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Abstract

The theory of incongruence, which deals with inconsistent decisions
of direct and composite classifiers of the same concept, can be used
to improve low-level processing by detecting incorrect functionality
and repairing it through re-defining the composite classifier. In this
report, we summarize the advancements in the direct audio and the
direct audio-visual classifiers yielding two speaker detectors which can
cause an incongruence. Then, we show how this incongruence could be
used for learning a new concept, direct position consistency classifier,
which can be used to re-define the composite speaker classifier.

1 Audio-Visual Speaker Detector

The audio-visual speaker detector presented last year was further updated
in order to handle multiple speakers and a moving observer. First, we reca-
pitulate the relationship of the audio-visual speaker detector to the theory
of incongruence introduced in [12].

1.1 Application of the Theory of Incongruence

Figure 1 shows an example of the “Speaker event” that is recognized in two
ways, either by a direct classifier, which is trained directly from complete
audio-visual data, or by a composite classifier that evaluates the conjunc-
tion of “Human sound event” and “Human look event” direct classifiers.
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Figure 1: (a) “Speaker” is recognized in two ways, either by a holistic (direct)
classifier, which is trained directly from complete audio-visual data, or by a
composite classifier, which evaluates the conjunction of “Human sound” and
“Human look” direct classifiers. (b) “Speaker” is given by the intersection
of sets representing “Human sound” and “Human look”, which corresponds
to the infimum in the Boolean POSET (c).

“Speaker” is given by the intersection of sets representing “human sound”
and “human look” which corresponds to the infimum in the Boolean POSET.
In the language of [13, 18], the composite classifier corresponds to the general
level (i.e. to Q

g
speaker) while the direct classifier corresponds to the specific

level (i.e. to Qspeaker).

The direct audio classifier (see Section 1.2, Figure 5) detects human
sound, e.g. speech, and returns a boolean decision on the “Human sound
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Composite Qg
a Direct Qa Possible reason

(general level) (specific level)
1 0 ≃ Qg

a ≃ Qa ≃ 0 reject reject empty silent scene

2 1 ≃ Qg
a ≫ Qa ≃ 0 accept reject silent person

speaking loudspeaker
3 0 ≃ Qg

a ≪ Qa ≃ 1 reject accept inconsistent POSET
wrong model

4 1 ≃ Qg
a ≃ Qa ≃ 1 accept accept speaking person

Table 1: Interpretation of agreement/disagreement for the “Speaker event”
example.

event”. The direct visual classifier (see Section 1.3, Figure 11) detects hu-
man body shape in an image and returns a boolean decision on the “Human
look event”. The direct audio-visual classifier (see Section 1.4, Figures 3
and 15) detects the presence of a speaker and returns a boolean decision on
the “Speaker event”. The composite audio-visual classifier (see Section 1.5,
Figures 4 and 16) constructed as the conjunction of the direct audio and
visual classifiers also detects the presence of a speaker and returns a boolean
decision on the “Speaker event”. Opposed to the direct audio-visual classi-
fier, its decisions are constructed from the decisions of the separate classifiers
using logical AND.

After presenting a scene with a silent person and speaking loudspeaker,
the composite audio-visual classifier fires but the direct audio-visual classifier
does not give a positive answer. That creates a disagreement, incongruence,
between classifiers.

Table 1 interprets the results of speaker detection.

1.2 Direct Audio Detector

The direct audio classifier for sound source localization is based on features
extracted from the generalized cross correlation (GCC) function [9] between
two audio input signals. A sound source is localized by estimating the az-
imuthal angle of the direction of arrival (DOA) relative to the sensor plane
defined by the two front-microphones of the AWEAR 2.0 platform.

Support-vector-machines (SVM) [1] are used to classify the presence or
absence of a source at each angle. This approach enables the simultaneous
localization of more than one sound source in each time-frame.
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Figure 2: Detectors are constructed to work on windows that are scanned
across the field of view. This approach is motivated by successful approach
to face and human body detection.

