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Abstract: 

Understanding the statistical regularities in an environment may be cast as a 

probabilistic model-building task. However, a key difficulty is that in many 

situations the quantity of interest is only a part of the complex environment, and 

therefore finding an appropriate signal decomposition is of considerable interest. 

  

One case is when the signal of interest has been linearly mixed with other signals, 

such as might occur when several people are speaking concurrently. A theoretical 

contribution is made in which the signal is decomposed into approximately disjoint 

subunits, and is shown to outperform classical Independent Components Analysis 

approaches when the sources exhibit statistical dependencies. 

  

Another important case is noise corruption. In order to tackle this issue one approach 

is to build a model of both the signal of interest and also any corrupting `noise' 

signals.  In our approach we explicitly construct a forward-model and then use Bayes 

rule to infer the feature distribution. One may interpret the latent variables in the 

model as `features'. A potential advantage of this approach over the more traditional 

approach is that, provided a sufficiently flexible noise model is incorporated, it 

should be possible to separate features which are responsible for generating signal 

from features which are responsible for generating noise. 
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1 OverviewUnderstanding the statisti
al regularities in an environment may be 
ast as a probabilisti
model-building task. However, a key di�
ulty is that in many situations the quantity of in-terest is only a part of the 
omplex environment, and therefore �nding an appropriate signalde
omposition is of 
onsiderable interest.One 
ase 
onsidered in the work here is when the signal of interest has been linearly mixedwith other signals, su
h as might o

ur in several people speaking 
on
urrently. A theoreti
al
ontribution is made in whi
h the signal is de
omposed into approximately disjoint subunits,and is shown to outperform 
lassi
al Independent Components Analysis approa
hes when thesour
es exhibit statisti
al dependen
ies.Another important 
ase is noise 
orruption. For example, a spee
h signal may be embeddedwithin a 
orrupting noise signal. In order to ta
kle this issue one approa
h is to build a modelof both the signal of interest and also any 
orrupting `noise' signals. In this way the jointsignal-noise model enables the extra
tion of signal from noise. In order to pro
eed with thisframework, expli
it models of both the signal and noise pro
esses need to be made.
‘Inverse’ versus ‘forward’ Feature ModellingThe traditional viewpoint of a feature is based on an inverse-model p(features|signal), see Figure(1). Whilst this approa
h is undoubtedly su

essful, when the signal is heavily 
orrupted withnoise, �nding `noise' free features is di�
ult. Similarly, modelling expli
itly the dynami
s whi
hare 
orrupted with noise is highly 
omplex. For this reason, many traditional approa
hes arenot robust to 
orrupting e�e
ts in the environment.signal ⇒ features ⇐ modelFigure 1: The traditional `forward' approa
h to feature extra
tion and modelling. First featuresare extra
ted from the signal whi
h are subsequently modelled, p(features|signal,model). Noisee�e
ts are dealt with by 
hoosing appropriate features whi
h are as `noise' free as possible.In the work 
arried out within the DIRAC proje
t, the aim has been to study a di�erentmodelling strategy in whi
h a single 
onsistent model of the joint noise and signal envi-ronment is made, see Figure (2). In our approa
h we expli
itly 
onstru
t a forward-model
p(signal|features) and use Bayes rule to then infer the feature distribution. In this sense, one
an interpret the latent variables in the model as `features'. A potential advantage of this ap-proa
h over the more traditional approa
h is that, provided a su�
iently �exible noise modelis in
orporated, it should be possible to separate features whi
h are responsible for generatingsignal from features whi
h are responsible for generating noise.
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signal ⇐ features ⇐ modelFigure 2: The `inverse' feature te
hnique. Here a single 
onsistent model
p(signal|features)p(features|model) generates features whi
h in turn generate 
omponents of thesignal. If desired, features may be then extra
ted using Bayes rule p(features|signal,model) ∝
p(signal|features)p(features|model).It should perhaps be emphasized that this `forward' te
hnique ultimately 
orresponds to `throw-ing away useless information' about the signal, as in the more standard feature extra
tionte
hnique sin
e, in both 
ases, ultimately the underlying model of interest for tasks su
h asASR is the one generating the feature distribution. The two approa
hes are therefore justdi�erent ways at extra
ting relevant features from a signal.A parti
ular fo
us of the work 
arried out has been to make spe
i�
 models of a
ousti
 signals,based mainly on extensions of linear dynami
al systems. In order to improve robustness and�exibility, additional parameter priors have been in
orporated leading to Bayesian treatmentsof the related models.The work is 
omposed of novel theoreti
al 
omponents, in
luding
• State-of-the-art method for inferen
e in Swit
hing Linear Dynami
al Systems
• Bayesian Swit
hing Autoregressive Model
• State-of-the-art te
hnique for dealing with Bayesian Linear Dynami
al Systems
• Identi�
ation of independent dynami
al pro
esses underlying signal generation
• Stable inferen
e te
hniques in large-s
ale Gaussian distributionsThis work is des
ribed in detail in the following DIRAC publi
ations:1. D. Barber. Expe
tation Corre
tion for smoothing in Swit
hing Linear Gaussian StateSpa
e models. Journal of Ma
hine Learning Resear
h, 2006.2. S. Chiappa and D. Barber. Bayesian Linear Gaussian State Spa
e Models for BiosignalDe
omposition. Signal Pro
essing Letters, 2007.3. D. Barber and B. Mesot. A Novel Gaussian Sum Smoother for Approximate Inferen
ein Swit
hing Linear Dynami
al Systems. In Advan
es in Neural Information Pro
essingSystems (NIPS), volume 20, 2006.4. B. Mesot and D. Barber. A Bayesian Treatment of Gain Adaptation in Swit
hing AR-HMMs. ICASSP 20075. D. Barber and S. Chiappa. Uni�ed Inferen
e for Variational Bayesian Linear GaussianState-Spa
e Models. In Advan
es in Neural Information Pro
essing Systems (NIPS),volume 20, 2006.A brief summary of the proje
ts 
omprising these works is detailed below.
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Switching Linear Dynamical Systems for Noisy ASRMost modern Automati
 Spee
h Re
ognition systems perform pre-pro
essing to extra
t fea-tures. However, in noisy environments, su
h methods are often brittle sin
e they are �ne-tunedto work only in 
lean-spee
h environments. A key issue therefore in advan
ing re
ognition inreal-world environments is to separate signal from noise. In our approa
h we use strong priorknowledge of spee
h at the waveform level to help separate spee
h from noise and performmore robust 
lassi�
ation.Our models are based on Swit
hing Linear Dynami
al Systems (SLDS), whereby ea
h linearsystem is responsible for generating the waveform over a period of roughly 100ms. In thissense, ea
h `feature' is a linear signal generator. The traditional viewpoint of a feature is basedon an inverse-model p(feature|signal). In our approa
h we expli
itly 
onstru
t a forward-modelp(signal|feature) and use Bayes rule to then infer the feature distribution. In this sense, one
an interpret the latent variables in the SLDS as `features' that are responsible for signal seg-ments lasting up to several hundred millise
onds.To deal with noise, we expli
itly in
lude additional additive 
omponents to the waveform,resulting in a Dynami
al Bayesian Network to model both spee
h and noise pro
esses simul-taneously. The advantage of this general approa
h is that the features for the signal 
an beisolated from noise 
orrupting e�e
ts. We then trained su
h models to perform ASR on a sim-ple problem, isolated TI-DIGITS, but 
orrupted with very large amounts of additive Gaussiannoise.Whilst standard ASR systems perform well in low-noise environments, but degrade rapidlywith in
reasing noise, our system degrades gra
efully under very large noise. A future di-re
tion for su
h work is to extend the models to deal with more generi
 spee
h and noiseenvironments in order to make a more �exible te
hnique for separating spee
h from noise.
Inference in Switching Linear Dynamical SystemsWhilst the SLDS framework is 
on
eptually straightforward, learning and inferen
e in an SLDSis formally 
omputationally intra
table, and approximate te
hniques need to be developed. Wepresented a state-of-the-art method for inferen
e in the generi
 
lass of Swit
hing Linear Dy-nami
al Systems. The method is based on a novel mixture-of-Gaussians smoother.From a theoreti
al perspe
tive, of interest in this work is the approa
h taken to form anapproximation. In most approximation s
hemes an obje
tive 
riterion is proposed, from whi
han algorithm may be developed to optimise the 
riterion. In our approa
h we start ratherfrom the exa
t re
ursions that would result from intra
table inferen
e in the full system, andapproximate these re
ursions. Whilst this does not derive from a simple global obje
tive,it leads to a simple s
heme that strives to remain faithful to the exa
t inferen
e pro
edure.Extensive experiments show that the method outperforms a wide-range of 
ompeting methods.
Bayesian Switching Autoregressive ModelOne of the known di�
ulties in the implementation of waveform level models in a
ousti
 signalpro
essing is the issue of gain adaptation, whi
h refers to the 
hanging volume levels in theenvironment and also in the spee
h re
ordings. We dis
ussed how to improve �exibility ofthe swit
hing linear models by pla
ing a distribution on the noise levels, improving robustness6



to the varying noise levels and thereby improving generalization performan
e. Our aim is toextend this 
lass of models to deal with a wider 
lass of spee
h signals in order to deal moree�e
tively with 
hanges in the environment.
Bayesian Linear Dynamical SystemsLinear Dynami
al Systems (LDS) are one of the 
entral tools in signal analysis. A Bayesiantreatment of this extensive 
lass of models is therefore of 
onsiderable general interest. Theapproximate Variational Bayesian method applied to these models is an attra
tive approa
h,used su

