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Abstract: 

Conventional features in automatic recognition of speech describe the instantaneous 

overall shape of a short-term spectrum of speech. In this report we summarize 

results of ongoing research towards alternative speech features that rely on 

information in temporal dynamics of spectral energy. We take an extreme position 

by ignoring any long-distance correlations among spectral components of the short-

term spectrum of speech, and considering temporal trajectories of spectral energies 

as carriers of information in the acoustic signal. This approach is inspired by 

observed properties of auditory cortical receptive fields and supported by results of 

data-driven feature extraction based on Linear Discriminant Analysis. A technique 

for all-pole autoregressive modelling of Hilbert envelopes in sub-bands is 

investigated as means for modelling the temporal trajectories. Finally, the long 

temporal trajectories of spectral energies in critical-bands are used as features in 

modulation spectrum based module for discrimination of speech carrying segments 

of the signal. The feasibility of the investigated novel features is supported by results 

on well established speech recognition tasks. 
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1. Introduction 

1.1. Speech 

Sounds represent important interface with the outside world. In the form of speech, they provide for one of 

the most important cognitive functions, for the language communication. Speech is formed by a sequence 

of particular sounds. Under certain conditions, these sounds could be called phonemes of the language. 

Sequences of phonemes form words, sequences of words form phrases, and the phrases may carry the 

linguistic message in speech. Thus, how do particular vibrations of the molecules of air create the percept 

of speech sounds in the human hearing system is a matter of great interest. 

 

Most of accepted concepts of speech perception start with a spectral content of phonemes. Indeed, 

different speech sounds are characterized by different spectral contents. From the speech production point 

of view it makes sense. Human vocal tract resonates at certain frequencies, called formants of speech. It is 

relatively straightforward to modify resonance properties of human vocal tract by changing its shape. 

From the perceptual point of view, the spectrum as a carrier of the information in the speech signal is 

supported by a spectral selectivity of early stages of mammalian auditory perception.  

 

Speech is formed by sequences of sounds, and these sounds originate in changes in vocal organs with their 

finite inertia. Therefore, spectral content of the speech signal continuously and gradually changes to 

convey the information. These changes can be seen in the spectrogram, which represents sequence of 

short-term spectra, each computed from a very short segment of the speech signal. Since the changes are 

gradual, the short-term spectra change within the phoneme boundaries. Further, since the inertia of speech 

production organs spans more than the duration of a typical phoneme, spectra within the phoneme are 

influenced by neighboring phonemes (coarticulation). In addition, the spectrum of speech depends on 

inherent anatomy of a particular speaker. As a consequence of all these facts, speech sounds that represent 

identical phonemes may be represented by different short-term spectral vectors. Finally, it is easy to 

change many aspect of the short-term speech spectrum by common disruptions that would have hardly any 

effect on human speech communication. All this makes us to look for alternatives to short-term spectrum 

of speech. 

 

In spite of that, human listeners are able to decode individual and unique phonetic elements from the 

speech stream. E.g., highly trained listeners in extensive experiments with perception of meaningless 

syllables done at Bell Laboratories in the first half of the last century were reported to perform in average 

with better than 98 % accuracy when transcribing the individual phonemes in the syllables [12]. How is 

this done is a matter of great theoretical and practical interest. Theoretical, since it would contribute to 

understanding of the unique process of human speech communication and could have important 

implications for our understanding of processing of cognitive signals in general. Practical, since it may 

allow for more accurate machine decoding of the information in speech. 

 

1.2. Modulation Spectrum of Speech 

One viable alternative, proposed and being studied at the I.P. Pavlov Institute in Leningrad/St Petersburg 

in the former Soviet Union in sixties and seventies of the last century, is to evaluate not only the 

instantaneous short-term energy of the spectrum at various frequencies but rather to derive frequency 

components of temporal trajectories of spectral energies in the vicinity in a given time instant. Such so 

called modulation spectrum of speech then caries information about spectral dynamics in the vicinity of a 

given time instant, thus providing the information not available in the short-term spectral energy (which 

represents a mere DC component of the modulation spectrum).  Further, some components of the 
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modulation spectrum may be less affected by certain common distortions of the signal. This has been 

applied with advantage in techniques such as RASTA processing [24] that operates as a bandpass filter on 

the modulation spectrum of speech,  preserving only its components that are presumed to carry the speech 

information. 

 

1.3. Speech Technologies 

Limited knowledge of human speech communication process did not stop successful and profitable 

engineering applications of speech processing. In speech coding, the genius of inventors of telephony was 

in emulating the actions of the outer and middle ear and in converting the changes in the acoustic pressure 

into changes in electric current. The electric signal then could be transmitted and/or stored and used for 

reconstruction of the acoustic signal that closely resembles the original. Over the years, various techniques 

of digitizing and of efficient coding of the digitized electric signal evolved and are in daily use. Most of 

efficient speech coding techniques first convert speech signal to a sequence of short-term spectral vectors, 

each vector describing frequency content of a single short segment of speech. Aspects of these short-term 

spectral vectors are extracted and transmitted to the receiver, where the speech is reconstructed. 

 

However, machine that automatically decodes the linguistic information still remains an elusive 

engineering goal. Workers in automatic recognition of speech (ASR) face a similar challenge as human 

cognitive system does, i.e. to decode the information in the one-dimensional signal. In spite of that, ASR 

processing of a speech signal is different from the way the speech signal is handled in human speech 

communication.  This is partly because many aspects of human information processing are becoming to be 

known only recently and many are still shrouded in mystery. 

 

Since ASR evolved from speech coding, the feature extraction module in ASR typically resembles 

techniques from speech coding. The speech signal is first chopped into a short segments and the shape of 

the short-term spectral density is derived to yield data for the subsequent pattern classification. Thus, the 

one-dimensional speech signal is converted into a sequence of short-term spectral vectors, each vector 

describing frequency content of a single short segment of speech. This short-term spectral vector is 

typically transformed by series of ad-hoc transformations into the feature vector for the subsequent pattern 

classification. The local spectral dynamics in included by use of the first (delta) and the second (delta-

delta) temporal derivatives of the feature trajectory in the vicinity of the current element [14]. 

 

In the currently dominant stochastic ASR, the sequential pattern classification module is applied to decode 

the information in feature vectors. This is done by first obtaining likelihoods of sub-word elements (states 

of the stochastic hidden Markov model), used in the search for the best fitting hypothesis about the uttered 

sound sequence. The information is decoded by finding the most likely path through the lattice of these 

discrete elements while respecting the prior knowledge about the possible distribution of the elements. 

The global dynamics of speech is emulated by sequential organization of the elements. 

 

The pattern classification module is relying on information extracted from large amounts of acoustic and 

text training data. Elaborate ASR systems, capable of acquiring and summarizing the information 

contained in large amounts of training data, have been developed. Still, existing ASR-based human-

machine interfaces are inadequate, fragile and unreliable in many realistic situations and environments 

encountered in human-human interactions. This prevents the wide acceptance of ASR technology by 

general public.  

 

Most of techniques employed in ASR are in many aspects inconsistent with hearing. We believe that 

improved understanding of the ways human perceptual system processes cognitive signals such as speech 

and images and of the methods of emulating such human-like processing by the machine would to 
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necessary improvements of the human-machine communications. Given the knowledge about human 

auditory system, we would like to question some of the aspects of the current approach, and to suggest 

possible alternatives, more in line with the current knowledge of human hearing.  