Figure 3: The direct audio-visual detector takes features extracted from the
audio and video signals to train a discriminative classifier separating events
concurrent in space and time from other events. This detector captures a
compressed form of the information relevant to audio-video detections but
can’t really explain them in terms of simpler modules, i.e. outputs of sepa-
rated direct audio and video detectors.
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Figure 4: The composite audio-visual detector is the conjunction of the di-
rect audio and video detectors, each evaluated per complete field of view.
Notice that the composite detector detects events concurrent in time but not
necessarily co-located in the field of view. It will fire on sound coming from
a loudspeaker on the left and a silent person standing on the right when that
happens in the same moment.

Figure 5: The direct audio detector as described in the text.

1.2.1 Localization Feature Extraction

The GCC is an extension of the cross power spectral density function, which
is given by the Fourier transform of the cross correlation. Given two signals
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x1(n) and x2(n), it is defined as:
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where X1(ω) and X2(ω) are the Fourier transforms of the respective signals
and the term H1(ω)H∗

2(ω) denotes a general frequency weighting.
In the present work PHAse Transform (PHAT) weighting [9] has been

used, which normalizes the amplitudes of the input signals to unity in each
frequency band, H1(ω)H∗
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such that only the phase difference between the input signals is preserved.
The audio data is captured with a sampling frequency of 48 kHz. The

inter-microphone distance in the AWEAR setup (45 cm) corresponds to a
maximum delay of 1.32 ms or 64 samples (=̂ ±90◦) in each direction or
128 samples in total. The window length and the length of the Fourier
transform used to compute the GCC in the spectral domain are chosen to be
512 samples, the overlap between consecutive windows is 50%. This yields a
257-dimensional GCC-PHAT vector for every time frame of 5.33 ms length.

A frequency cut-off of 8 kHz is applied prior to the GCC calculation.
Final spectral-domain zero-padding results in a time-domain resolution for
the delay estimates of twice the original sampling rate.

From the GCC data, angular features are extracted for classification. The
feature extraction algorithm is as follows. A 16 samples long rectangular
window is slid over the GCC-vector with a shift of 4 samples, subdividing
the data of a single time frame into 61 feature vectors. This covers the field
of view homogeneously in terms of time delay with a resolution of 1

3
ms.

The mapping from the time delay τ to the angle of incidence θ is non-linear:
θ = arcsin(τ · c

d
), where c denotes the speed of sound and d the distance

between the sensors. This results in a non-homogenous angular resolution
in the DOA-angle-space, with higher resolution near the center and lower
resolution towards the edges of the field of view (see Figure 6). If at least
one of these 61 directional feature vectors is classified positively, the direct
audio classifier fires.

1.2.2 Source Localization through Classification

To produce a suitably large set of training data, sound sources were simulated
by using mono-channel speech recordings from the TIMIT speech corpus [6]

6



−70° −60° −50° −40° −30° −20° −10°   0°  10°  20°  30°  40°  50°  60°  70°
θ

Figure 6: Distribution of the angles of incidence for the DOA classification.
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Figure 7: Local SNR for a speech signal in a diffuse noise field with an
long-term SNR of 0 dB.

and generating a second channel as a delayed version of the same data, thus
introducing directional information into the data. The simulated DOA angle
ranged from −80◦ to +80◦ in steps of 10◦, for each direction 10 seconds
of speech were used. A spherically symmetric diffuse pink noise field was
generated and superposed on the speech signals with varying long-term SNR
ranging from -20 dB to +20 dB in steps of 5 dB.

To account for local drops of the SNR within speech pauses, a short-time
SNR in each time frame was introduced, referred to as local SNR (see Fig-
ure 7). Subsequently, the training material was labeled as ‘source is present’
if the delay between left and right audio channel corresponded to the re-
spective angle and the local SNR exceeded a fixed threshold. This threshold
was varied from -20 dB to +20 dB in steps of 5 dB. For each long-term SNR
and each local-SNR threshold one model was trained on all available training
directions, resulting in 81 models for all conditions.