essfully in a
ousti
s appli
ations. The most 
hallenging aspe
t of implementing themethod is in performing inferen
e on the hidden state sequen
e of the model. We show howto 
onvert the inferen
e problem so that standard and stable Kalman Filtering/Smoothingre
ursions from the literature may be applied. This is in 
ontrast to previously approa
hesbased on Belief Propagation. Our framework both simpli�es and uni�es the inferen
e problem,so that future appli
ations may be more easily developed. We hope that our approa
h willbe the standard te
hnique for implementing the variational approximation to Bayesian LinearDynami
al Systems.
Independent Component Signal AnalysisWe applied our Bayesian Linear Dynami
al System framework to a fa
torized latent spa
e,whi
h 
orresponds to analyzing a signal into independent 
omponents. In parti
ular, we usedour Bayesian pro
edure to bias ea
h independent 
omponent to be restri
ted to a parti
ularfrequen
y band. This results in an analysis that breaks the signal into separate frequen
y
omponents. Unlike the FFT, the method is �exible in that there is a prior preferen
e tofor ea
h independent 
omponent to remain 
lose to a desired frequen
y, resulting in a signalde
omposition that is able to adapt to moderate 
hanges in frequen
ies in the signal.
Blind Signal Separation by Disjoint Component AnalysisA novel method for blind signal separation and analysis, disjoint 
omponent analysis (DCA),is proposed whi
h is based on minimizing the overlap of output signals, thereby making theirsupport maximally disjoint. Performan
e of DCA alone and in 
omparison to ICA is evaluatedin dependen
e to sour
e overlap and sour
e independen
e. It is 
on
luded that DCA may beof parti
ular value in appli
ations where independen
e is not ful�lled and where measurementdata is positive-valued.A more detailed report of the above 
ontributions follows.2 Bayesian Autoregressive Hidden Markov ModelsModels dealing with the raw a
ousti
 spee
h signal dire
tly are an alternative to 
onventionalfeature-based Hidden Markov Models (HMMs). One of the most popular examples is theAutoregressive (AR) Pro
ess whi
h models a sample yt of a spee
h signal�represented as asequen
e of samples y1:T�as a linear 
ombination of the R previous samples plus a Gaussiandistributed innovation η

yt =

R∑

r=1

cryt−r + ηt with ηt ∼ N (0, σ2) (1)7



st−1 st st+1

vt−1 vt vt+1Figure 3: DBN representation of the SAR-HMM. The squares and 
ir
les represent dis
reteand 
ontinuous variables respe
tively�st symbolises the state at time t and yt the observedsample at time t.where σ2 is the varian
e of the innovation and cr are the AR 
oe�
ients. However, an AR pro-
ess is too simple to model the strong non-stationarities typi
ally en
ountered in spee
h signals.A possible way to deal with non-stationarity is to sele
t at ea
h timestep t a setting of theAR parameters from a dis
rete set of possible parameter values, with the swit
hing betweenthe parameters 
ontrolled by a Markov Model. This approa
h is at the root of the AR HiddenMarkov Model (AR-HMM) proposed by Poritz [1℄ and its modern-day 
ounterpart the Swit
h-ing AR-HMM (SAR-HMM), proposed by Ephraim and Roberts [2℄.At the heart of the above models lies a standard AR-pro
ess. However, a fundamental limi-tation of su
h AR models is that the innovation varian
e σ2 does not s
ale properly with thesignal. In parti
ular, if the signal is s
aled by a fa
tor α, we would expe
t the innovationvarian
e to s
ale by a fa
tor α2 as well. In other words, the `gain' of the sequen
e, σ, needs tobe set for ea
h sequen
e, and has a strong impa
t on the likelihood of an observed sequen
e. Astraightforward solution is to gain normalise the signal su
h that it always has unit varian
e.An alternate and more e�e
tive solution is to repla
e σ2 in Equation 1 by the varian
e whi
hmaximises the likelihood of the spee
h signal y1:T

σ2
ML = arg max

σ2

p(y1:T |σ
2). (2)This approa
h, 
alled Gain Adaptation (GA), has been su

essfully used for isolated digitre
ognition with AR-HMMs in 
lean and noisy environments [2, 3, 4℄. Whilst useful in pra
ti
e,GA does not �t into the usual ma
hine learning framework sin
e, formally, model parametersmay only be set on the basis of training data. Otherwise, in �exible models, setting modelparameters on the basis of test data may lead to over�tting. We therefore 
onsider a statisti
allyprin
ipled alternative Bayesian approa
h to gain adaptation whi
h 
onsists in spe
ifying aprior probability distribution on the model parameters. This approa
h has two potentialbene�ts over standard GA(i) the variations of the gain 
an be expli
itly 
ontrolled, and (ii) theAR 
oe�
ients are allowed to 
hange, whi
h may be useful to model inter and intra speakervariations for example.Here we present the Bayesian SAR-HMM whi
h generalises the standard a
ousti
 level SAR-HMM, 
on
urrently dealing with the issues of GA and parameter un
ertainty in a 
omputa-tionally e�
ient and prin
ipled manner.2.1 The SAR-HMMThe standard SAR-HMM[2, 3, 4℄ has a dis
rete swit
h variable whi
h 
an be in S di�erentstates, ea
h state representing a parti
ular setting of the AR 
oe�
ients cr and innovationvarian
e σ2 used in Equation 1. From a probabilisti
 viewpoint, the model de�nes a joint8



distribution over the sequen
es of observed samples y1:T and swit
h states s1:T of the form
p(y1:T , s1:T ) =

T∏

t=1

p(yt | yt−R:t−1, st) p(st | st−1) (3)where p(yt | yt−R:t−1, st) ≡ p(yt | y1:t−1, st) if t ≤ R and p(s1 | s0) ≡ p(s1). The emissionprobability, 
orresponding to Equation 1, is given by
p(yt | yt−R:t−1, st) ∝ exp

{

−
1

2σ2
st

(
yt − ỹTt cst

)2
} (4)where ỹTt = [yt−1 . . . yt−R] and cst = [c1(st) . . . cR(st)]
T.In pra
ti
e it is not desirable to allow the swit
h state to 
hange at ea
h time step be
ausewe expe
t the dynami
s to last for a minimal amount of time�1.75ms in our 
ase1. In theSAR-HMM, the spee
h signal is therefore 
onsidered as the 
on
atenation of N �xed-lengthsegments over whi
h the state 
annot 
hange. This 
orresponds to the joint distribution

p(y1:T , s1:N ) =
N∏

n=1

p(sn | sn−1)

tn+1−1
∏

t=tn

p(yt | ỹt, sn) (5)where tn is the time step at whi
h the n-th segment starts2.
Gain Adaptation in the SAR-HMMGiven a sequen
e of samples y1:T , GA is performed in the SAR-HMM by repla
ing the state in-novation varian
es σ2

s in Equation 4 by the per segment and state varian
es σ2
ns whi
h maximisethe likelihood of the observed sequen
e y1:T , i.e.,

σ2
ns =

1

Tn

tn+1−1
∑

t=tn

(
yt − ỹtcs

)2where Tn = tn+1 − tn − 1 is the length of the n-th segment.2.2 The Bayesian SAR-HMMIn the SAR-HMM the AR 
oe�
ients cs and innovation varian
es σ2
s are 
onsidered as freeparameters that have to be learned from data. In the proposed Bayesian approa
h we treatthem as random variables whose probability distributions are 
ontrolled by hyper-parameters.Figure 4 shows the Dynami
al Bayesian Network (DBN) representation of the Bayesian SAR-HMM. A parti
ular segment n is modelled by an R-th order AR pro
ess whose 
oe�
ients cnand inverse innovation varian
e3 νn are drawn randomly from a prior distribution 
onditionedon the swit
h state sn. Formally the Bayesian SAR-HMM de�nes the joint distribution

p(y1:T , s1:N , c1:N , ν1:N ) = (6)
N∏

n=1

p(yn | ỹtn , cn, νn) p(cn, νn | sn) p(sn | sn−1)1This 
orresponds to 140 samples at a sampling frequen
y of 8 kHz.2To save spa
e, we repla
ed yt−R:t−1 by ỹt in Equation 5. Hen
e p(yt | ỹt, st) is shorthandfor p(yt | yt−R:t−1, st).3To ease notation we prefer using the inverse varian
e ν = 1/σ2.9



sn−1 sn sn+1

cn−1 cn cn+1

yt−2 yt−1 yt yt+1 yt+2

νn

Figure 4: DBN representation of the Bayesian SAR-HMM. The graph represents a model withsegments of 3 samples and an AR pro
ess of order 2. The index n represents the segmentnumber. Squares and 
ir
les represent dis
rete and 
ontinuous variables respe
tively.whi
h is a temporal extension of [5℄. Expli
itly,
p(yn | ỹtn , cn, νn) =

tn+1−1
∏

t=tn

p(yt | ỹt, cn, νn). (7)The new fa
tor
p(cn, νn | sn) = p(cn | νn, sn) p(νn | sn)de�nes priors on the AR 
oe�
ients and the inverse innovation varian
e of the n-th segment.In order to keep the model tra
table, we use the 
onjugate priors4

c | ν, s ∼ N (µs, ν
−1Σs) and ν | s ∼ γ(αs, βs)whereN (µ,Σ) is the multivariate normal distribution with mean µ and 
ovarian
e Σ, and γ(α, β)is the gamma distribution de�ned as

γ(α, β) =
βα

Γ(α)
να−1e−βν .2.3 TrainingThe free parameters of the Bayesian SAR-HMM are, µs, Σs, αs, βs, for ea
h state s, and thetransition probability aij ≡ p(sn = j | sn−1 = i) for ea
h pair (i, j) of swit
h states. Trainingthe model 
onsists of maximising the likelihood of the observed training data

p(y1:T ) =
∑

s1:N ,c1:N ,ν1:N

p(y1:T , s1:N , c1:N , ν1:N ). (8)To a
hieve this, we use the standard Expe
tation Maximisation (EM) algorithm. Given the
urrent setting of the model parameters φ, an updated setting φ̂ is found by maximising (M-step) the expe
ted 
omplete log-likelihood (E-step)
〈

log p
(
y1:T , s1:N , c1:N , ν1:N | φ̂

)〉

q
(9)where 〈·〉q is the average with respe
t to the posterior

q ≡ p(s1:N , c1:N , ν1:N | y1:T , φ). (10)4The segment number has been dropped to simplify the notation.10