 

Why should the knowledge of human hearing help in ASR? The human perceptual system appears to be 

optimally suited for decoding the information conveyed by sensory signals [3, 36]. Following human-like 

strategies in processing the cognitive signals is therefore a reasonable engineering approach towards 

improvements of human-machine interface. Some of the aspects of hearing such as the nonlinear (critical-

band like) frequency resolution or compressive nonlinearity between acoustic stimulus and its percept are 

well accepted by speech engineering community. Several times in the career of the author it happened that 

optimizing the ASR system resulted in processing that is consistent with human hearing. Some of this 

experience is summarized in the sections below. 

 

1.4. Short Spectrum of Speech 

An important (and well accepted) model of human speech communication uses a concept of resonance 

frequencies of the vocal tract (formants). The formants show in the short-term spectrum as peaks of the 

short-term spectral envelope. Accurate emulation of time-varying formants yields intelligible speech [30, 

8]. Over the years, the concept of a linear model of speech production and the emphasis on short-term 

spectral envelopes of speech dominate the field and finding the spectral envelopes of speech forms basis 

of many speech coding techniques.  

 

As discussed above, most current ASR devices use stochastic pattern matching of features, which are 

derived from short-term spectral envelopes of speech sounds. The short-term spectral envelope is usually 

modified by nonlinear warping of its frequency (Mel or Bark scale) and amplitude axes (logarithm) and 

projected on cosine spectral basis (computation of so-called cepstrum) that decorrelate the feature space.  

 

A single frame of short term spectrum does not contain all the information that is necessary for decoding 

the phonetic value of a given segment of speech. This is because the neighboring speech sounds influence 

the short-term spectrum of the current sound. The mechanical inertia of human speech production organs 

(coarticulation) results is significant spreading of linguistic information in time (our current estimates are 

of the order of several hundreds of ms [44]).  Given the typical phoneme rate of about 15 phonemes per 

second, this means that at any given time, at least 3-5 phonemes interact. Some studies indicate that the 

within class variability is comparable in magnitude to the across-class variability among phoneme classes 

[32]. The coarticulation effects, combined with many additional sources of nonlinguistic variability such 

as speaker identity and the effects of the acoustic environment, all contribute to high within-phoneme 

variability of the instantaneous spectral envelope. Subsequently, coding of linguistic information in a 

single short-term spectrum of speech appears to be rather complex. Indeed, it has been suggested that in 

order to derive phoneme identity from the running speech, one needs to collect the information from the 

whole speech syllable (i.e. from about 200-300 ms of the signal) [52]. 

 

ASR attempts to classify phonemes from individual slices of the short-term spectrum and needs to deal 

with this within-class variability. This is often done by increasing number of sounds to be classified, e.g. 

by introducing so called context-dependent phonemes and by sub-dividing phonemes into several parts, 

each of which is emulated by a separate model. Both techniques lead to more complex ASR models. 

However, human listeners appear to be able to identify phonemes independently of their context [12] in 

spite of large variability introduced by the coarticulation with the neighboring phonemes. This observation 

suggests that the coarticulation effects, while clearly evident in temporal evolution of spectral envelopes, 

may not present the same problem in human speech perception that they do in current ASR. 
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While there is no doubt that the auditory periphery is frequency selective, it is not clear that its main 

purpose is the deriving short-term spectrum of the acoustic signal. Even though for steady sounds it may 

be possible to find some correlation between the shape of the sound spectrum and the level of activity on 

the auditory nerve, this correlation weakens when the sound intensity approaches levels encountered in 

speech communication [40]. It seems more likely that (consistently with color separation in vision) the 

selectivity of hearing is used for separating the reliable (high SNR) part of the signal from the unreliable 

ones. This is supported by the findings that for normal sound levels, temporal aspects of the sound need to 

be explored in order to account for the sound spectral shape in mammalian hearing [45]. 

 

ASR community is currently settled on two dominant and similar spectral processing techniques, the Mel 

cepstrum [38, 10] and PLP [16]. Both techniques employ auditory-like warping of short-term spectrum of 

speech, yielding higher spectral resolution at lower frequencies. The need for such non-uniform spectral 

resolution in ASR seems well established through years of comparative experiments.   

 

1.5. Temporal Aspect of Speech Signal 

The relatively fast changes in the acoustic pressure (20-20000 Hz) are merely the carrier of the acoustic 

information that is to be extracted from the signal. In human speech, the fast changes are caused by action 

of voice source (e.g. vocal cords in the case of voiced sounds). The slower modulations of the speech 

signal that carry the actual linguistic information result from movements of vocal tract. Therefore the 

information that we are interested in machine recognition of speech is mostly encoded in the relatively 

slow modulations (below 50 Hz and likely not much higher than 10 Hz) of the acoustic wave [33]. 

Clearly, to obtain sufficiently low frequency components of the modulation spectrum of speech, a 

sufficiently long segment of spectro-temporal plane is necessary. Many perceptual phenomena such as 

forward masking, growth of loudness, detection of constant energy stimuli, or binaural release from 

masking, exhibit time constants of several hundreds of milliseconds. As discussed later in this article, such 

time constants most likely originate at higher levels of neural systems. Thus, the human hearing apparatus 

seems to have right properties for decoding the slow modulation changes.  

 

The temporal aspects of speech have been stressed and extensively studied in works of several speech 

groups, probably nowhere more than in the Chistovich-Kozhevnikov group 

In the former Leningrad (now again St Petersburg) in Russia. Their conclusions, unfortunately still only 

rather speculative and partly reported in their 1965 book that was translated to English [52] but much 

more convincingly and with more experimental support  reported in the later 1976 book  [56] available 

only in Russian, are very specific: “ Human listeners are on one hand able to extract parts of the speech 

signal corresponding to the individual speech sounds but on the other hand they need to use the 

information present in the neighboring phonemes in the process” ([56], p. 68).  

 

1.6. Spectro-Temporal Aspect of Mammalian Auditory Processing  

Hearing in mammals possesses a mechanism for processing longer segments of the signal. The current 

knowledge about cortical responses to acoustic stimuli (cortical receptive fields) [11, 31, 9] suggests that 

the auditory system is most likely to produce responses to specific time-and-frequency localized 

combinations of spectral densities in the time-frequency plane (acoustic events). One cortical field 

(courtesy of David Klein) is shown in Fig. 1. It shows the spectro-temporal pattern of the auditory 

stimulus that is most likely to cause firing of the particular cortical neuron. The neuron merely detecting 

energy at the given time and frequency (e.g. the formant in speech) would have receptive field with a 

single high region at the given frequency and close to beginning of the temporal axis, the rest of the field 

would be close to zero. Such neurons do exist, but most cortical neurons have receptive fields far more 

complex than that. The length of a typical receptive field is up to several hundreds of milliseconds, thus 
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easily spanning the time span of speech co articulation. Both the time and the frequency resolution of the 

individual receptive fields vary rather widely with medians somewhere around 200 ms and 1 octave [9].  

Figure 1 A cortical receptive field, observed in the auditory 

cortex of ferret (courtesy of David Klein, used with 

permission). 

These relatively recent findings about the physiology of 

auditory cortex may have important implications in ASR. 

Since neurons in the auditory cortex respond best to 

certain kinds of acoustic signals (e.g. [31]),  they seem to 

act as a kind of two-dimensional matched filter that 

detects the existence of a particular pattern (acoustic 

event) in the incoming signal. Then, just as a certain 

combination of formants indicate certain steady vowel 

sound; a certain combination of particular events could 

indicate certain dynamic acoustic event such as realistic dynamic phoneme of the language.  