1.2.3 Selection of the Local-SNR Threshold

In order to evaluate which local-SNR threshold yields the best model perfor-
mance in terms of classification and generalization, the models were tested
on a different set of simulated data. The test data were also taken from the
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Figure 8: Results for all models tested on all SNRs for each local-SNR-
threshold during training, given in percentage of correct decisions of the
classifier.

TIMIT speech corpus. The DOA angle contained in the test data ranged
from −80◦ to +80◦ in steps of 5◦. The same long-term SNRs as before were
used. For testing, however, the data were labeled without using a local-SNR
criterion.

To evaluate the robustness against noise and the generalization perfor-
mance of the models, each model (trained with a fixed local-SNR threshold)
was tested on all available SNRs. The results are given in the percentage of
correct decisions, see Figure 8.

These results indicate that above a certain local-SNR threshold the per-
formance of the classification is nearly independent of the training SNR.
-5 dB turns out to be a reasonable choice for the threshold. If the local-SNR
threshold is set too high, training of the models became impossible for low
SNRs due to the resulting lack of training data, as in this case to much data
are rejected as feature for a present source.

A classification example for two speech sources with interference by a
noise field at an SNR of 5 dB is shown in Figure 9. The noisy GCC-matrix
is given at the left and the results of the classification at the right. The
theoretical position of the two speech sources at −20◦ and +45◦ are indicated
by the dotted lines in the right panel. To suppress the “salt and pepper”
noise contained in the results of the classification, median filtering over 3
adjacent angles and 7 time frames was applied.
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Figure 9: GCC matrix (lefthand) and results of the classification (righthand)
for two speech sources at −20◦ and +45◦ in a isotropic noise field at an SNR
of 5 dB. The dotted lines in the right plot denote the theoretical positions of
the sources.

1.2.4 Speech Detection

The localization algorithm described above reliably detects several sound
sources at different positions. It does not, however, include a characterization
of said sources. In order to provide an acoustic “human detector”, a second
step is necessary to classify the type of sound originating from the localized
source. If the detected class is speech, the output of the direct audio classifier
contains the information that a person was detected at a certain position.

The features used in this task are Amplitude Modulation Spectrograms
(AMS, see Deliverable 2.11), which are motivated by the importance of mod-
ulations identified in numerous psychophysical, physiological and applied
studies [4, 8, 10, 16]. AMS represent a decomposition of the signal along
the dimensions of acoustic frequency, modulation frequency and time, and
are computed by a (modulation) spectral decomposition of sub-band spectral
power time-courses in overlapping temporal windows.

The processing stages of the AMS computation are as follows (see Fig-
ure 10). The signal decomposition with respect to acoustic frequency is com-
puted by a short-term fast Fourier transformation (FFT with 32 ms Hann
window, 4 ms shift, FFT length 256 samples (32 ms), sampling rate 8 kHz.),
followed by squared magnitude computation, summation into rectangular,
non-overlapping Bark bands and logarithmic amplitude compression.

Within each spectral band, the modulation spectrum is obtained by ap-
plying another FFT (1000 ms Hann window, 500 ms shift, FFT length 250
samples (1000 ms)) to the temporal trajectories of subband log-energy. Out-
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Figure 10: The AMS feature extraction algorithm.

puts in the 0 Hz and 1 Hz modulation bands are influenced by DC compo-
nents in the (log-energy) spectral domain and discarded as a means to reduce
effects of channel noise (see also below). Finally, an envelope extraction and
a further logarithmic compression are applied. The resolution of 17 Bark
acoustic frequency bands and 29 modulation frequency bands (2 Hz to 30
Hz) results in a signal representation with 493 feature values per time step,
at a temporal resolution of 1000 ms.

