower, though still good, for independent soures, whih seems tostand in ontradition to the independene assumption. As expeted, performane dereasestowards soures with strong overlap (γ = 1.0).5.4 ConlusionDisjoint omponent analysis (DCA) has been shown to yield exellent performane for stritlydisjoint and moderately disjoint data sets. For data with high overlap between soures (weaklydisjoint), performane depends on the spei� type of data, with exellent performane for datasets with soures that take positive and negative observation values, and a break-down of per-formane in ase of purely positive soure data.The empirial algorithm evaluation showed a better separation performane for DCA than forICA under most onditions. Interestingly, ICA produed the best performane not for sta-tistially independent soures but for stritly disjoint ones (f. also ICA 2006 presentation ofI.C. Daubehies).While far from being onlusive, the results presented here appear to warrant a loser inves-tigation of the di�erenes and similarities of both algorithm lasses. It would be desirable togain experiene with a wider range of syntheti and natural data than ould be presented here.We are tempted to speulate that DCA might be appropriate in partiular for analyzing datawhere the independene assumption is not stritly ful�lled, where a data representation interms of disjoint omponents is preferable to independent omponents, and where signals areomprised of positive only measurement values. This ould be the ase, e.g., for brain signalssuh fMRI, for data from dialog speeh signals, and for omparably short signal sequeneswhere independene annot be fully attained due to �nite sample e�ets.29
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