 

To elaborate this notion further, think about a vowel formant as one particular type of an acoustic event, 

characterized by a rather trivial time-frequency localized pattern consisting of high vocalic energy at the 

given time instant and at frequencies in the neighborhood of the formant frequency. A receptive filed 

responding to the instantaneous formant position is shown in the left part of Fig. 2. 

 

Figure 2 Schematic examples of 

simple and more complex receptive 

fields 

 

Typical cortical receptive field is 

more complex than a single short 

excitatory region. As described 

earlier, the cortical receptive fields 

span up to several hundreds of ms 

and up to several octaves and 

exhibits not only excitatory but 

also inhibitory regions. Cortical 

neurons associated with such 

receptive fields would optimally respond to complex acoustic events.  

 

Thus, to account for such complexity we need to replace formants by more complex spectro-temporal 

events as carriers of linguistic information in speech. Such broadly defined events are characterized by 

complex time-frequency patterns, involving times other than the current instant.   

 

2. Data Guided Feature Extraction  

The more knowledge we build into the feature extraction module, the less we need to train the subsequent 

stochastic recognizer. The question is where this knowledge should come from. Both techniques, the Mel 

cepstrum and the PLP have been designed by implementing some rudimentary textbook knowledge about 
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auditory perception. As evidenced by the success of data-driven stochastic pattern classification and 

language modeling methods (see e.g. [29] for details), using incorrect prior knowledge may be worse than 

using no prior knowledge at all.  

 

Why do we need to train the analysis module to derive features that will then be used in another trained 

stochastic system? Our knowledge about coding of information in speech signal is still incomplete. 

Enough speech data, labeled with respect to the targeted linguistic message (either by hand or by forced 

alignment procedures) is available and can provide the feature extraction module with speech-specific 

knowledge. Would it be also possible to derive the knowledge contained in the feature extraction module 

from the data?  

 

It turns out that the answer is affirmative. For this purpose, we will be using two techniques, both aiming 

at providing an optimal set (in a sense of being the smallest) of features for a classification. The first one is 

the well known Linear Discriminant Analysis (LDA), which is a stochastic technique that attempts to 

optimize the linear discriminability between classes in the presence of undesirable within-class variability 

(see e.g. [25, 5] for some examples of previous use of LDA in ASR), the second one is a nonlinear 

technique that uses a particular form of an artificial neural net called feed-forward Multi-Layer Perceptron 

(MLP) that, when properly trained, is capable of estimating posterior probabilities of classes of interest [6, 

7]. 

2.1. Data-Derived Spectral Aspects of Information in Speech Signal 

LDA, applied to short-term spectral vectors from FFT analysis of OGI Stories database (OGI Stories 

contain about 3 hours of fluent American English telephone-quality speech from more than 200 adult 

speakers of both genders, hand-labeled by phonemes) yields the spectral basis illustrated in Fig. 3. Notice 

that these spectral bases oscillate around zero faster at lower frequencies. Subsequently, speech analysis 

that employs such spectral basis has 

higher spectral resolution at lower 

frequencies. [35, 36] show that the 

spectral resolution implied by spectral 

basis in Fig. 3 is very similar to spectral 

resolution of auditory-like Bark 

frequency scale. This finding supports 

earlier results [43] that derived auditory-

like frequency warping by minimizing 

differences between speeches from 

different talkers. 

 

 

Figure 3 Spectral basis vector derived by 

data-driven LDA technique. 

 

 

2.2. Data Derived Temporal Aspects of Information in Speech Signal. 

RASTA processing filters the time trajectories of speech features to attenuate the features with rate-of-

change that is not expected for speech. The initial ad hoc form of the RASTA filters [24] was optimized 

on a relatively small series of ASR experiments with noisy telephone digits. We later realized that it is 
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possible to structure the LDA problem in such a way that the LDA solution can be interpreted as a set of 

FIR RASTA-like filters, which are applied on time trajectories of spectral energies. This happens when 

the labeled vector space for LDA analysis is created by extracting temporal vectors cut out from 

trajectories of logarithmic critical-band spectral energy over a relatively long (typically about 1 second) 

span of time. Each vector typically spans much more than a single phoneme, and is labeled by the 

phoneme at the center of the vector. 

 

Having formed such 101-dimensional (each vector spans about 1 s at 100 Hz sampling frequency) vector 

space with vectors labeled by their respective phoneme classes, LDA analysis yields a 101 X 101 scatter 

matrix, decomposed into its principal components. Then the principal vectors represent FIR filters, which 

most efficiently (with respect to the within-class and the across-class variability) map the 101-dimensional 

input space to several points of the output space. 

Figure 4 Impulse and frequency responses of the 

first three discriminant vectors from the LDA-

derived discriminant matrix. The filters for the 5 

Bark frequency channel are shown here. Filters 

for the other carrier frequencies studied (between 

1 and 14 Bark) are very similar. 

 

 

 

 

Frequency responses of the first three FIR filters derived from OGI Stories database are shown in Fig. 4. 

As seen in Fig. 5, filters for different frequency channels are similar. 

 

Figure 5. Frequency characteristics of the first discriminant 

derived from the American English portion of the OGI Stories 

database for all 15 critical bands 

The frequency characteristic (shown at in the right part of 

the Figure) are generally consistent with RASTA [24], and 

delta, and double-delta feature of speech [14]. However, 

the impulse responses of the data-derived filters shown in 

the upper part of the figure suggest preference for the zero-

phase filters. Effective parts of the impulse responses 

appear to span at least 250 ms. 

 

 

The general characteristics of the data-derived RASTA filters appear to be relatively independent of the 

particular database used for their design. The most important processing involves a mild temporal lateral 

inhibition in which the average of several spectral values around the current time instant is subtracted 

from the weighted average of spectral values from surrounding past and future contexts.  This gives a mild 

bandpass filter as shown in the upper right of the figure. The second discriminant vector computes the 

difference between weighted averages from left and right contexts of the current frame (the first derivative 
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of the first discriminant vector). The third discriminant vector is an aggressive mexican hat temporal 

lateral suppression (the second derivative of the first discriminant vector) implying quite narrow band-pass 

filter with 12dB/oct slope. Such dynamics-enhancing functions are hypothesized to be important for scene 

interpretation by human visual system [37]. These three vectors correspond to RASTA filtering with 

subsequent computation of the first (delta) and the second (delta-delta) dynamic features [14]. 

2.3. LDA on much Larger Database 

Experiments are run using 30 hours of speech obtained from the CTS (Conversational Telephone Speech) 

database. CTS database is a collection of narrowband speech data from many different previous databases 

(Switchboard, Fisher databases, etc.). Data are labelled into 40 phonetic classes and labels provided by 

SRI are automatically obtained using forced alignment. This amount of data is significantly larger than the 

amount of data previously used for this task, allowing robust estimation of Spectro-Temporal 

discriminants. 

 

In this first set of experiments we apply LDA as described in section (2). Until now only first three 

discriminants have been studied; the use of large amount of data allows the robust estimation of higher 

discriminants. If data are split in sentences as it is usually done in speech recognition, discriminants 

exhibit artefacts at the end and at the beginning, otherwise if they are processed with full context they 

show significant non-zero values only in the centre. This suggests that the procedure of splitting the data 

in blocks may be detrimental for such temporal processing of data. Figure 6 show four discriminants 

obtained from the fifth critical band. 