Robustness of the AMS features with respect to constant and slowly-
varying time-domain convolutive factors (channel noise) is enhanced by con-
struction of the feature extraction scheme: The first Fourier transform step
approximately converts the convolution to a multiplicative term in each
(acoustic) frequency band. The subsequent logscale compression converts it
into an additive term that is captured in the DC (0 Hz) modulation spectral
band after the second FFT (depending on parameter choice, additional low
modulation-frequency may be influenced by smearing of DC components).
Deliberately discarding the affected modulation bands therefore results in
AMS features that are approximately invariant to a time-domain signal con-
volution with short impulse responses such as microphone transfer functions
and early reverberation effects.

Using these features, an SVM is trained on the two classes “speech in
background” and “background sound only”. The training data consists of a
set of recordings obtained within DIRAC as background sounds (road noise
and pedestrian zone noise) and the TIMIT data base as speech source. The
training SNR has been optimized in a parameter search over a range of +20
dB to -20 dB in steps of 5 dB. -5 dB turns out to yield the best overall
performance on various test data.

This model is used as speech detector in the DIRAC recordings, indoor as
well as outdoor. The robustness against variation in the SNR and variation
in the type of acoustic background has been systematically evaluated (see
Deliverable 2.11).
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Figure 11: The direct visual detector is based on work [3].

1.3 Direct Visual Detector

The direct visual classifier remained the same as the one presented in [12]
as it performed quite well already. The state-of-the-art paradigm to visual
human detection [3] classifies every feasible window in the image for presence
or absence of a human-like shape by adopting the assumption that the ground
plane is parallel to the image, which is true for our static camera scenario.
Therefore, one can restrict feasible rectangles to those that correspond to
reasonably tall (150–190 cm) and wide (50–80 cm) pedestrians standing on
the ground plane. HoG (see Figure 12) visual features can be computed in
each such rectangle as described below.

The INRIA OLT detector toolkit [11] based on the histograms of ori-
ented gradients (HoG) algorithm presented by Dalal and Triggs in [3] chosen
to detect humans uses a dense grid superimposed over a detection window
to produce a 3780 dimensional vector to train a linear SVM classifier. A
detection window of 64× 128 pixels is divided into cells of 8× 8 pixels, each
group of 2×2 cells then integrated into overlapping blocks. Each cell consists
of 9-bin HoG that are concatenated for each block and normalized using L2

norm. Each detection window consists of 7 × 15 blocks resulting in 3780
features. See Figure 12 for an example of the feature vector of a detection
window. As the cylindrical projection images used in our experiment are lo-
cally similar to the perspective ones, the detector was trained on perspective
images.
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Figure 12: Histograms of oriented Gradients (HoG) features form the base
of the direct visual classifier. Image courtesy of [3].

The tested image is scanned by the detection window at several scales
and window positions with detection scores (confidences) higher than 0, i.e.
tentative human detections, are further processed by non-maximum suppres-
sion using mean shift robust mode detection into final human detections. If
the detection score of the best resulting human detection is higher than 0.1,
the direct visual classifier fires.

1.4 Direct Audio-Visual Detector

For the direct audio-visual classifier, we use the concept of angular (az-
imuthal) bins that allows for handling multiple pedestrians and/or sound
sources which was not possible with the classifier presented last year. 180◦

field of view is divided into twenty bins, 9◦ each, and the classification is per-
formed per bin, see Figure 13. If at least one of the bins is classified positively,
the direct audio-visual classifier fires. The procedure of the classification of
each bin follows.