Model Word A

ura
yHMM (HTK) 100%SAR-HMM (no gain) 88.3%SAR-HHM (gain) 97.2% (98.5%)Bayesian SAR-HMM 98.4%Table 1: Word a

ura
y of three di�erent models on a single digit re
ognition task on theTI-DIGITS database; gain and no gain indi
ates whether or not gain adaptation has beenused. The performan
e of the gain adapted SAR-HMM reported in [2℄ is indi
ated betweenparenthesis.2.4 PerformanceWe 
ompared the Bayesian SAR-HMM to the original SAR-HMM proposed in [2℄, with andwithout gain adaptation, and a standard feature-based HMM. The task was to re
ognise iso-lated digits pronoun
ed by various male speakers from the TI-DIGITS database [6℄. Thetraining/test sets were 
omposed of 110/112 utteran
es for ea
h of the eleven digits (1�9,`zero' and `oh'), spoken by 55/56 di�erent speakers respe
tively. Ea
h digit 
lass was modelledby a separate SAR-HMM and re
ognition performed by asso
iating the utteran
e to the digitwhose model had the highest likelihood. Whilst this spee
h 
lassi�
ation problem is relativelyeasy, the e�e
tive volume on ea
h utteran
e is di�erent so that, for AR-based models, someform of GA is 
ru
ial for good performan
e.All SAR-HMMs were 
omposed of 10 states with a left-right transition matrix and a 10-thorder AR pro
ess per state, in keeping with the optimal values found in [2℄. The BayesianSAR-HMM was initialised with hyperparameter αs = 10. The transition matrix of BayesianSAR-HMM was set to the trained standard SAR-HMM and, for ea
h state, the priors on theAR 
oe�
ients and the inverse varian
e were set su
h that their means (α/β) 
orresponds tothe AR 
oe�
ients and inverse varian
e obtained from the trained SAR-HMM. The 
ovarian
ematrix Σs was initialised to 1
〈νs〉

I, where I is the identity matrix.The feature-based HMM was 
omposed of 18 states with a left-right transition matrix, amixture of three Gaussians per state and used 13 MFCC features, in
luding energy and im-plemented using HTK [7℄.Table 1 shows the word a

ura
y of ea
h model. The performan
e of the gain adapted SAR-HMM is reprodu
ed from [2℄. All the other results have been obtained by our own imple-mentation of the respe
tive models. Note that the a

ura
y we obtained for the gain adaptedSAR-HMM is slightly below that reported in [2℄. The Bayesian and gain adapted SAR-HMMhave a word a

ura
y whi
h is 10% higher than that of the non gain adapted SAR-HMM.This demonstrates that dealing with the gain problem is 
ru
ial to ensure good performan
e.The similar performan
e of the Bayesian and gain adapted SAR-HMM demonstrates that theBayesian approa
h is a sensible prin
ipled alternative to gain adaptation.2.5 DiscussionModeling the raw a
ousti
 signal is an alternative strategy to using feature based HMMs forspee
h re
ognition. A motivation for this is that strong signal models may be used to removenoise, and 
an also form the basis of powerful hierar
hi
al models of the signal. However,11



s1 s2 s3 s4

h1 h2 h3 h4

v1 v2 v3 v4Figure 5: The independen
e stru
ture of the aSLDS. Square nodes denote dis
rete variables,round nodes 
ontinuous variables. In the SLDS links from h to s are not normally 
onsidered.signal models based on AR-pro
esses are over-sensitive to signal amplitude, and this problemis typi
ally healed using ad-ho
 Gain Adaptation. In 
ontrast, our Bayesian approa
h providesa statisti
ally prin
ipled and straightforward exa
t alternative to standard Maximum Likeli-hood Gain Adaptation. The result is a simple update formula whi
h 
orre
tly deals with theun
ertainty in the parameter estimates from the training set, and automati
ally 
omputes theposterior distribution of parameters in light of test data. This is an en
ouraging step towardsthe development of more 
omplex signal and noise models, in whi
h the �exibility of the modelsis every in
reasing.3 Switching Linear Dynamical SystemsThe Linear Dynami
al System (LDS) [8℄ is a key temporal model in whi
h a latent linearpro
ess generates the observed series. For 
omplex time-series whi
h are not well des
ribedglobally by a single LDS, we may break the time-series into segments, ea
h modeled by apotentially di�erent LDS. This is the basis for the Swit
hing LDS (SLDS) [9, 10, 11, 12℄ where,for ea
h time t, a swit
h variable st ∈ 1, . . . , S des
ribes whi
h of the LDSs is to be used. Theobservation (or `visible') vt ∈ R
V is linearly related to the hidden state ht ∈ R

H with additivenoise η by
vt = B(st)ht + ηv(st) ≡ p(vt|ht, st) = N (B(st)ht,Σ

v(st)) (11)where N (µ,Σ) denotes a Gaussian distribution with mean µ and 
ovarian
e Σ. The transitiondynami
s of the 
ontinuous hidden state ht is linear,
ht = A(st)ht−1 + ηh(st), ≡ p(ht|ht−1, st) = N

(

A(st)ht−1,Σ
h(st)

) (12)The swit
h st may depend on both the previous st−1 and ht−1. This is an augmented SLDS(aSLDS), and de�nes the model
p(v1:T , h1:T , s1:T ) =

T∏

t=1

p(vt|ht, st)p(ht|ht−1, st)p(st|ht−1, st−1)The standard SLDS[11℄ 
onsiders only swit
h transitions p(st|st−1). At time t = 1, p(s1|h0, s0)simply denotes the prior p(s1), and p(h1|h0, s1) denotes p(h1|s1). The aim of this arti
le is toaddress how to perform inferen
e in the aSLDS. In parti
ular we desire the �ltered estimate
p(ht, st|v1:t) and the smoothed estimate p(ht, st|v1:T ), for any 1 ≤ t ≤ T . Both �ltered andsmoothed inferen
e in the SLDS is intra
table, s
aling exponentially with time [11℄.3.1 Expectation CorrectionOur approa
h to approximate p(ht, st|v1:T )mirrors the Rau
h-Tung-Striebel `
orre
tion' smootherfor the simpler LDS [8℄.The method 
onsists of a single forward pass to re
ursively �nd the �l-tered posterior p(ht, st|v1:t), followed by a single ba
kward pass to 
orre
t this into a smoothed12



posterior p(ht, st|v1:T ). The forward pass we use is equivalent to standard Assumed DensityFiltering (ADF) [13℄. The main 
ontribution of this work is a novel form of ba
kward pass,based only on 
ollapsing the smoothed posterior to a mixture of Gaussians. Together with theADF forward pass, we 
all the method Expe
tation Corre
tion, sin
e it 
orre
ts the momentsfound from the forward pass.3.1.1 Forward Pass (Filtering)Readers familiar with ADF may wish to 
ontinue dire
tly to Se
tion (3.1.2). Our aim is toform a re
ursion for p(st, ht|v1:t), based on a Gaussian mixture approximation of p(ht|st, v1:t).Without loss of generality, we may de
ompose the �ltered posterior as
p(ht, st|v1:t) = p(ht|st, v1:t)p(st|v1:t) (13)The exa
t representation of p(ht|st, v1:t) is a mixture with O(St) 
omponents. We thereforeapproximate this with a smaller I-
omponent mixture
p(ht|st, v1:t) ≈

I∑

it=1

p(ht|it, st, v1:t)p(it|st, v1:t)where p(ht|it, st, v1:t) is a Gaussian parameterized with mean f(it, st) and 
ovarian
e F (it, st).To �nd a re
ursion for these parameters, 
onsider
p(ht+1|st+1, v1:t+1) =

∑

st,it

p(ht+1|st, it, st+1, v1:t+1)p(st, it|st+1, v1:t+1) (14)
Evaluating p(ht+1|st, it, st+1, v1:t+1)We �nd p(ht+1|st, it, st+1, v1:t+1) by �rst 
omputing the joint distribution p(ht+1, vt+1|st, it, st+1, v1:t),whi
h is a Gaussian with 
ovarian
e and mean elements,
Σhh = A(st+1)F (it, st)A

T(st+1) + Σh(st+1), Σvv = B(st+1)ΣhhBT(st+1) + Σv(st+1)

Σvh = B(st+1)F (it, st), µv = B(st+1)A(st+1)f(it, st), µh = A(st+1)f(it, st) (15)and then 
onditioning on vt+1
5. For the 
ase S = 1, this forms the usual Kalman Filterre
ursions[8℄.

Evaluating p(st, it|st+1, v1:t+1)The mixture weight in Equation (14) 
an be found from the de
omposition
p(st, it|st+1, v1:t+1) ∝ p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t) (16)The �rst fa
tor in Equation (16), p(vt+1|it, st, st+1, v1:t) is a Gaussian with mean µv and 
o-varian
e Σvv, as given in Equation (15). The last two fa
tors p(it|st, v1:t) and p(st|v1:t) aregiven from the previous iteration. Finally, p(st+1|it, st, v1:t) is found from
p(st+1|it, st, v1:t) = 〈p(st+1|ht, st)〉p(ht|it,st,v1:t)

(17)where 〈·〉p denotes expe
tation with respe
t to p. In the SLDS, Equation (17) is repla
ed bythe Markov transition p(st+1|st). In the aSLDS, however, Equation (17) will generally need tobe 
omputed numeri
ally.5p(x|y) is a Gaussian with mean µx + ΣxyΣ−1
yy (y − µy) and 
ovarian
e Σxx − ΣxyΣ−1

yy Σyx.13



Closing the recursionWe are now in a position to 
al
ulate Equation (14). For ea
h setting of the variable st+1, wehave a mixture of I × S Gaussians whi
h we numeri
ally 
ollapse ba
k to I Gaussians to form
p(ht+1|st+1, v1:t+1) ≈

I∑

it+1=1

p(ht+1|it+1, st+1, v1:t+1)p(it+1|st+1, v1:t+1)Any method of 
hoi
e may be supplied to 
ollapse a mixture to a smaller mixture; our 
odesimply repeatedly merges low-weight 
omponents. In this way the new mixture 
oe�
ients
p(it+1|st+1, v1:t+1), it+1 ∈ 1, . . . , I are de�ned, 
ompleting the des
ription of how to form are
ursion for p(ht+1|st+1, v1:t+1) in Equation (13). A re
ursion for the swit
h variable is givenby

p(st+1|v1:t+1) ∝
∑

st,it

p(vt+1|st+1, it, st, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)where all terms have been 
omputed during the re
ursion for p(ht+1|st+1, v1:t+1).The likelihood p(v1:T ) may be found by re
ursing p(v1:t+1) = p(vt+1|v1:t)p(v1:t), where
p(vt+1|vt) =