 
 Fig 6a Impulse responses of the first four temporal 

discriminants derived by LDA on the 

Conversational Telephone Speech database 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6b Impulse responses and frequency responses of the 

first four temporal discriminants derived by LDA on the 

Conversational Telephone Speech database 
 

Discriminants at other frequencies are again very 

similar. Width of those filters suggests that information 

about phonemes is spread in time over an interval of 

around 500ms around the centre of the phoneme. First 

discriminant is qualitatively similar to RASTA filter 

while higher order discriminants describe more details of 

signal dynamics. In frequency domain they correspond 

to pass band filters that pass lower frequencies of the 

modulation spectrum. Width of temporal discriminants 
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progressively increases, suggesting the use of different time resolutions.  

 

In [23] spectral discriminants are derived using LDA, however PCA is used for smoothing the between-

class and the within-class covariance matrixes, needed for deriving the LDA discriminant matrix [13]. 

According to the discussion of section 2 this is a suspect method that can significantly affect the result. 

We repeat the same experiment using 30 hours of speech and the previously discussed LDA technique for 

singular matrices. Hamming window shifted by 10ms step is used to obtain 129 points of 12th order LPC 

logarithmic power spectrum. Cross validation experiments select out of the possible 39 discriminants only 

24 (that are enough for covering the discriminative space). These resulting discriminants are shown in the 

Fig. 7 below. 

 
Figure 7 First sixteen spectral bases 

derived by LDA on the Conversational 

Telephone Speech database 
 

Linear discriminants show a higher 

oscillation frequency at low frequency 

and progressively lower oscillation 

frequency in the higher part of the 

spectrogram, suggesting different 

frequency resolution at different parts 

of the spectrum. To further investigate 

this issue we performed sensitivity 

analysis as described in [55]. 

Sensitivity of a given bases is 

computed as the Euclidean distance 

between a gaussian shape centred at a 

given frequency and the same shape 

shifted by a certain value, projected on 

the bases. In other words if g(f) is a gaussian shape centred at frequency f and W is the LDA basis, the 

sensitivity S(f) is defined as S(f) = ||g(f) ·W −g(f +µ) ·W|| where µ is a shift. Figure 8 (left) plots sensitivity 

to a constant shift µ = 25Hz on a linear scale; in this case LDA basis are more sensitive at lower 

frequencies. Figure 8 (left) plots sensitivity to a constant shift µ = 0.8 Bark on a Bark scale; sensitivity is 

now constant, suggesting that LDA discriminants emulate the Bark scale with higher resolution at low 

frequencies and lower resolution at higher frequencies. The Bark scale was derived by perceptual 

experiments, LDA spectral basis are completely data-driven supporting [55]. 

 

 
Figure 8 Sensitivity of 

the LDA-derived 

spectral projections to 

perturbances of a 

spectral component at 

different frequencies. 

Left, the perturbance 

step is constant on the 

linear spectral scale. 

Right, the perturbance 

step is constant on the 

nonlinear auditory-like 

Bark scale 
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2.4. Joint Spectro-Temporal Analysis 

 

Analysis of spectrum and of temporal trajectories has been done in previous sections independently. We 

want to investigate now discrimination in joint spectro-temporal domain using discriminant analysis. A T 

×F matrix where T is the temporal context and F is the number of frequency components is labeled 

according to the phoneme in its center. The matrix can be represented as a vector of size T × F and 

classical LDA can be applied. This approach was applied in [51] in critical band domain with a context of 

101 frames on small amount of data. Conclusion was that the amount of data was not sufficient for robust 

estimation of discriminants. Better results were obtained if analysis was carried independently in time and 

in frequency and discriminants recombined. We are interested here in using the LPC power spectrum 

(dimension 129 points) in combination with a temporal context of 101 frames. If matrices are represented 

as vectors, Sw and Sb have a dimension of 13000 × 13000 which is unsuitable for computational reasons. A 

way to overcome this dimension problem is doing discriminant analysis directly in the matrix space 

represented as a tensor. In other words, operations on vectors are replaced by operations on tensors and 

final discriminant space is a tensorial space. If X is a matrix of dimension T × F, we seek the space 

transformation that reduces T × F into a space of dimensions l1×l2; this space is obtained by the tensor 

product of a subspace L of dimension T ×l1 and R of dimension F × l2. Projection of an element X in this 

space is given by the product Y = L
T
XR with final dimension l1 ×l2. In the tensorial space, the Frobenius 

norm can be used to derive within and across class matrices Sw and Sb defined as: 

 

 
 

where Mi is the class mean matrix and M is the global mean matrix. Using the Frobenius norm property 

trace(MM
T
 ) = ||M|

|2
F and applying the transform Y = L

T
XR , expression reduces to: 

 

 
 

Optimal transforms L and R can be found iteratively fixing one of them, projecting tensor in their space 

and solving the generalized eigenvalue problem (see [53]). This result in eigen-decomposition of matrix 

101×101 and 129×129 instead of 13000×13000. In other words rows are projected on matrix RRT and 

columns on matrix LTL that span the linear discriminant space of rows and columns of X respectively. 

Linear discriminants obtained using 2D-LDA have similar shape as outer product of discriminants 

obtained processing independently the temporal and spectral domain, suggesting that those domains can 

be processed independently. Figure 9 shows twelve 2D discriminants in the time frequency domain. Some 

of them show strong localization properties both in time and in spectral domains as if they were sensitive 

to a particular region in the plane; on the other hand we can notice as well discriminants with a sensitivity 

more spread over the frequency domain. 
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Figure 9 The first sixteen  2-D (spectro-temporal) bases derived by 2D-LDA on the Conversational Telephone 

Speech database 

 

3.  ASR Based on Complex Spectro-Temporal Patterns 

Now, how do we use this notion of complex time-frequency acoustic events in an automatic speech 

recognizer? First, we need to realize the needs of state-of-the-art stochastic recognizers. Ideally, the ASR 

system expects within state uncorrelated and normally distributed features every 10 ms or so. Further, the 

feature vectors should be low-dimensional so that the subsequent pattern classifier is also small and could 

be trained on a finite amount of training data. The smallest set of features for classification is posterior 

probabilities of the classes to be classified [13]. So we need a module capable examining relatively long 

spans of speech signal within various frequency bands to deliver every 10 ms or so posterior probabilities 

of particular temporal events within such bands and to convert these posteriors to a small set of 

uncorrelated and normally distributed features. 
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3.1. Introduction to TRAP-TANDEM Technique 

 

Figure 10: Trap-Tandem Feature Extraction 

A step in this direction is the TRAP-TANDEM and related techniques [18, 20]. A schematic picture of the 

TRAP-TANDEM techniques is shown in Fig.10. The TRAP (standing for TempoRAl Pattern) refers to a 

particular way in which the linguistic information is extracted from the speech data. In a conventional 

speech analysis, the spectral shape of full-band spectrum a short segment (about 10-20 ms) of speech 

signal is used to provide evidence for the subsequent stochastic recognition techniques. In TRAP, the 

evidence is derived from a relatively long (500-1000 ms) and frequency-localized (1-3 Bark) overlapping 

time-frequency regions of the signal. The TANDEM refers to a way of converting the frequency-localized 

evidence to features for the HMM-based ASR system. The name TANDEM reflects the fact that the 

classifier is used in tandem with the conventional HMM-based classifier. Both the TRAP and the 

TANDEM modules are trained on development data. 

 

The events targeted by the TRAP estimators may be but do not need to be the same at the events targeted 

by the TANDEM estimator. At the moment, the events targeted by the TRAP are broad phonetic classes 

where the targets for the TANDEM estimator are typically context-independent American English 

phonemes. Also, TRAP estimators can be (and often are) trained on different database than the database 

used in training the TANDEM estimator. Both the TRAP and the TANDEM estimators are nonlinear 

feed-forward Multi-Layer Perceptron (Quicknet [26]) discriminative classifiers. Hierarchical classification 

schemes in TANDEM estimator were also investigated [42]. 