First, a 2D feature vector is constructed from audio and visual features
as the highest GCC-PHAT value and the highest pedestrian detection score
belonging to the bin. The pedestrian detection score is maximized both in
the x and y coordinates of the window center where x has to lie in the bin and
y goes through the whole height of the image as the bins are azimuthal (i.e.
not bounded in the vertical direction). Then, the feature vector is classified
by an SVM classifier with the RBF kernel [15]. Any non-negative SVM score
yields a positive classification.
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Figure 13: 180◦ horizontal field of view is divided into twenty bins, 9◦ each.
Each bin is described by a 2D feature vector constructed from audio and
visual features as the highest GCC-PHAT value and the highest pedestrian
detection score belonging to the bin. Notice different widths of the individual
bins explained in Section 1.6.1

The SVM classifier was trained from four sequences (2,541 frames in total)
of people speaking while walking along a line there and back. The positive
bin was labeled manually for each frame and the 2D feature vectors belonging
to the bin were added to the positive examples. Two neighboring bins from
each side were excluded and the feature vectors belonging to the rest of the
bins were added to the negative examples. As we needed also examples of
people not speaking and sounds without people which were not in the training
data, we created negative examples for these cases by combining parts of the
positive and negative feature vectors yielding 109,023 negative examples in
total. The training data together with the trained decision curve can be seen
in Figure 14.

1.5 Composite Audio-Visual Detector

The composite audio-visual detector is constructed to explain audio-visual
events by a combination of simpler audio and visual events. The direct
audio-visual detector primarily separates relevant events from the irrelevant
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Figure 14: Training data and the trained decision curve for SVM with the
RBF kernel of the direct audio-visual classifier. GCC-PHAT values (x-axis)
and pedestrian detection scores (y-axis) for different positive (red circles) and
negative (blue crosses) manually labeled examples.

ones. That is achieved by presenting the relevant events in the positive
subset of the training set while the other (irrelevant) ones in the negative
one. The composite audio-visual detector, on the other hand, represents
“the understanding to the world”.

Currently, the two direct audio and video detectors are combined using
two-state logic, which is too simplistic to cope with full complexity of real
situations but it provides all basic elements of reasoning that later could be
modeled probabilistically.

The composite detector, Figures 4 and 16, is not perfect. It is constructed
as the conjunction of the direct audio and video detectors, each evaluated per
complete field of view. Hence, it does not capture spatial co-location of the
audio-visual events. It detects events concurrent in time but not necessarily
co-located in the field of view, Figure 16. It will fire on sound coming from a
loudspeaker on the left and a silent person standing on the right when that
happens at the same moment.

This insufficiency is intentional. It models a current understanding of
the world, which is due to its complexity always only partial, and leads to
detecting incongruence w.r.t. the direct audio-visual detector when human
sound and look come from dislocated places.
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Figure 15: The decisions of the direct audio-visual detector.

Figure 16: The decisions of the composite audio-visual detector.
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(a) (b)

Figure 17: Two example frames from SPEAKER&LOUDSPEAKER se-
quence showing a (a) congruent and an (b) incongruent situation when the
speaker and the loudspeaker sound respectively. Decisions from different di-
rect classifiers are drawn into the frames: direct audio classifier (magenta),
direct visual classifier (blue), direct audio-visual classifier (green). The bars
in the top-left corner show also the composite audio-visual classifier decisions
(cyan) and incongruence/wrong model (red/yellow).

1.6 Experimental Results

The direct and composite audio-visual classifiers were used to process several
sequences acquired by the AWEAR 2.0 platform [7]. They contain a person
speaking while walking freely in the view-field. After a while, the person
stops talking and the loudspeaker sounds up, rendering an incongruent event
which should be detected. The description of the extension for a moving
observer comes after the experiment with the static device.

1.6.1 Static Device

As the video data come from the left camera of a stereo rig with a 45 cm wide
baseline, there is a discrepancy between the camera position and the apparent
position of a virtual listener to which the GCC-PHAT is computed, which
is the center of the acquisition platform. To compensate for this error, the
distance to the sound source and the distance between the virtual listener
and the camera need to be known. The listener–camera distance can be
computed as 22.5 cm from the known setup of the rig. The distance to the
sound source is now assumed to be 1.5 m from the camera. The corrected
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(a) (b) (c)

Figure 18: Pedestrian detection in frames stabilized w.r.t. the ground-plane
transferred back to the original frame. (a) Non-stabilized frame. (b) Sta-
bilized frame with pedestrian detection. (c) Non-stabilized frame with the
transferred pedestrian detection. Notice the non-rectangular shape of the
pedestrian detection after the transfer.

angle can be then trivially computed from the camera–listener–sound source
triangle using a line–circle intersection.