∑

it,st,st+1

p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)3.1.2 Backward Pass (Smoothing)The main 
ontribution of our work is to �nd a suitable way to `
orre
t' the �ltered posterior
p(st, ht|v1:t) obtained from the forward pass into a smoothed posterior p(st, ht|v1:T ). We derivethis for the 
ase of a single Gaussian representation. We approximate the smoothed posterior
p(ht|st, v1:T ) by a Gaussian with mean g(st) and 
ovarian
e G(st) and our aim is to �nd are
ursion for these parameters. A useful starting point for a re
ursion is:

p(ht, st|v1:T ) =
∑

st+1

p(st+1|v1:T )p(ht|st, st+1, v1:T )p(st|st+1, v1:T )The term p(ht|st, st+1, v1:T ) may be 
omputed as
p(ht|st, st+1, v1:T ) =

∫

ht+1

p(ht|ht+1, st, st+1, v1:t)p(ht+1|st, st+1, v1:T ) (18)The re
ursion therefore requires p(ht+1|st, st+1, v1:T ), whi
h we 
an write as
p(ht+1|st, st+1, v1:T ) ∝ p(ht+1|st+1, v1:T )p(st|st+1, ht+1, v1:t) (19)The di�
ulty here is that the fun
tional form of p(st|st+1, ht+1, v1:t) is not squared exponen-tial in ht+1, so that p(ht+1|st, st+1, v1:T ) will not be Gaussian6. One possibility would be toapproximate the non-Gaussian p(ht+1|st, st+1, v1:T ) by a Gaussian (or mixture thereof) by min-imizing the Kullba
k-Leilbler divergen
e between the two, or performing moment mat
hing inthe 
ase of a single Gaussian. A simpler alternative (whi
h forms `standard' EC) is to makethe assumption p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), where p(ht+1|st+1, v1:T ) is alreadyknown from the previous ba
kward re
ursion. Under this assumption, the re
ursion be
omes

p(ht, st|v1:T ) ≈
∑

st+1

p(st+1|v1:T )p(st|st+1, v1:T ) 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (20)6In the exa
t 
al
ulation, p(ht+1|st, st+1, v1:T ) is a mixture of Gaussians. However, sin
e in Equation (19)the two terms p(ht+1|st+1, v1:T ) will only be approximately 
omputed during the re
ursion, our approximationto p(ht+1|st, st+1, v1:T ) will not be a mixture of Gaussians.14



Evaluating 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T )

〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) is a Gaussian in ht, whose statisti
s we will now 
om-pute. First we �nd p(ht|ht+1, st, st+1, v1:t) whi
h may be obtained from the joint distribution
p(ht, ht+1|st, st+1, v1:t) = p(ht+1|ht, st+1)p(ht|st, v1:t) (21)whi
h itself 
an be found from a forward dynami
s from the �ltered estimate p(ht|st, v1:t). Thestatisti
s for the marginal p(ht|st, st+1, v1:t) are simply those of p(ht|st, v1:t), sin
e st+1 
arriesno extra information about ht. The remaining statisti
s are the mean of ht+1, the 
ovarian
eof ht+1 and 
ross-varian
e between ht and ht+1, whi
h are given by

〈ht+1〉=A(st+1)ft(st), Σt+1,t+1 =A(st+1)Ft(st)A
T(st+1)+Σh(st+1), Σt+1,t =A(st+1)Ft(st)Given the statisti
s of Equation (21), we may now 
ondition on ht+1 to �nd p(ht|ht+1, st, st+1, v1:t).Doing so e�e
tively 
onstitutes a reversal of the dynami
s,

ht =
←−
A (st, st+1)ht+1 +←−η (st, st+1)where ←−A (st, st+1) and ←−η (st, st+1) ∼ N (←−m(st, st+1),

←−
Σ(st, st+1)) are easily found using 
ondi-tioning. Averaging the above reversed dynami
s over p(ht+1|st+1, v1:T ), we �nd that 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1is a Gaussian with statisti
s

µt =
←−
A (st, st+1)g(st+1)+←−m(st, st+1), Σt,t =

←−
A (st, st+1)G(st+1)

←−
AT(st, st+1)+

←−
Σ(st, st+1)These equations dire
tly mirror the standard RTS ba
kward pass[8℄.

Evaluating p(st|st+1, v1:T )The main departure of EC from previous methods is in treating the term
p(st|st+1, v1:T ) = 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (22)The term p(st|ht+1, st+1, v1:t) is given by
p(st|ht+1, st+1, v1:t) =

p(ht+1|st+1, st, v1:t)p(st, st+1|v1:t)
∑

s′t
p(ht+1|st+1, s′t, v1:t)p(s′t, st+1|v1:t)

(23)Here p(st, st+1|v1:t) = p(st+1|st, v1:t)p(st|v1:t), where p(st+1|st, v1:t) o

urs in the forward pass,Equation (17). In Equation (23), p(ht+1|st+1, st, v1:t) is found by marginalizing Equation (21).Computing the average of Equation (23) with respe
t to p(ht+1|st+1, v1:T ) may be a
hieved byany numeri
al integration method desired. A simple approximation is to evaluate the integrandat the mean value of the averaging distribution p(ht+1|st+1, v1:T ).
Closing the RecursionWe have now 
omputed both the 
ontinuous and dis
rete fa
tors in Equation (18), whi
h wewish to use to write the smoothed estimate in the form p(ht, st|v1:T ) = p(st|v1:T )p(ht|st, v1:T ).The distribution p(ht|st, v1:T ) is readily obtained from the joint Equation (18) by 
onditioningon st to form the mixture

p(ht|st, v1:T ) =
∑

st+1

p(st+1|st, v1:T )p(ht|st, st+1, v1:T )whi
h may then be 
ollapsed to a single Gaussian (the mixture 
ase is dis
ussed in the publishedversion of this work). The smoothed posterior p(st|v1:T ) is given by
p(st|v1:T ) =

∑

st+1

p(st+1|v1:T ) 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) . (24)15



3.1.3 Relation to other methodsThe EC Ba
kward pass is 
losely related to Kim's method [14℄. In both EC and Kim's method,the approximation p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), is used to form a numeri
allysimple ba
kward pass. The other `approximation' in EC is to numeri
ally 
ompute the averagein Equation (24). In Kim's method, however, an update for the dis
rete variables is formed byrepla
ing the required term in Equation (24) by
〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) ≈ p(st|st+1, v1:t) (25)Sin
e p(st|st+1, v1:t) ∝ p(st+1|st)p(st|v1:t)/p(st+1|v1:t), this 
an be 
omputed simply from the�ltered results alone. The fundamental di�eren
e therefore between EC and Kim's method isthat the approximation, Equation (25), is not required by EC. The EC ba
kward pass thereforemakes fuller use of the future information, resulting in a re
ursion whi
h intimately 
ouplesthe 
ontinuous and dis
rete variables. The resulting e�e
t on the quality of the approximation
an be profound, as we will see in the experiments.The Expe
tation Propagation (EP) algorithm makes the 
entral assumption of 
ollapsing theposteriors to a Gaussian family [12℄; the 
ollapse is de�ned by a 
onsisten
y 
riterion on over-lapping marginals. In our experiments, we take the approa
h in [15℄ of 
ollapsing to a singleGaussian. Ensuring 
onsisten
y requires frequent translations between moment and 
anoni-
al parameterizations, whi
h is the origin of potentially severe numeri
al instability [16℄. In
ontrast, EC works largely with moment parameterizations of Gaussians, for whi
h relativelyfew numeri
al di�
ulties arise. Unlike EP, EC is not based on a 
onsisten
y 
riterion and asubtle issue arises about possible in
onsisten
ies in the Forward and Ba
kward approximationsfor EC. For example, under the 
onditional independen
e assumption in the Ba
kward Pass,

p(hT |sT−1, sT , v1:T ) ≈ p(hT |sT , v1:T ), whi
h is in 
ontradi
tion to Equation (15) whi
h statesthat the approximation to p(hT |sT−1, sT , v1:T ) will depend on sT−1. Su
h potential in
onsis-ten
ies arise be
ause of the approximations made, and should not be 
onsidered as separateapproximations in themselves.Rather than using a global (
onsisten
y) obje
tive, EC attempts to faithfully approximate theexa
t Forward and Ba
kward propagation routines. For this reason, as in the exa
t 
omputa-tion, only a single Forward and Ba
kward pass are required in EC.In [17℄ a related dynami
s reversed is proposed. However, the singularities resulting from in-
orre
tly treating p(vt+1:T |ht, st) as a density are heuristi
ally �nessed.In [18℄ a variational method approximates the joint distribution p(h1:T , s1:T |v1:T ) rather thanthe marginal inferen
e p(ht, st|v1:T ). This is a disadvantage when 
ompared to other methodsthat dire
tly approximate the marginal.Sequential Monte Carlo methods (Parti
le Filters)[19℄, are essentially mixture of delta-fun
tionapproximations. Whilst potentially powerful, these typi
ally su�er in high-dimensional hid-den spa
es, unless te
hniques su
h as Rao-Bla
kwellization are performed. ADF is generallypreferential to Parti
le Filtering sin
e in ADF the approximation is a mixture of non-trivialdistributions, and is therefore more able to represent the posterior.3.2 Application to Noise Robust ASRHere we brie�y present an appli
ation of the SLDS to robust Automati
 Spee
h Re
ognition(ASR), for whi
h the intra
table inferen
e is performed by EC, and serves to demonstrate16