 

Why would we attempt to derive speech features from time intervals as long as 1 s? Because the 

information about the underlying sub-word classes (phonemes) spreads at least over the interval of 200-

300 ms. This has been demonstrated by Bilmes [4] and confirmed by Yang et al. [44]. Since the derived 

features will be used for classification into phoneme-like classes, it makes sense to collect the evidence 

from all the data points which carry the information, hence at least 300 ms. But why even longer time 

interval? Because we want to remove the information about slowly varying noise (subtract the mean) from 

the data. This harmful information is in modulation spectrum below 1 Hz [33], hence 1 s. 

 

Why should we abandon the short-term spectrum of speech? First, the envelope of the short-term 

spectrum is notoriously unreliable in presence of common distortions such as the distortions caused by 

frequency response of communication equipment or by frequency localized noise. Fletcher [12] (and 

many after him) demonstrated that uncorrelated noise outside the critical band has only a negligible effect 

on detection of the signal within the critical band. He further proposes that errors in human recognition of 

nonsense syllables within relatively narrow articulatory spectral bands (each articulatory band spanning 
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about 2 critical bands) are independent. Hence, the first stage of processing of acoustic signals seems to 

happen on frequency-localized regions of the signal. 

3.1.1 TRAP 

The input to the TRAP module is formed from one or more time trajectories of critical-band energies. 

Some benefits are seen when more than one time trajectory is used as an input. At the moment, the time-

frequency spectral density plane uses the front end module from PLP analysis [16]. It does the short-time 

spectral analysis of the speech signal with a subsequent Bark-like summation of the spectral components. 

However, a recently emerging interesting alternative for estimating temporal evolution of critical band 

spectral density that completely eliminates the short-term spectral analysis is the frequency domain linear 

prediction [2]. Several ways of pre-processing in the TRAP module have been examined, two of these are 

described in some detail below  

 

a) Pre-processing by trained speech-class posterior probability estimators 

One possibility is to estimate frequency-local posterior probabilities of speech classes using trained non-

linear frequency-local classifiers. TRAP estimators, using multi-layer perceptrons, deliver vectors of 

posterior probabilities of sub-word acoustic events, each estimated at the particular individual frequency. 

The events targeted by TRAP estimators are most common American English phonemes clustered into 6 

broad phonetic classes [1, 27] and a separate estimator is trained for each frequency region of interest. 

More recently, there are efforts to derive a single “universal” estimator, which could be used at all 

frequencies of interest [19]. Even when the nonlinear classifiers are used, it still seems to be advantageous 

to pre-process the input data prior to the frequency-localized classification. The PCA analysis of the data 

suggests that to preserve most of the variability in the multiple-trajectory data, the data from the individual 

trajectories should be averaged and differentiated, in effect crudely describing the spectral shape in the 

vicinity of the frequency of interest [28, 15]. The most successful dimensionality reduction has been so far 

the cosine transform that typically allows for at least 50% reduction of the input data.  

 

b) Hard-wired pre-processing 
Another, more recently pursued possibility, is to pre-process different frequency-localized time-frequency 

patches by 2-D filters, operating on the critical-band modulation spectrum, and to feed the outputs of this 

bank of filters directly to the subsequent TANDEM module [13f]. The 2-D filters we are currently using 

are band-pass filters which impulse responses in the temporal domain represent the first and the second 

temporal derivatives of Gaussian functions 

 
 

where x is time with the step of 10 ms; standard deviation σ determines the effective width of the 

Gaussian. We have used 8 different values of σ, logarithmically spaced on the interval 8-130 ms. Filters 

with low σ  values have finer temporal resolution, high σ filters cover wider temporal context and yield 

smoother trajectories. All temporal filters are zero-phase FIR fiters, i.e. they are centred around the frame 

being processed. Length of all filters is fixed at 101 frames, corresponding to roughly 1000 ms of signal, 

thus introducing a processing delay of 500 ms. First and second derivatives of Gaussian function have 

zero-mean by the definition. By using such impulse responses we gain an implicit mean normalization of 

the features within a temporal region proportional to the value of σ, which infers robustness to linear 

distortions [24]. Since such removal of the DC component from temporal trajectories of logarithmic 

spectral energies is one of the key properties of the RASTA processing [24], we call this particular 

processing the Multi-RASTA (MRASTA) processing. Impulse responses given by the upper equation are 
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shown in the left part of Fig.11, the right parts shows impulse responses given by the lower equation. 

Respective frequency responses are illustrated in Fig. 12. 

 
Figure 11.Normalized 

impulse responses of  two 

sampled and truncated 

Gaussian derivatives for 

σ  = 8 - 130 ms. 
 

 

 

 

 
 

 

Figure 12.  
Normalized frequency 

responses of the two 

sampled and truncated 

Gaussian derivatives for 

σ = 8 - 130 ms. 
 

 

 

 

Frequency derivatives at each critical band frequency were formed by subtracting filter outputs at the 

lower neighboring frequency from the output at the higher neighboring frequency at each time instant., 

thus in effect forming differentiating filter with its impulse in the frequency domain given by the vector {-

1, 0, +1 }. In that way, 442 different 2-D time-frequency modulation domain filters were formed. An 

example of one of these filters is illustrated in Figure 13.  

 

Figure 13. An example of 

an impulse response of one 

of2-D  time-frequency 

modulation domain filters.  

Warm colors (yellow to 

red) indicate positive 

values, cold (blue) color 

indicate the negative ones, 

green indicates values 

close to zero. This 

particular filter represents 

the second derivative of 

the Gaussian function in 

the time domain and the 

first derivative in the 

frequency domain, 

centered at f0 . 
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3.1.2 TANDEM 

Techniques based on optimal rotation of feature space such as linear discriminant analysis (LDA) have 

been used in feature extraction in ASR for quite some time [25, 5]. A nonlinear alternative to LDA is a 

multi-layer Perceptron (MLP) trained in one-high, rest-low paradigm. When properly trained, such MLP 

estimates posterior probabilities of classes of interest [6,7]. 

multiple streams

of input features

multi-layer perceptron

trained to estimate

posterior probabilities

of sub-word classes

static nonlinearity

to make 

distributions 

more Gaussian

principal component 

rotation to make

transformed 

posteriors

uncorrelated

features

for HMM

 
 

Figure 14   TANDEM technique for deriving features for HMM-based ASR 

 

 

The MLP posterior probability estimates are gaussianized by a static nonlinearity and whitened by the KL 

transform derived from training data. Such gaussianized and whitened posterior probabilities form the 

feature vector for the subsequent HMM recognizer. 

 

Thus, in TRAP-TANDEM we are replacing the conventional features derived from a spectral density 

vector representing the spectral envelope, by a matrix of transformed likelihoods of acoustic events (in the 

original concept the events were context-independent phonemes). If the targeted events are independent, 

the output of the trained TANDEM MLP could represent an estimate of the efficient low-entropy 

statistically-independent code, hypothesized in perceptual processing [3, 34].  

 

 

4. Autoregressive modeling of temporal trajectories of spectral 

energies in frequency sub-bands 

 

The speech signal is not stationary but carries information it its dynamics. To enable the use of processing 

techniques that assume signal stationarity, short segments of the signal (10-30 ms) are used to derive 

short-term features for pattern classification in automatic speech recognition (ASR). The signal dynamics 

are then represented by a sequence of the short-term feature vectors with each vector representing a 

sample from the actual underlying dynamic process, in a manner similar to the way motion in movies is 

represented by a sequence of static shots. The issues of windowing, time-frequency resolution 

compromises, proper sampling of the short term representation, emulating the unequal frequency 

resolution of hearing, etc., are typically addressed in an ad hoc manner. To parameterize short-term 

spectral envelopes, a rich inventory of techniques has evolved. 
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The temporal resolution of such frame-based representation is the same at all frequencies and is given by 

the applied analysis window (typically around 25 ms) which acts as a low-pass filter on the temporal 

trajectories.  