The accuracy of the incongruence detection is lower for speakers much
further away than the assumed 1.5 m due to the aforementioned angle correc-
tion, nevertheless, the detector performed quite well in our experiments. Two
example frames from a 30 sec long sequence SPEAKER&LOUDSPEAKER
shot at 14 fps can be found in Figure 17.

1.6.2 Moving Observer

The script of the 73 sec long 14 fps sequence MOVINGOBSERVER is similar
to the one of SPEAKER&LOUDSPEAKER sequence, the difference being
the fact that the AWEAR 2.0 device was worn (i.e. moving and slightly rock-
ing) when acquiring it. As the microphones are rigidly connected with the
cameras, the relative audio-visual configuration remains the same and move-
ment does not cause any problems to the combination of the classifiers. On
the other hand, the direct visual classifier is able to detect upright pedes-
trians only, therefore we perform pedestrian detection in frames stabilized
w.r.t. the ground-plane [17] and transfer the results back into the original
frames yielding non-rectangular pedestrian detections, see Figure 18.

As the x coordinate of the mouth can be different than the x coordinate
of the center of the detected window for non-upright pedestrians, we use the
position of the center of the upper third of the window (i.e. the estimated
mouth position) in the direct audio-visual classifier instead, see Figure 19 for
two example frames from the sequence.
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(a) (b)

Figure 19: Two example frames from MOVINGOBSERVER sequence show-
ing (a) a congruent and (b) an incongruent situation when the speaker and
the loudspeaker sound respectively. Notice the non-rectangular shape of the
pedestrian detections. See Figure 17 for the color legend.

2 Learning from Incongruence

Figure 20 illustrates a prototypical system consisting of alternative detectors,
which can lead to a disagreement between the alternative outcomes related
to an event.

Three direct detectors and one composite detector is shown in Figure 20.
The direct detector of “Human sound”, the direct detector of “Human look”,
the direct detector of “Speaker” and the composite detector of “Speaker” are
presented. The composite detector, as explained above in more detail, was
constructed as a logical combination of direct detectors evaluated on the
whole field of view, hence not capturing the spatial co-location of sound and
look events defining a speaker in the scene.

The table in Figure 20 shows the four possible combinations of outcomes
of the direct and composite “Speaker” detectors as analyzed in [18].

The first row, Figure 21(a), where none of the detectors fire, corresponds
to no event, noise or completely new concept, which has not been yet learned
by the system. The last row, Figure 21(a) again, when both detectors fire,
corresponds to detecting a known concept.

The second row, when the “Speaker” composite detector fires but the
direct one remains negative, corresponds to the incongruence. This case can
be interpreted as having a partial model of a concept, e.g. not capturing
some important aspect like the spatial co-location. Alternatively, it also can

18



Figure 20: Alternative detectors of the “Speaker” concept and their possible
outcomes. See text.

happen when the model of the concept is wrong such that it mistakingly
requires some property which is not truly related to the concept.

The third row, Figure 21(b), when the direct “Speaker” detector fires but
the composite one remains negative, corresponds to the wrong model case.
Indeed, this case applies when the composite detector mistakingly requires
some property which is not truly related to the concept. However, it happens
also when the composite detector has only a partial model of the concept, e.g.
when it misses one of possible cases in which the concept should be detected.

We can see that the interpretation of the second and third rows depends
on how the composite detectors are constructed. Restricting ourselves to
Horn clauses [2], which is a popular choice since it allows efficient derivation
and is used in PROLOG [14], will choose the interpretation and will make
then the distinction between the second and third rows to correspond to the
interpretation from [18].