how EC s
ales well to a large-s
ale appli
ation. Fuller details are given in [20℄. The standardapproa
h to noise robust ASR is to provide a set of noise-robust features to a standard HiddenMarkov Model (HMM) 
lassi�er, whi
h is based on modeling the a
ousti
 feature ve
tor. Forexample, the method of Unsupervised Spe
tral Subtra
tion (USS) [21℄ provides state-of-the-artperforman
e in this respe
t. In
orporating noise models dire
tly into su
h feature-based HMMsystems is di�
ult, mainly be
ause the expli
it in�uen
e of the noise on the features is poorlyunderstood. An alternative is to model the raw spee
h signal dire
tly, su
h as the SAR-HMMmodel [2℄ for whi
h, under 
lean 
onditions, isolated spoken digit re
ognition performs well.However, the SAR-HMM performs poorly under noisy 
onditions, sin
e no expli
it noise pro-
esses are taken into a

ount by the model.The approa
h we take here is to extend the SAR-HMM to in
lude an expli
it noise pro
ess, sothat the observed signal vt is modeled as a noise 
orrupted version of a 
lean hidden signal vh
t :

vt = vh
t + η̃t with η̃t ∼ N (0, σ̃2)The dynami
s of the 
lean signal is modeled by a swit
hing AR pro
ess

vh
t =

R∑

r=1

cr(st)v
h
t−r + ηh

t (st), ηh
t (st) ∼ N (0, σ2(st))where st ∈ {1, . . . , S} denotes whi
h of a set of AR 
oe�
ients cr(st) are to be used at time

t, and ηh
t (st) is the so-
alled innovation noise. When σ2(st) ≡ 0, this model reprodu
es theSAR-HMM of [2℄, a spe
ially 
onstrained HMM. Hen
e inferen
e and learning for the SAR-HMM are tra
table and straightforward. For the 
ase σ2(st) > 0 the model 
an be re
ast asan SLDS. To do this we de�ne ht as a ve
tor whi
h 
ontains the R most re
ent 
lean hiddensamples

ht =
[

vh
t . . . vh

t−r+1

]T (26)and we set A(st) to be an R×R matrix where the �rst row 
ontains the AR 
oe�
ients −cr(st)and the rest is a shifted down identity matrix. For example, for a third order (R = 3) ARpro
ess,
A(st) =





−c1(st) −c2(st) −c3(st)
1 0 0
0 1 0



 . (27)The hidden 
ovarian
e matrix Σh(s) has all elements zero, ex
ept the top-left most whi
h isset to the innovation varian
e. To extra
t the �rst 
omponent of ht we use the (swit
h in-dependent) 1 × R proje
tion matrix B =
[

1 0 . . . 0
]. The (swit
h independent) visibles
alar noise varian
e is given by Σv ≡ σ2

v .A well-known issue with raw spee
h signal models is that the energy of a signal may vary fromone speaker to another or be
ause of a 
hange in re
ording 
onditions. For this reason theinnovation Σh is adjusted by maximizing the likelihood of an observed sequen
e with respe
tto the innovation 
ovarian
e, a pro
ess 
alled Gain Adaptation [2℄.3.2.1 Training & EvaluationFollowing [2℄, we trained a separate SAR-HMM for ea
h of the eleven digits (0�9 and `oh') fromthe TI-DIGITS database [6℄. The training set for ea
h digit was 
omposed of 110 single digit17



Noise Varian
e SNR (dB) HMM SAR-HMM AR-SLDS
0 26.5 100.0% 97.0% 96.8%

10−7 26.3 100.0% 79.8% 96.8%
10−6 25.1 90.9% 56.7% 96.4%
10−5 19.7 86.4% 22.2% 94.8%
10−4 10.6 59.1% 9.7% 84.0%
10−3 0.7 9.1% 9.1% 61.2%Table 2: Comparison of the re
ognition a

ura
y of three models when the test utteran
es are
orrupted by various levels of Gaussian noise.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10�one� at SNR 0.7 dB ��ve� at SNR 10.6 dBFigure 6: Two examples of signal re
onstru
tion using the AR-SLDS; (top) original 
leansignal taken from the TI-DIGITS database, (middle) noisy signal, i.e., 
lean signal arti�
ially
orrupted by Gaussian noise, (bottom) re
onstru
ted 
lean signal. The dashed lines and thenumbers show the most-likely state segmentation.utteran
es down-sampled to 8 kHz, ea
h one pronoun
ed by a male speaker. Ea
h SAR-HMMwas 
omposed of ten states with a left-right transition matrix. Ea
h state was asso
iated witha 10th-order AR pro
ess and the model was 
onstrained to stay an integer multiple of K = 140time steps (0.0175 se
onds) in the same state. We refer the reader to [2℄ for a detailed expla-nation of the training pro
edure used with the SAR-HMM.An AR-SLDS was built for ea
h of the eleven digits by 
opying the parameters of the 
or-responding trained SAR-HMM, i.e., the AR 
oe�
ients cr(s) are 
opied into the �rst row ofthe hidden transition matrix A(s) and the same dis
rete transition distribution p(st | st−1) isused. The models were then evaluated on a test set 
omposed of 112 
orrupted utteran
es ofea
h of the eleven digits, ea
h pronoun
ed by di�erent male speakers than those used in thetraining set. The re
ognition a

ura
y obtained by the models on the 
orrupted test sets ispresented in Table 2. As expe
ted, the performan
e of the SAR-HMM rapidly de
reases withnoise. The feature-based HMM with USS has high a

ura
y only for high SNR levels. In 
on-trast, the AR-SLDS a
hieves a re
ognition a

ura
y of 61.2% at a SNR 
lose to 0 dB, while theperforman
e of the two other methods is equivalent to random guessing (9.1%). Whilst otherinferen
e methods may also perform well in this 
ase, we found that EC performs admirably,without numeri
al instabilities, even for time-series with several thousand time-steps.
18



3.3 DiscussionWe presented a method for approximate smoothed inferen
e in an augmented 
lass of swit
hinglinear dynami
al systems. Our approximation is based on the idea that due to the forgettingwhi
h 
ommonly o

urs in Markovian models, a �nite number of mixture 
omponents mayprovide a reasonable approximation. Clearly, in systems with very long 
orrelation times ourmethod may require too many mixture 
omponents to produ
e a satisfa
tory result, althoughwe are unaware of other te
hniques that would be able to 
ope well in that 
ase. The mainbene�t of EC over Kim smoothing is that future information is more a

urately dealt with.Whilst EC is not as general as EP, EC 
arefully exploits the properties of singly-
onne
teddistributions, su
h as the aSLDS, to provide a numeri
ally stable pro
edure. We hope that theideas presented here may therefore help fa
ilitate the pra
ti
al appli
ation of dynami
 hybridnetworks.4 Bayesian Linear Gaussian State-Space ModelsLinear Gaussian State-Spa
e Models (LGSSMs)7 are fundamental in time-series analysis [22,23, 24℄. In these models the observations v1:T
8 are generated from an underlying dynami
alsystem on h1:T a

ording to

vt = Bht + ηv
t , ηv

t ∼ N (0V ,ΣV ); ht = Aht−1 + ηh
t , ηh

t ∼ N (0H ,ΣH) ,where N (µ,Σ) denotes a Gaussian with mean µ and 
ovarian
e Σ, and 0X denotes an X-dimensional zero ve
tor. The observation vt has dimension V and the hidden state ht dimension
H. Probabilisti
ally, the LGSSM is de�ned by:

p(v1:T , h1:T |Θ) = p(v1|h1)p(h1)

T∏

t=2

p(vt|ht)p(ht|ht−1) ,with p(vt|ht) = N (Bht,ΣV ), p(ht|ht−1) = N (Aht−1,ΣH), p(h1) = N (µ,Σ) and where Θ =
{A,B,ΣH ,ΣV , µ,Σ} denotes the model parameters. Be
ause of the widespread use of thesemodels, a Bayesian treatment of parameters is of 
onsiderable interest [25, 26, 27, 28, 29℄.An exa
t implementation of the Bayesian LGSSM is formally intra
table [29℄, and re
entlya Variational Bayesian (VB) approximation has been studied [25, 26, 27, 28, 30℄. The most
hallenging part of implementing the VB method is performing inferen
e over h1:T , and previ-ous authors have developed their own spe
ialized routines, based on Belief Propagation, sin
estandard LGSSM inferen
e routines appear, at �rst sight, not to be appli
able.A key 
ontribution of this work is to show how the Variational Bayesian treatment of theLGSSM 
an be implemented using standard inferen
e routines. Based on the insight we pro-vide, any standard inferen
e method may be applied, in
luding those spe
i�
ally addressed toimprove numeri
al stability [31, 32, 23℄. In this arti
le, we de
ided to des
ribe the standardpredi
tor-
orre
tor and Rau
h-Tung-Striebel re
ursions [23℄, and also suggest a small modi�-
ation that redu
es 
omputational 
ost.The Bayesian LGSSM is parti
ularly of interest when strong prior 
onstraints are needed to�nd adequate solutions. One su
h 
ase is in EEG signal analysis, whereby we wish to extra
tsour
es that evolve independently through time. Sin
e EEG is parti
ularly noisy [33℄, a priorthat en
ourages sour
es to have preferential spe
tral properties is advantageous in re
overing7Also 
alled Kalman Filters/Smoothers, Linear Dynami
al Systems.8v1:T denotes v1, . . . , vT . 19



meaningful sour
es. This appli
ation is dis
ussed in Se
tion (4.3), and demonstrates the easeof applying our VB framework.4.1 A Bayesian treatmentIn the Bayesian treatment of the LGSSM, instead of 
onsidering the model parameters Θ as�xed, we de�ne a prior distribution p(Θ|Θ̂), where Θ̂ is a set of hyperparameters. Then:
p(v1:T |Θ̂) =

∫

Θ
p(v1:T |Θ̂,Θ)p(Θ|Θ̂) . (28)In a full Bayesian treatment we would de�ne additional prior distributions over the hyperpa-rameters Θ̂. Here we take instead the ML-II (`eviden
e') framework, in whi
h the optimal setof hyperparameters is found by maximizing p(v1:T |Θ̂) with respe
t to Θ̂ [27, 28, 30℄.For the parameter priors, we de�ne Gaussians on the 
olumns of A and B:

p(A|α,ΣH) ∝
H∏

j=1

e−
αj
2 (Aj−Âj)