 

Unlike the conventional feature extraction techniques, our features are based on temporal evolution of 

spectral energy in frequency sub-bands. We are therefore interested in finding alternatives to the 

conventional frame-based analysis where we could directly model temporal aspects of the time-frequency 

plane and to control temporal properties of the model. To begin our quest, we recall that an alternative 

way of deriving the short-term speech representation (applied e.g. in the original Spectrograph) could be 

using the rectified output from a bank of band-pass filters. Spectral resolution could be then controlled by 

band-pass filter design, and the temporal resolution could be different at different frequencies depending 

on the lengths of impulse responses of the individual filters. 

 

There is a third, perhaps less obvious way of deriving the short term spectral representation. Just as a 

squared Hilbert envelope (squared magnitude of the analytic signal) represents instantaneous energy in a 

signal, the squared Hilbert envelopes of the sub-band signals are a measure of the instantaneous energy in 

the corresponding sub-bands. To get the Hilbert envelope would normally involve the use of either the 

Hilbert operator in the time domain (whose infinite impulse response presents some practical issues) or the 

double use of the Fourier transform with modifications to the intermediate spectrum [73]. An interesting 

and practical alternative is to get the all pole approximation of the Hilbert envelope by computing a linear 

predictor on the cosine transform of the signal. Such Frequency Domain Linear Prediction (FDLP) is the 

frequency domain dual of the well-known time-domain linear prediction (TDLP). In the same way TDLP 

fits an all-pole model to the power spectrum of a signal, FDLP fits an all-pole model to the squared 

Hilbert envelope. Since the cosine transform represents the Fourier transform of the even-symmetrized 

time signal, the “spectrum” of the resulting predictor gives an approximation to the Hilbert envelope of the 

signal (in the same way as the spectrum of the predictor derived in the time domain is an approximation of 

the power spectrum of the signal).  

To get an all-pole approximation of the Hilbert envelope for a specific sub-band, the prediction needs to 

be derived only from the appropriate part of the cosine-transformed signal. The parametric all-pole 

description of the temporal trajectory offers control over the degree of smoothing of the Hilbert envelope.  

 

The easily-computable “cepstrum” of the time-domain all-pole model represents in this case the spectrum 

of the logarithmically-compressed temporal envelope and is related to the cosine transform of the original 

TRAP which has been found useful in ASR [74]. The duality between the power spectrum and the squared 

Hilbert envelope is essential to the understanding of FDLP. 

 

 Figure 14 illustrates these two dual forms of linear prediction. On the upper left pane we display 50 ms of 

speech that we want to model using the two dual forms of linear prediction. Conventional linear prediction 

(TDLP in our terminology) approximates the power spectrum of the signal, as shown in the middle panel 

on the right (frequency) side of the figure, which is the TDLP of the top-left (time) signal. The full Fourier 

power spectrum to which this is an approximation is plotted directly below, in the bottom-right pane. 

FDLP on the other hand operates on the DCT of the signal (top right pane) and results in an LP model 

describing the temporal envelope, shown in the middle left (time) panel. Each column provides three 

alternative representations of each domain. Whereas TDLP exploits the spectral structure of the signal to 

construct an efficient predictor of the temporal signal, FDLP exploits the temporal structure of the signal 

to predict spectral values. 
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Figure 14: The two dual forms of 

linear prediction. On the left 

column (time) we plot 50 ms of a 

speech signal, the FDLP all-pole fit 

and corresponding squared Hilbert 

envelope. On the right column 

(frequency) we display the DCT of 

the same signal, the conventional 

time-domain LP all-pole fit and the 

corresponding power spectrum. 

Both models use 28 poles. 

 

 

 

 

 

 

 

 

 

 

4. 1. Mathematical description of envelope estimation 

This section provides mathematical description of the steps involved in the estimation of the temporal 

envelope in more detail. The concept of FDLP was to our knowledge first introduced by Herre [72] as a 

method for efficient coding of transients in transform coders. Kumaresan has independently discovered 

and extensively worked on FDLP, a method which he calls linear prediction in the spectral domain or 

LPSD [75]. 

 
In our work, we apply FDLP to approximate relatively long temporal envelopes of the sub-band signal. 

However, to simplify the notation in this section, we present the full-band version of the technique. The 

sub-band based technique is identical but applied only to the appropriate parts of the DCT transformed 

signal.  

 

Let us define the input discrete time-domain sequence as s(n)for time samples n =1,...,N, where N denotes 

the segment length. Its Fourier power spectrum P(ωk) (sampled at discrete frequencies ωk = 2πk/N,  k 

=1,...,N) is given as  

 
 

where S(e
jωk 
)= Z {s(n)}|z=ejωk .  Z{ .} stands for the z-transformation.  Later, let us use the notation  F{.} 

for Discrete Fourier Transform (DFT) which is equivalent to z-transform with         z = e
jωk 
.  It has been 

shown, e.g., in [76], that classical Temporal-Domain Linear Prediction (TDLP) fits the discrete power 

spectrum of an all-pole model P
ˆ
(ωk) to P(ωk )of the input signal.  

 

Unlike TDLP, where the time-domain sequence s(n) is modelled by linear prediction, FDLP applies linear 

prediction on a frequency-domain sequence. In our case, s(n) is first  DCT transformed. It can also be 

viewed as the symmetrical extension of s(n) so that a new time-domain sequence q(m) is obtained (m 

=1,..., 2N) and then DFT projected. We obtain the real-valued sequence Q(ωk)= F {q(m)} . We then 
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estimate the frequency-domain prediction error E(ωk)as a linear combination of Q(ωk)consisting of p real 

prediction coefficients bi  

 

The bi  are found so that the squared prediction error is minimized [76]. As noted above, in the case of 

TDLP, minimizing the total error is equivalent to the minimization of the integrated ratio of the signal 

spectrum P(ωk)to its model approximation P
ˆ
(ωk)  

 
 

In the case of FDLP, we can interpret Q(ωk ) as a discrete, real, causal, stable sequence (consisting  of 

frequency samples). Its discrete power spectrum will be estimated through the concept of discrete Hilbert 

transform relationships [77]. Q(ωk)can be expressed as the sum of Q
e
(ωk)and Q

o
(ωk), denoting an even 

sequence and an odd sequence, respectively; thus Q(ωk)= Q
e
(ωk)+ Q

o
(ωk). Its Fourier transform  

 

 

where R and I stand for real and imaginary parts of φ(m), respectively. It has been shown (e.g., [77]) that 

φ
R
(m)= F{Q

e
(ωk)} and φ

I
(m)= F{Q

o
(ωk)} . By taking the Fourier transform of Q

e
(ωk), the original 

sequence q(m) is obtained  

 
  

The relations between F{Q
e
(ωk)}and F{Q

o
(ωk)} , called the Kramers-Kronig relations, are given by the 

discrete Hilbert transform ( partial derivatives of real and imaginary parts of analytic function [78] ), thus  

 

  
 

where H{ .} stands for Hilbert transformation. Power root |φ(m)|
2 
is called the squared Hilbert envelope. 