Assume to have a composite C detector constructed in the form of a Horn
clause of direct detectors D1, D2, . . . , Dn

D1 ∧ D2 ∧ . . .Dn → C (3)

which means that C is active if and only if all Di are active. For instance
“Human look” ∧ “Human sound ” → “Speaker” is a Horn clause.

19



(a) (b)

Figure 21: (a) Congruent result of detectors. (b) Incongruence is detected
when the direct detector rejects more (i.e. is smaller) than the composite
detector.

With this restriction, a detected incongruence can be understood as if the
composite detector missed a term on the left hand side of the conjunction
in the derivation rule, which is responsible for rejecting the falsely accepted
cases. It is easy to remedy this situation by learning a new concept corre-
sponding to the missing term in the conjunction from the wrongly classified
examples.

There are many possibilities how to do it. A particularly simple way
would be to add a single new concept “Co-located” to the conjunction, Fig-
ure 22, i.e.

“Human look′′ ∧ “Human sound′′ ∧ “Co−located′′ → “Speaker′′ (4)

which would “push” the composite detector “down” to coincide with the
direct detector.

Somewhat more redundant but still feasible alternative would be to add
two more elements to the system as shown in Figure 23. A new composite
detector “H. S. & L.”, i.e. “Human Sound and Look” could be established
and combined with another newly introduced concept “Co-located” to update
the model in order to correspond to the evidence. Although somewhat less
efficient, this second approach may be preferable since it keeps concepts for
which detectors have been established already.
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Figure 22: Adding a single new concept “Co-located” to the conjunction
defining the “Speaker” concept.

Figure 23: H. S. & L.–“Human Sound and Look” concept can explain the
conjunction of existing detectors. The “Speaker” detector can be then con-
structed by adding the new “Co-located” concept.
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As suggested above, the incongruence, i.e. the disagreement between the
direct and the composite classifiers, may signal that the composite classifier
is not well defined. We would like to use the incongruent data to learn a
new concept, which could be used to re-define the composite classifier and
to remove the incongruence.

In the case of the speaker detector, the composite audio-visual classi-
fier has to be re-defined. A new “Human Sound and Look” concept has
to be initiated. The composite audio-visual classifier is disassociated from
the “Speaker” concept, new “Human Sound and Look” concept is created
and associated to the composite classifier. This new concept will be greater
than the “Speaker” concept. Next, a new composite audio-visual classifier
is created as a conjunction of the old composite audio-visual classifier and a
classifier deciding a new “XYZ” concept which needs to be trained using the
incongruent data. The new composite classifier is associated to the “Speaker”
concept. The name of the “XYZ” concept can be established later based on
its interpretation by a human.

2.1 Learning the Direct Position Consistency Classi-

fier

We will deal with the simplest case when the incongruence is caused by a
single reason which can be modeled as a new concept. Our goal is to establish
a suitable feature space and to train a direct classifier deciding the “XYZ”
concept using the congruent and incongruent data as positive and negative
training examples respectively. As the values of audio and visual features
have been used in direct audio and direct visual classifiers already and our
new concept should be as general as possible, we will use only boolean values
encoding the presence of a given event in the 20 angular bins.

First, two feature vectors of length 20 are created for each frame, one
encoding the presence of audio events and the other one encoding the presence
of visual events, and concatenated together in order to form a boolean feature
vector of length 40.

Secondly, in order to find dependencies between the different positions
of the events, the feature vector is lifted to dimension 820 by computing all
possible products between the 40 values. The original feature vector:

x1 x2 x3 . . . x39 x40

is transformed into:

x2
1 x1x2 x1x3 . . . x2

2 x2x3 . . . x39x40 x2
40.
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When the original values are boolean, the quadratic monomials x2
1, x

2
2, . . .

have values equal to x1, x2, . . . and the monomials x1x2, x1x3, . . . have values
equal to the conjunctions x1∧x2, x1∧x3, . . . . SVM training over these vectors
should reveal significant pairs of positions by assigning high weights to the
corresponding positions in the lifted vector.