T
Σ−1

H (Aj−Âj), p(B|β,ΣV ) ∝
H∏

j=1

e−
βj
2 (Bj−B̂j)

T
Σ−1

V (Bj−B̂j) ,whi
h has the e�e
t of biasing the transition and emission matri
es to desired forms Â and B̂.The 
onjugate priors for the 
ovarian
es ΣH and ΣV are Inverse Wishart distributions [28℄9.In the simpler and more 
ommon 
ase of assuming diagonal 
ovarian
es these be
ome InverseGamma distributions [28, 26℄. The hyperparameters are then Θ̂ = {α, β}10.
Variational BayesOptimizing Equation (28) with respe
t to Θ̂ is di�
ult due to the intra
tability of the integrals.Instead, in VB, one 
onsiders the lower bound [27, 28, 30℄11:

L = log p(v1:T |Θ̂) ≥ Hq(Θ, h1:T ) +
〈

log p(Θ|Θ̂)
〉

q(Θ)
+

〈

E(h1:T ,Θ|Θ̂)
〉

q(Θ,h1:T )
≡ F ,where

E(h1:T ,Θ|Θ̂) ≡ log p(v1:T , h1:T |Θ, Θ̂).The notation Hd(x) signi�es the entropy of the distribution d(x), and 〈·〉d(x) denotes the ex-pe
tation operator.The key approximation in VB is q(Θ, h1:T ) ≡ q(Θ)q(h1:T ), from whi
h one may show that, foroptimality of F ,
q(h1:T ) ∝ e

〈E(h1:T ,Θ|Θ̂)〉
q(Θ) , q(Θ) ∝ p(Θ)e

〈E(h1:T ,Θ|Θ̂)〉
q(h1:T ) .These 
oupled equations need to be iterated to 
onvergen
e. The updates for the parameters

q(Θ) are straightforward and are given in Appendi
es ?? and ??. On
e 
onverged, the hy-perparameters are updated by maximizing F with respe
t to Θ̂, whi
h lead to simple updateformulae [28℄.Our main 
on
ern is with the update for q(h1:T ), for whi
h this work makes a departure fromtreatments previously presented.9For expositional simpli
ity, we do not put priors on µ and Σ.10For simpli
ity, we keep the parameters of the Inverse Wishart priors �xed.11Stri
tly we should write throughout q(·|v1:T ). We omit the dependen
e on v1:T for notational 
onvenien
e.20



4.2 Unified Inference on q(h1:T )Optimally q(h1:T ) is Gaussian sin
e 〈

E(h1:T ,Θ|Θ̂)
〉

q(Θ)
is quadrati
 in h1:T , being namely12

−
1

2

T∑

t=1

[〈

(vt−Bht)
TΣ−1

V (vt−Bht)
〉

q(B,ΣV )
+

〈

(ht−Aht−1)
T Σ−1

H (ht−Aht−1)
〉

q(A,ΣH)

]

. (29)Optimally, q(A|ΣH) and q(B|ΣV ) are Gaussians (see the DIRAC publi
ation for fuller details),so we 
an easily 
arry out the averages. The further averages over q(ΣH) and q(ΣV ) are alsoeasy due to 
onjuga
y. Whilst this de�nes the distribution q(h1:T ), quantities su
h as q(ht),whi
h are required for the parameter updates (see the Appendi
es), need to be inferred fromthis distribution. Clearly, in the non-Bayesian 
ase, the averages over the parameters are notpresent, and the above simply represents an LGSSM whose visible variables have been 
lampedinto their evidential states. In that 
ase, inferen
e 
an be performed using any standardmethod. Our aim, therefore, is to try to represent the averaged Equation (29) dire
tly as anLGSSM q̃(h1:T |ṽ1:T ), for some suitable parameter settings.
Mean + Fluctuation DecompositionA useful de
omposition is to write

〈

(vt −Bht)
TΣ−1

V (vt −Bht)
〉

q(B,ΣV )
= (vt − 〈B〉ht)

T 〈
Σ−1

V

〉
(vt − 〈B〉ht)

︸ ︷︷ ︸

mean

+ hTt SBht
︸ ︷︷ ︸

fluctuation

,and similarly
〈

(ht−Aht−1)
TΣ−1

H (ht−Aht−1)
〉

q(A,ΣH)

= (ht−〈A〉ht−1)
T 〈

Σ−1
H

〉
(ht−〈A〉ht−1)

︸ ︷︷ ︸

mean

+hTt−1SAht−1
︸ ︷︷ ︸

fluctuation

,where the parameter 
ovarian
es are SB = V H−1
B and SA = HH−1

A (see publi
ation for details).The mean terms simply represent a 
lamped LGSSM with averaged parameters. However, theextra 
ontributions from the �u
tuations mean that Equation (29) 
annot be written as a
lamped LGSSM with averaged parameters. In order to deal with these extra terms, our ideais to treat the �u
tuations as arising from an augmented visible variable, for whi
h Equation(29) 
an then be 
onsidered as a 
lamped LGSSM.
Inference Using an Augmented LGSSMTo represent Equation (29) as a LGSSM q̃(h1:T |ṽ1:T ), we augment vt and B as13:

ṽt = vert(vt,0H ,0H), B̃ = vert(〈B〉 , UA, UB),where UA is the Cholesky de
omposition of SA, so that UT
AUA = SA. Similarly, UB is theCholesky de
omposition of SB. The equivalent LGSSM q̃(h1:T |ṽ1:T ) is then 
ompleted byspe
ifying14

Ã ≡ 〈A〉 , Σ̃H ≡
〈
Σ−1

H

〉−1
, Σ̃V ≡ diag(

〈
Σ−1

V

〉−1
, IH , IH), µ̃ ≡ µ, Σ̃ ≡ Σ.12For simpli
ity of exposition, we ignore the �rst time-point here.13The notation vert(x1, . . . , xn) stands for verti
ally 
on
atenating the arguments x1, . . . , xn.14Stri
tly, we need a time-dependent emission B̃t = B̃, for t = 1, . . . , T −1. For time T , B̃T has the Choleskyfa
tor UA repla
ed by 0H,H . 21



The validity of this parameter assignment 
an be 
he
ked by showing that, up to negligible 
on-stants, the exponent of this augmented LGSSM has the same form as Equation (29). Now thatthis has been written as an LGSSM q̃(h1:T |ṽ1:T ), standard inferen
e routines in the literaturemay be applied to 
ompute q(ht) = q̃(ht|ṽ1:T ) [22, 32, 23℄15.Algorithm 1 LGSSM: Forward and ba
kward re
ursive updates. The smoothed posterior
p(ht|v1:T ) is returned in the mean ĥT

t and 
ovarian
e P T
t .pro
edure Forward1a: P ← Σ1b: P ← (Σ−1 + SA + SB)−1 = (I − ΣUAB

(
I + UT

ABΣUAB

)−1
UT

AB) ≡ DΣ2a: ĥ0
1 ← µ2b: ĥ0
1 ← Dµ3: K ← PBT(BPBT + ΣV )−1, P 1

1 ← (I −KB)P , ĥ1
1 ← ĥ0

1 + K(vt −Bĥ0
1)for t← 2, T do4: P t−1

t ← AP t−1
t−1 AT + ΣH5a: P ← P t−1

t5b: P ← DtP
t−1
t , where Dt ≡ (I − P t−1

t UAB

(
I + UT

ABP t−1
t UAB

)−1
UT

AB)6a: ĥt−1
t ← Aĥt−1

t−16b: ĥt−1
t ← DtAĥt−1

t−17: K ← PBT(BPBT + ΣV )−1, P t
t ← (I −KB)P , ĥt

t ← ĥt−1
t + K(vt −Bĥt−1

t )end forend pro
edurepro
edure Ba
kwardfor t← T − 1, 1 do
←−
At ← P t

t A
T(P t

t+1)
−1

P T
t ← P t

t +
←−
At(P

T
t+1 − P t

t+1)
←−
At

T
ĥT

t ← ĥt
t +
←−
At(ĥ

T
t+1 −Aĥt

t)end forend pro
edureFor 
ompleteness, we de
ided to des
ribe the standard predi
tor-
orre
tor form of a Kalman�lter, together with the Rau
h-Tung-Striebel re
ursions [23℄ for performing inferen
e in anLGSSM. These are given in Algorithm 1. To 
ompute q̃(ht|ṽ1:T ), we then 
all the FORWARDand BACKWARD pro
edures.We present two variants of the FORWARD pass. Either we may 
all pro
edure FORWARDin Algorithm 1 with parameters Ã, B̃, Σ̃H , Σ̃V , µ̃, Σ̃ and the augmented visible variables ṽt inwhi
h we use steps 1a, 2a, 5a and 6a. This is exa
tly the predi
tor-
orre
tor form of a Kalman�lter [23℄. Otherwise, in order to redu
e the 
omputational 
ost, we may 
all pro
edure FOR-WARD with the parameters 〈A〉 , 〈B〉 , 〈Σ−1
H

〉−1
,
〈
Σ−1

V

〉−1
, µ,Σ and the original visible variable

vt in whi
h we use steps 1b (where UT
ABUAB ≡ SA + SB), 2b, 5b and 6b. The two algorithmsare mathemati
ally equivalent. Computing q(ht) = q̃(ht|ṽ1:T ) is then 
ompleted by 
alling the
ommon BACKWARD pass.The important point here is that the reader may supply any standard Kalman Filtering/Smoothingroutine, and simply 
all it with the appropriate parameters. In some parameter regimes, or invery long time series, numeri
al stability may be a serious 
on
ern, for whi
h several stabilized15Note that, sin
e the augmented LGSSM q̃(h1:T |ṽ1:T ) is designed to mat
h the fully 
lamped distribution

q(h1:T ), �ltering q̃(h1:T |ṽ1:T ) does not 
orrespond to �ltering q(h1:T ).22



algorithms have been developed over the years, for example the square-root forms [31, 32, 23℄.By 
onverting the problem to a standard form, we have therefore uni�ed and simpli�ed infer-en
e, so that future appli
ations may be more readily developed.4.2.1 Relation to Previous ApproachesAn alternative approa
h to the one above, and taken in [28, 26℄, is to re
ognize that theposterior is
log q(h1:T ) =

T∑

t=2

φt(ht−1, ht) + const.for suitably de�ned quadrati
 forms φt(ht−1, ht). Here the potentials φt(ht−1, ht) en
ode theaveraging over the parameters A,B,ΣH ,ΣV . The approa
h taken in [28℄ is to re
ognize thisas a pairwise Markov 
hain, for whi
h the Belief Propagation re
ursions may be applied.The ba
kward pass from Belief Propagation makes use of the observations v1:T , so that anyapproximate online treatment would be di�
ult. The approa
h in [26℄ is based on a Kullba
k-Leibler minimization of the posterior with a 
hain stru
ture, whi
h is algorithmi
ally equivalentto Belief Propagation. Whilst mathemati
ally valid pro
edures, the resulting algorithms donot 
orrespond to any of the standard forms in the Kalman Filtering/Smoothing literature,whose properties have been well studied [34℄.4.3 An Application to Bayesian ICA

Figure 7: The stru
tureof the LGSSM for ICA.