Prediction error is proportional to the integrated ratio of |φ(m)|
2 
and its FDLP approximation A(m)

2  

 

 
 

This equation can be interpreted in such a way that the FDLP all-pole model fits squared Hilbert envelope 

of the symmetrically extended time-domain sequence s(n). FDLP models the time-domain envelope in the 

same way as TDLP models the spectral envelope. Therefore, the same properties appear, such as accurate 

modeling of peaks rather than dips. Further, the squared Hilbert envelope |φ(m)|
2 
is available and can be 

modified. Thus, e.g., compressing |φ(m)|
2 
by a root function [.]

r
  turns it into  
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In our experiments, the DCT input sequence is weighted by a set of Gaussian windows of variable 

temporal resolution, spaced following the Bark scale, as described in [70]. Gaussian windows span the 

whole DCT sequence. Therefore, we can individually exploit FDLP in each critically band-sized sub-

band.  

 

4.2. Linear predictive temporal patterns (LP-TRAP) 

In our experiments we extend the FDLP model to speech segments up to 1 sec long. We seek here to 

summarize the temporal dynamics rather than capture every single nuance of the temporal envelope. 

Taking the DCT of a 1 sec speech segment at 8 kHz sampling rate generates 8000 frequency domain 

samples. Instead of fitting one predictor on the whole frequency series as we do in figure 1, we first apply 

15 Bark-spaced overlapping Gaussian windows. We then apply FDLP separately on each of the 15 bands. 

Each predictor then approximates the squared Hilbert envelope of the corresponding sub-band. This is the 

“sub-band FDLP” introduced in [2] but here we extend the time window to even longer speech segments 

and use overlapping windows. We compute the auditory spectrogram over the 1 sec windows by stacking 

the individual temporal trajectories (rather than by stacking the individual frequency vectors as done in the 

conventional short-term spectral analysis). This is demonstrated in figure 15.  

 
Figure 15: Auditory spectrogram versus all-pole 

trajectories. The first panel displays the short-time 

auditory spectrogram whereas the second panel shows 

the FDLP-approximated Hilbert envelopes using 80 

poles per band. below it is plotted the corresponding 

squared Hilbert envelope that is being estimated. 

 

The top panel shows the auditory spectrogram 

obtained by short-term Fourier transform analysis 

and Bark scale energy binning to 15 critical bands. 

In the second panel we fit fifteen 80-pole FDLP 

models, one for each Bark band, and display the 15 

estimates of the squared Hilbert envelopes. 

 

4.3. Spectral transform linear prediction (STLP) 

Spectral transform linear prediction was introduced as method to adjust the relative fit of the conventional 

(TDLP) predictor to the peaks and dips of the speech spectrum [69]. By raising the power spectrum to an 

arbitrary power, the compression factor, one can adjust the peak-hugging property of linear prediction. 

STLP is an integral part of the well-known perceptual linear prediction (PLP) technique; the cube-root 

compression of the power spectrum in PLP prior to prediction is an instance of STLP with compression 

factor 1/3. We borrow this idea and we apply it on the Hilbert envelopes of the Bark sub-bands instead of 

the power spectra. In some sense this method could now be dubbed temporal transform linear prediction 

(TTLP). In figure 16 we demonstrate the effect of the compression factor. We take the sixth Bark band 

from figure 2 and this time we keep the number of poles fixed to 50. On the top pane we display the 

logarithm of corresponding squared Hilbert envelope. On the second pane we plot the FDLP sub-band 

envelope with compression factor 1.0 which amounts to no compression. The all-pole model fits the peaks 
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much better than the dips. A moderate compression of 0.1 still gives a better model of the peaks but of a 

greatly compressed Hilbert envelope. This time the dips are much better modeled. Lastly for compression 

of -0.5 the all-pole model fits a compressed version of the inverse Hilbert envelope. The dips are now 

accurately modeled. Spectral expansion using compression factors greater than 1 is also possible but it 

may result in ill-conditioned solutions due to the extreme sharpness of the peaks; we do not consider 

spectral expansions here. 

 

 
 
Figure 16: The effect of the compression factor. The top pane shows the squared Hilbert envelope of the sixth Bark 

band of figure 2. In the second pane FDLP using no compression fits the peaks. Using moderate compression in the 

third pane FDLP achieves a better fit to dips in the envelope. The fourth model fits a compressed version of the 

inverse spectrum, thereby fitting the dips in preference to the peaks. The number of poles is 50 in all three cases. 

 

For comparison, we show in Fig. 17 2-D spectro-temporal representations of the same utterance derived 

by a conventional frame-based feature extraction technique (PLP analysis) and by the proposed FDLP. A 

typical spectrogram is constructed by appending individual short-term spectral vectors alongside each 

other. A similar representation can be constructed by vertical stacking of the temporal vectors 

approximating the individual sub-band Hilbert envelopes. The top panel in Fig. 4 shows the result of PLP 

smoothing, with each 15-point vertical spectral slice now smooth and continuous as a result of being fit 

with an LP model.  The bottom  panel is based on a series 24-pole FDLP models, one for each Bark band, 

to give estimates of the 15 subband squared Hilbert envelopes. As with PLP, cube-root compression is 

applied here to the sub-band Hilbert envelope prior to computing the all-pole model of the temporal 

trajectory. The similarity of all these patterns is obvious, but there are also some important differences:  

As discussed above, the FDLP technique is capable of extracting finer temporal details that are smother 

out in the PLP results due to its stationarity assumption with the 20 ms analysis interval applied.  
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Fig.17 Spectro-temporal 

representation 

(spectrogram) from 

conventional frame-based 

analysis (PLP with 20 ms 

Hamming window and 10 

ms analysis step) and from 

FDLP 
 

 

 

 

 

 

 

 

 

5. Speech/Non-speech detection from long-temporal spans 

The speech processing technique utilizing limited frequency ranges and 

longer temporal spans has been successfully employed in one of the 

crucial speech signal processing task – speech/non-speech detection 

(SND). By providing robust and accurate speech detection, ASR 

performances can be highly improved, especially when dealing with 

challenging input data, such as e.g. meeting recordings. Inaccurate 

boundaries are an important cause of errors in automatic speech 

recognition systems, and a pre-processing stage that segments the 

signal into periods of speech and non-speech is invaluable in improving 

the recognition accuracy. An evaluation of an isolated-word recognizer 

has shown that more than half of the recognition errors are due to 

inaccurate word boundaries [57]. 

 
Fig. 18 Technique for speech/nonspeech discrimination based on modulation 

spectra derived from long temporal spans of band-limited spectral energies 
 

One of the issues in the design of a SND system is the selection of an 

appropriate feature set that captures the temporal and spectral structure 

of the signals. Scheirer and Slaney investigated features for 

speech/music discrimination that are closely related to the nature of 

human speech [59]. The proposed features, including, spectral centroid, 

spectral flux, zero-crossing rate, 4 Hz modulation energy (related to the 

syllable rate of speech), and the percentage of low-energy frames, have been explored in the task of 

discriminating  speech from various types of music. In [58], entropy and dynamism features based on 

posterior probabilities of speech phonetic classes (as obtained at the output of an HMM/ANN large 

vocabulary continuous ASR system) are used to form an observation vector sequence, which is used in a 

HMM classification framework.  

 

The existing state-of-the-art methods can be split into two broad categories: threshold detection process, 

and pattern-recognition process. However, the both categories of SND systems are limited by two 



 

25 

common drawbacks. On one hand, threshold based detection techniques fail under low SNR conditions, 

and on the other hand, pattern-matching techniques require large training data to train the models and need 

a prior knowledge of the noise.  