We use two sequences to construct the positive and negative training
example sets. Each of these sequences is nearly 5 minutes long with a person
walking along the line there and back with a loudspeaker placed near one of
the ends of the line. During the first approx. 90 seconds, the walking person
is speaking and the loudspeaker is silent rendering a congruent situation.
During the next approx. 90 seconds, the walking person is silent and the
loudspeaker is speaking causing an incongruent situation. In the last approx.
90 seconds, both the walking person and the loudspeaker are speaking which
is congruent by our definition as we are able to find a bin with a speaker.

For each frame, the concatenated boolean feature vector is created. The
boolean decisions for the 61 directional feature vectors from the audio de-
tector are transformed into the 20 values of the audio part of the feature
vector using disjunction when more directional labels fall into the same bin.
The visual part of the feature vector is initialized with 20 zeros and each
confident human detection output by the visual detector changes the value
belonging to the angular position of the center of the corresponding rect-
angle to one. Feature vectors belonging to frames which yielded a positive
response from both the composite and the direct audio-visual classifiers (i.e.
congruent situation) are put into the positive set, those belonging to frames
that were classified positively by the composite but negatively by the direct
audio-visual classifier (i.e. incongruent situation) are put into the negative
set, and those belonging to frames with a negative response from the com-
posite audio-visual classifier are discarded as such data cannot be used for
our training.

As the loudspeaker position is fixed in our training sequences, we decided
to remove the bias introduced by this fact by “rotating” the data around the
bins, so each training example is used to generate 19 other training examples
before lifting, e.g. a training example:

x1 x2 x3 . . . x20 x21 . . . x39 x40

is used to generate 19 additional examples:

x2 x3 x4 . . . x1 x22 . . . x40 x21

x3 x4 x5 . . . x2 x23 . . . x21 x22
...

x20 x1 x2 . . . x19 x40 . . . x38 x39.
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Figure 24: Resulting weights for different pairs of values in the feature vector
as obtained by SVM. Numbers on axes correspond to bin indices. Positive
weights are denoted by red, zero weights by green and negative weights by
blue color. (a) Audio × audio. (b) Audio × visual. (c) Visual × visual.

Finally, the feature vectors of 60,320 positive and 41,820 negative examples
were lifted and used to train a linear SVM classifier [5].

The results shown in Figure 24 can be commented as follows. The most
significant result is the dark red main diagonal in the A×V diagram (Fig-
ure 24(b)) telling us that the positive examples have the audio and visual
events in the same bin (or shifted by one bin as one of the neighboring diag-
onals is red too). Red square at (1, 20) is a by-product of the “rotation” as
neighboring bins can be separated to different ends of the view-field.

As can be seen in the V×V diagram (Figure 24(c)), pairs of visual events
are insignificant. The orange main diagonal in the A×A diagram (Fig-
ure 24(a)) says that positive examples tend to contain more audio events.
This is due to the fact that the only the situation with two audio events
present in the training data was congruent, we had no training data with
two loudspeakers speaking. The light blue adjacent diagonal is also an arti-
fact of the direct audio-visual detector and “rotation”.

To conclude, the just trained classifier decides the position consistency
of the audio and visual events, so a suitable name for the “XYZ” concept
would be the “Co-located” concept.

3 Conclusion

In this report, we have made a step toward resolving incongruence arising
from a disagreement between direct and composite classifiers. We have iden-
tified that the interpretation of the disagreement between the direct and
composite classifiers can be interpreted in alternative ways depending on the
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way how the composite classifiers are constructed but we have also seen that
the interpretation accepted in DIRAC is the one corresponding to adopting
Horn clauses for constructing the logical model of observations.

Next, we have carried out an experiment showing how to cope with an
incongruence and demonstrated that it can be removed from the system by
adding new concepts and new detectors.

There are many interesting open questions such as whether the Horn
clauses are practical enough to model interesting situations in our applica-
tions, how to select which concepts should be represented and which should
not, or how to best construct new detectors when lifting becomes expensive.
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