A parti
ular 
ase for whi
h the Bayesian LGSSM is of interest isin extra
ting independent sour
e signals underlying a multivariatetime-series [35, 26℄. This will demonstrate how the approa
h de-veloped in Se
tion (4.2) makes VB easily to apply. The sour
es siare modeled as independent in the following sense:
p(si

1:T , sj
1:T ) = p(si

1:T )p(sj
1:T ), for i 6= j, i, j = 1, . . . , C.Independen
e implies blo
k diagonal transition and state noise ma-tri
es A, ΣH and Σ, where ea
h blo
k c has dimension Hc. A onedimensional sour
e sc

t for ea
h independent dynami
al subsystem isthen formed from sc
t = 1Tc hc

t , where 1c is a unit ve
tor and hc
t is thestate of dynami
al system c. Combining the sour
es, we 
an write

st = Pht, where P = diag(1T1 , . . . ,1TC), ht = vert(h1
t , . . . , h

C
t ). Theresulting emission matrix is 
onstrained to be of the form B = WP ,where W is the V ×C mixing matrix. This means that the observa-tions are formed from linearly mixing the sour
es, vt = Wst + ηv

t .The graphi
al stru
ture of this model is presented in Figure (7).To en
ourage redundant 
omponents to be removed, we pla
e a zero mean Gaussian prior on
W . In this 
ase, we do not de�ne a prior for the parameters ΣH and ΣV whi
h are instead
onsidered as hyperparameters. More details of the model are given in [35℄.4.4 DemonstrationAs a simple demonstration, we used a LGSSM to generate 3 sour
es sc

t with random 5 × 5transition matri
es Ac, µ = 0H and Σ ≡ ΣH ≡ IH . The sour
es were mixed into threeobservations vt = Wst + ηv
t , for W 
hosen with elements from a zero mean unit varian
eGaussian distribution, and ΣV = IV . We then trained a Bayesian LGSSM with 5 sour
es and23



0 50 100 150 200 250 300(a) 0 50 100 150 200 250 300(b) 0 50 100 150 200 250 300(
) 0 50 100 150 200 250 300(d)Figure 8: (a) Original sour
es st. (b) Observations resulting from mixing the original sour
es,
vt = Wst + ηv

t , ηv
t ∼ N (0, I). (
) Re
overed sour
es using the Bayesian LGSSM. (d) Sour
esfound with MAP LGSSM.

7×7 transition matri
es Ac. To bias the model to �nd the simplest sour
es, we used Âc ≡ 0Hc,Hcfor all sour
es. In Figure (8a) and Figure (8b) we see the original sour
es and the noisyobservations respe
tively. In Figure (8
) we see the estimated sour
es from our method after
onvergen
e of the hyperparameter updates. Two of the 5 sour
es have been removed, and theremaining three are a reasonable estimation of the original sour
es. Another possible approa
hfor introdu
ing prior knowledge is to use a Maximum a Posteriori (MAP) pro
edure by adding aprior term to the original log-likelihood log p(v1:T |A,W,Θ)+log p(A|α)+log p(W |β). However,it is not 
lear how to reliably �nd the hyperparameters α and β in this 
ase. One solution is toestimate them by optimizing the new obje
tive fun
tion jointly with respe
t to the parametersand hyperparameters (this is the so-
alled joint map estimation � see for example [36℄). Atypi
al result of using this joint MAP approa
h on the arti�
ial data is presented in Figure(8d). The joint MAP does not estimate the hyperparameters well, and the in
orre
t numberof sour
es is identi�ed.4.5 DiscussionWe 
onsidered the appli
ation of Variational Bayesian learning to Linear Gaussian State-Spa
eModels. This is an important 
lass of models with widespread appli
ation, and �nding a simpleway to implement this approximate Bayesian pro
edure is of 
onsiderable interest. The mostdemanding part of the pro
edure is inferen
e of the hidden states of the model. Previously,this has been a
hieved using Belief Propagation, whi
h di�ers from inferen
e in the KalmanFiltering/Smoothing literature, for whi
h highly e�
ient and stabilized pro
edures exist. A
entral 
ontribution of this work is to show how inferen
e 
an be written using the standardKalman Filtering/Smoothing re
ursions by augmenting the original model. Additionally, aminor modi�
ation to the standard Kalman Filtering routine may be applied for 
omputationale�
ien
y. We demonstrated the elegan
e and unity of our approa
h by showing how to easilyapply a Variational Bayes analysis of temporal ICA. We hope that this simple and unifyinginterpretation of Variational Bayesian LGSSMs may therefore fa
ilitate the further appli
ationto related models.5 Blind Signal Separation by Disjoint Component Analysis5.1 Introdu
tionRepresentation of measured data in terms of a number of generating 
auses or underlying�sour
es" is an important problem that has gained widespread attention in re
ent years, either24



with the goal of extra
ting known-to-exist sour
es from measurements (blind sour
e separa-tion), or in order to �nd an e�
ient�possibly lower-dimensional�des
ription of given data(exploratory data analysis).We propose and investigate a novel te
hnique, �disjoint 
omponent analysis" (DCA) that isbased on the goal of extra
ting 
omponents with maximally disjoint support from given data.I.e., it is sought to des
ribe the data in terms of 
omponents of whi
h as few as possible shouldbe a
tivated at any single time (or sample) point. Ideally, only a single sour
e pro
ess woulda

ount for a single sample of measured data, a goal that 
learly is too strong for real-worlddata. We demonstrate that it 
an be signi�
antly relaxed while still retaining the bene�
ial
hara
teristi
s of the method.Disjoint support between generating sour
e pro
esses may 
onstitute a relevant general prin
i-ple in domains where other assumptions, e.g., statisti
al independen
e and the implied e�e
tivephysi
al separation of generating sour
e pro
esses, have to be postulated or justi�ed post-ho
rather than dedu
ed a-priori. In some 
ases su
h as 
ommuni
ating speakers or densely in-ter
onne
ted nervous 
ells in the brain, theoreti
al 
onsiderations argue in favor of dependen-
ies between sour
e pro
esses. Even though su
h dependen
ies might turn out to be largelynegligible in some domains, it does appear to be worthwhile to 
onsider the impli
ations ofin
orporating su
h dependen
ies into the models.In the opposite dire
tion (and with a di�erent intention than ours), some authors have arguedthat sour
es that are often regarded as independent 
an e�e
tively be modeled as being �w-disjoint orthogonal" [37℄.5.2 Disjoint 
omponent analysis5.2.1 Derivation of algorithmWe 
onsider N observed signals x(t) = [x1(t), . . . , xN (t)]T whi
h may be thought to havebeen generated from (for 
onvenien
e) N underlying sour
es s(t) = [s1(t), . . . , sN (t)]T bymultipli
ation with a mixing system A as
x(t) = As(t) (30)It is sought to linearly transform the observations by a matrix W to obtain output signals
y(t) = Wx(t) (31)with 
omponents y(t) = [y1(t), . . . , yN (t)]T . When sour
e re
onstru
tion is desired, theseshould resemble the sour
es up to arbitrary res
aling and permutation. When an exploratorydata analysis view is adopted, the output signals should 
onvey a signal representation that ismeaningful in some to-be-spe
i�ed sense.A 
entral notion in our approa
h is the overlap
oij = E(|yi| |yj |) (32)between two output signals yi and yj with i 6= j, where E(·) denotes expe
tation and sampleindex t is omitted where 
onvenient. With oij ≥ 0 and oij = 0 if and only if yi(t) yj(t) = 0 forall t and i 6= j, two signals yi and yj have disjoint support if oij = 0. In this 
ase, yi and yjare 
alled disjoint, i.e., at most one of the signals is non-zero at any time.25



For stri
tly disjoint sour
e signals s(t) and a non-singular matrix A, stri
tly disjoint outputs
an be obtained that resemble the sour
es up to arbitrary permutation and res
aling.Note that in this 
ase sour
es are not mutually independent but exhibit statisti
al dependen
iesthrough the negative 
orrelations of their signal envelopes or signal power time-
ourses.While it is not possible in general to linearly transform an arbitrary signal x(t) into a signal
y(t) with only disjoint 
omponents, �nding minimally overlapping outputs is a natural goal asit 
orresponds to a signal des
ription in terms of pro
esses out of whi
h only a small number isa
tive at any given time. In this sense, disjoint 
omponent analysis bears similarities with bothparts-based approa
hes and sparse 
oding assumptions. A natural 
hoi
e to obtain maximallydisjoint, minimally overlapping output signals is minimization of the fun
tion

H =
1

2

∑

i6=j

oij =
1

2

∑

i6=j

E(|yi| |yj |) (33)The global minimum H = 0 is attained only for stri
tly disjoint signals where for all t anysignal yi(t) 6= 0 if and only if yj(t) = 0 for all j 6= i. Substituting 31 into 33, the partialderivatives are given by
∂H

∂wij

= E
(

sign(yi)xj

∑

k 6=i

|yk|
) (34)whi
h in matrix notation reads

∇H = E
(
−yxH + ||y||1sign(y)xH

) (35)where ||y||1 =
∑

i |ui| denotes the 1-norm of y.A natural gradient [38℄ may be derived by right-multipli
ation with WT W, yielding
∇̃H = E

(
−yyH + ||y||1sign(y)yH

)
W (36)Without regularization the gradients 
onverge to the trivial solution W = 0. To remove thes
aling ambiguity ea
h row wi of matrix W is �xed to unit-norm ||wi||2 = 1. Hen
e, ea
h row

∆i of ∇H is proje
ted a

ording to
∆⊥

i = ∆i − (∆H
i wi)wi (37)resulting in the proje
ted gradient matrix ∆⊥ that is then used for gradient des
ent. The �nalupdate rule for matrix W with a step size of η is

W←W − η ∆⊥ (38)for the ordinary gradient and similarly for the natural gradient. Periodi
 row re-normalizationof W is applied to keep it on the 
onstraint manifold for non-in�nitesimal η.5.3 Evaluation5.3.1 Syntheti
 data generationDisjoint sour
es si(t) may be generated from mutually independent signals ζi(t) by multiplyingthem with disjoint masking fun
tions µi(t) ∈ {0, 1} for all i, t and
si(t) = µi(t) ζi(t) (39)

E(µi µj) = 0 if i 6= j (40)26
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samplesFigure 9: Disjoint 
omponent analysis of four sour
es (left panel) whi
h are not stri
tly disjointbut exhibit signi�
ant overlap. Sour
es were mixed with a randomly 
hosen 4×4 mixing matrixto yield observation signals (
enter panel) whi
h were su

essfully separated into the originalsour
es up to arbitrary permutation, res
aling and sign �ip (right panel) using DCA.These sour
es may then be used to generate observations by multipli
ation with a matrix Aa

ording to Eq. 30.Stri
tly disjoint sour
es with zero overlap are not expe
ted to be an appropriate model for realdata. Hen
e, sour
es with variable masker overlap γij , whi
h may depend on the sour
e pair
(i, j),

γij = E(µiµj) /E(µ2
i ) (41)with E(µ2

i ) = 
onst for all i are also generated. In the experiments reported below maskeroverlap γij is 
hosen su
h that a value of γij = 1 
orresponds to a sour
e pair (si, sj) exhibitingmutual statisti
al dependen
e through maskers with positive 
orrelation. The value γij = 0
orresponds to stri
tly disjoint sour
es that exhibit mutual statisti
al dependen
e throughmaskers with negative 
orrelation. Finally, a value of γij = 0.5 
oin
ides with statisti
ally in-dependent sour
es (si, sj) be
ause of un
orrelated maskers (and statisti
ally independent ζi(t)).The signal generation s
heme was inspired by a fun
tional magneti
 resonan
e imaging (fMRI)experiment design [39℄.5.3.2 Separation of syntheti
 sour
esFour sour
es were generated a

ording to the s
heme des
ribed above, mixed with a randomly
hosen mixing matrix and pro
essed with the natural gradient disjoint 
omponent analysisalgorithm (Eq. 36) with regularization (Eq. 37). The underlying mutually independent signals
ζi(t) were 
hosen as a spee
h signal (ζ1), i.i.d. noise from a normal distribution with zero-meanand unit-varian
e (ζ2), i.i.d. noise from a uniform distribution on the interval [0, 1] (ζ3), and asine wave (ζ4). The maskers µi(t) were 
hosen su
h that γij = 0.6 for sour
e pairs (1, 2), (2, 3),
(3, 4), (1, 4), and γij = 0.4 for sour
e pairs (1, 3), (2, 4). Sour
e signals, observed (mixed)signals and output signals are displayed in Fig. 9, demonstrating that the algorithm performssu

essful separation even though sour
es are not stri
tly disjoint but show signi�
ant overlap.Similarly, the algorithm su

essfully separates mixtures of four stri
tly disjoint sour
es with
γij = 0 for all i 6= j (data not shown here).5.3.3 Variable degree of overlapThe goal of this experiment was to systemati
ally study the in�uen
e of the degree of overlapon the performan
e of the disjoint 
omponent analysis algorithm. Results are reported for the27
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Overlap γFigure 10: Separation performan
e of DCA and ICA in terms of signal-to-interferen
e ratio(SIR) in dB after separation. Performan
e is given for data 
lass 1 (left panel, sour
es withpositive and negative observation values) and data 
lass 2 (right panel, sour
es with positiveonly observation values) as a fun
tion of overlap γ. A value of γ = 0 
orresponds to stri
tlydisjoint sour
es (statisti
al dependen
ies between sour
es through negative 
orrelation of signalenvelopes); γ = 0.5 
orresponds to statisti
ally independent sour
es; and γ = 1.0 
orrespondsto fully overlapping, not disjoint sour
es (statisti
al dependen
ies through positive 
orrelationof signal envelopes). Mean and varian
e of performan
e for 100 separation runs, ea
h withindependently generated data, are given for ea
h 
ondition.gradient version of the algorithm (Eq. 35) with regularization (Eq. 37). Results for the naturalgradient version are virtually identi
al and not reported separately.Sour
es were generated based on two di�erent underlying signal 
lasses. In the �rst part ofthe experiment (�data 
lass 1"), two sour
es s1 and s2 were generated from ζ1 and ζ2 thatwere drawn as i.i.d. signals from a zero-mean and unit-varian
e normal distribution, hen
e
ontaining positive and negative values.In the se
ond part of the experiment (�data 
lass 2"), ζ1 and ζ2 were 
hosen to be i.i.d. signalsfrom a uniform distribution on the interval [0, 1], hen
e 
ontaining only positive values.For both data sets the single overlap parameter γ was varied from 0 (no overlap, sour
e de-penden
e through negative masker 
orrelation) via 0.5 (50% overlap, statisti
ally independentsour
es) to 1.0 (full overlap, sour
e dependen
e through positive masker 
orrelation) in stepsof 0.1.Hen
e, 11 data set 
onditions were generated for ea
h of the two data 
lasses. For ea
h
ondition, disjoint 
omponent analysis was performed on 100 individual datasets drawn inde-pendently a

ording to the des
ription above. This resulted in a total of 2200 datasets ea
hwith 10000 samples for ea
h of the two sour
es.Fig. 10 shows the results with mean and varian
e of signal separation in dB signal-to-interferen
eratio (SIR) after separation separately for data 
lass 1 (left panel) and data 
lass 2 (right panel).For data 
lass 1 with sour
es that adopt positive and negative values, DCA separation perfor-man
e shows no signi�
ant dependen
e on the overlap parameter γ ex
ept (as expe
ted) for
omplete overlap at γ = 1 where the algorithm essentially attempts to separate two i.i.d. nor-mally distributed sour
es whi
h is ill-posed. In all other 
ases of data 
lass 1, DCA separationis ex
ellent with about 100 dB SIR. 28



The results look di�erent for data 
lass 2 with positive only sour
e values. Separation remainsex
ellent for data sets with a small overlap (0.0 ≤ γ ≤ 0.4), with again about 100 dB SIR. Inthe 
ase of independent sour
es at γ = 0.5, separation is still very good at 80 dB. Performan
ebreaks down for large overlaps (1.0 ≥ γ ≥ 0.6), an e�e
t whi
h we attribute to the positivityof the sour
es.5.3.4 Comparison with independent 
omponent analysisThe same data generated for subse
tion 5.3.3 was re-analyzed with natural gradient infomaxICA [40, 38℄ using the ICA toolbox [41, 42℄ with logisti
 fun
tion non-linearity. For 
om-parison, a simple gradient approa
h with �xed step size and sign fun
tion non-linearity wasalso used and gave virtually identi
al results for data 
lass 1. On data 
lass 2, the �xed stepgradient approa
h gave qualitatively similar results but was outperformed by the referen
edICA toolbox in terms of SIR separation performan
e. All sour
e signals have been 
he
ked tohave positive kurtosis.Results in Fig. 10 show that in most 
ases ICA results in a poorer SIR than DCA. For data 
lass2, ICA performs best when sour
es are independent (γ = 0.5) with a drop o� in performan
etowards both lower and higher sour
e overlaps, whi
h is plausible due to ICA's independen
eassumption.For data 
lass 1, ICA shows ex
ellent signal separation for stri
tly disjoint sour
es (γ = 0.0).Performan
e is signi�
antly lower, though still good, for independent sour
es, whi
h seems tostand in 
ontradi
tion to the independen
e assumption. As expe
ted, performan
e de
reasestowards sour
es with strong overlap (γ = 1.0).5.4 Con
lusionDisjoint 
omponent analysis (DCA) has been shown to yield ex
ellent performan
e for stri
tlydisjoint and moderately disjoint data sets. For data with high overlap between sour
es (weaklydisjoint), performan
e depends on the spe
i�
 type of data, with ex
ellent performan
e for datasets with sour
es that take positive and negative observation values, and a break-down of per-forman
e in 
ase of purely positive sour
e data.The empiri
al algorithm evaluation showed a better separation performan
e for DCA than forICA under most 
onditions. Interestingly, ICA produ
ed the best performan
e not for sta-tisti
ally independent sour
es but for stri
tly disjoint ones (
f. also ICA 2006 presentation ofI.C. Daube
hies).While far from being 
on
lusive, the results presented here appear to warrant a 
loser inves-tigation of the di�eren
es and similarities of both algorithm 
lasses. It would be desirable togain experien
e with a wider range of syntheti
 and natural data than 
ould be presented here.We are tempted to spe
ulate that DCA might be appropriate in parti
ular for analyzing datawhere the independen
e assumption is not stri
tly ful�lled, where a data representation interms of disjoint 
omponents is preferable to independent 
omponents, and where signals are
omprised of positive only measurement values. This 
ould be the 
ase, e.g., for brain signalssu
h fMRI, for data from dialog spee
h signals, and for 
omparably short signal sequen
eswhere independen
e 
annot be fully attained due to �nite sample e�e
ts.29
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