 

The proposed approach is based on long-term modulations, examining the slow temporal evolution of the 

speech energy with time-windows in the range of 200 - 800 ms, contrary to the conventional short-term 

modulations (frequently used in ASR) studied with time-windows up to 10 - 30 ms which capture rapid 

changes of the speech signals. The relative prominence of slow temporal modulations is different at 

various frequencies, similar to perceptual ability of human auditory system. Particularly, most of the 

useful linguistic information is in the modulation frequency components from the range between 2 and 16 

Hz, with dominant component at around 4 Hz [60-62]. In [61], it has been shown that for some realistic 

environments, the use of components from the range below 2 Hz or above 16 Hz can degrade the 

recognition accuracy. The proposed algorithm is based on this particular characteristic of speech, which is 

used to classify speech and non-speech signals in order to characterize each acoustic event. 

6. Experiments 

In first set of experiments we have compared LPC power spectrum that was projected on spectral and 

temporal basis.  Results are compared with LPC power spectrum projected on DCT basis and with PLP 

cepstral coefficients. For experiments we used a database that is different from the one used for deriving 

linear discriminants assuming that those findings are universal properties of speech and not task 

dependent. Recognition results are run on the OGI-digits database. 

 

Table 1 shows results obtained using the following set of 13 features: (a) LPC power spectrum projected 

on 13 DCT basis (b) PLP (c) LPC power spectrum projected on 13 spectral linear discriminants (d) LPC 

power spectrum projected on 13 spectral linear discriminants and filtered with one temporal discriminant. 

If LDA basis are used instead of DCT basis, an improvement of 4% (relative) is obtained. DCT basis has a 

uniform spectral sensitivity while LDA has a higher sensitivity at lower frequencies (emulating somehow 

the bark scale) where the most important information for recognition is contained. Spectral basis designed 

from data yield similar performance as PLP features designed according to auditory principles [10]. If 

spectral features are filtered with first temporal discriminant a considerable improvement of 35% (relative) 

w.r.t. the LPC baseline and 32% (relative) over PLP is obtained indicating the effectiveness of larger 

temporal context, imposed by the temporal filtering.  

 

In table 2 we compare results for 39 features, i.e. LPCC features plus delta (an estimate of the first 

differential of temporal trajectory  of the coefficient) and double delta (an estimate of the second 

differential) with power spectrum projected on 13 spectral basis and 3 temporal basis. In this case LDA 

spectral and temporal discriminants outperform LPCC plus delta and double delta by 11% (relative) while 

only very small improvement w.r.t. PLP and derivatives is found. Again data guided features yield 

equivalent results as currently often used PLP static and dynamic features. 

 

Table 3 shows results for the TANDEM-based features. This time, the PLP-based TANDEM uses 9 frame 

of PLP+delta+ddelta features (the multi-frame input is beneficial in conjunction with the neural net-based 

TANDEM). The TRAP-TANDEM reaches the same performance. 

However, the TRAP-TANDEM features have been so far found most useful in combination with the 

conventional spectrum-based (PLP, Mel Cepstrum,..) features. Thus, e.g. they were successfully applied in 

DARPA EARS program, where they brought about 10% relative improvement in error rate [39]. The 

MRASTA-TANDEM is significantly better (more than 20% relative improvement in the word error rate) 

even on its own. Combining it with more conventional PLP features yields yet further improvements. 
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Table 1: Word error rates for different sets of 13 features on OGI-digits 

13 LPCC 13 PLP 13 spec. 13 spec. × 1 temp 

14.1 % 13.5 % 13.5 % 9.1 % 

 

Table 2: Word error rates for different sets of 39 features on OGI-digits 

39 LPCC + differentials 39 PLP + differentials 13 spect. × 3 temp 

6.0 % 5.4 % 5.3 % 

 

Table 3: Error rates for TRAP-TANDEM and MRASTA-TANDEM features on OGI-digits 

PLP_TANDEM TRAP-TANDEM MRASTA-TANDEM 

4.5 % 4.5 % 3.5 % 

 

 

Finally, we have also started to use FDLP features as input to TANDEM system. In this case, we have not 

used dynamic features (the first and the second differentials of temporal trajectories) do the baseline 

performance is lower (5.9 % word error rate as opposed to 4.5 % in the case when the differentials are 

used). 

 

Optimal  parameters of the FDLP model have been found earlier [81]  as compression = 0.1, number of 

poles = 50, TRAP-length = 500ms, Gaussian window and applied here 

 
Table 4: Experiments with FDLP-based feature extraction 

features Word error rate [%] 

Baseline PLP features 5.9 

Frequency response of FDLP as  features 5.4 

Cepstral coefficients of FDLP as  features 5.2 

 

 

Evaluation of speech/nonspeech detecting system was carried out on meeting recordings. We used a 

standard database containing the data recorded in an instrumented meeting room comprising of a 

microphone array, and headset and lapel microphones. All the microphones are of high quality electret 

type. The sensor configuration is similar to the system presented in [67]. The proposed technique was 

tested in conditions where the signal-to-noise ratio (SNR) varies considerably, as in the cases of close-

talking headset, lapel, distant microphone array output, and distant microphone.  

 

For a given 16 kHz sampled signal the Fast Fourier Transform (FFT) is computed over N points and the 

segment is shifted by n ms, resulting in N/2 dimensional FFT vector. The Mel-scale transformation is 

applied to the FFT vector. The filters used in Mel-frequency analysis are generally triangular in shape, and 

are equally spaced along the Mel-scale. The output is a Mel-scaled vector consisting of K bands. The 

computations are made over the entire incoming signal, resulting in a sequence of energy magnitudes for 

each band sampled at 1/n Hz. In each band, the modulations of the signal are analyzed by computing FFT 

over the P points and the segment is shifted by p ms. The result is a sequence of P/2 dimensional 

modulation vectors. The energies for the frequencies between the 2 - 16 Hz represent important 

components for the speech signal.  
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In case of SND, the experiments are conducted on a subset of the Multi-Channel Wall Street Journal 

Audio-Visual (MC-WSJ-AV) corpus. The specification and structure of the full corpus are detailed in 

[66]. A part of Single speaker stationary data, in which the speaker reads out sentences from different 

positions within the meeting room is used. Most of the data comprised non-native English speakers with 

different speaking styles and accents. The data is divided into development (DEV) and evaluation (EVAL) 

sets with no common speakers in both the sets. 

 

To compare the efficiency of the proposed algorithm, short-term energy, short-term energy and zero-

crossing based segmentation techniques [63], and a recently proposed MLP based system \cite{dines} are 

evaluated. This system relies on a MLP classifier, trained from several meeting room corpora to identify 

speech/non-speech segments. The training is performed with a corpus comprising headset recordings, 

which include approximately 112 hours of speech over 150 meetings.  

 

To evaluate the proposed method, the parameters, mentioned above, are set as follows: N = 512, n = 10, K 

= 8, P = 100, p=10.  The average energy in the 2-16 Hz for speech is approximately around 40 % of the 

total energy.  

 

For the speech recognition experiments to evaluate the performance of the above mentioned techniques, a 

full HTK based recognition system [64], trained on the original Wall Street Journal database (WSJCAM0) 

was used. 52-element feature vectors were used, comprising of 13 MFCCs (including the 0th cepstral 

coefficient) with their first, second, and third order derivatives. Cepstral mean normalization is performed 

on all the channels. To reduce the channel mismatch between the training and test conditions, the baseline 

HMM models are adapted using a maximum likelihood linear regression (MLLR). 

 

Speech recognition experiments on different channels including headset, lapel, distant microphone and the 

output of the beamformer as obtained from [67] are performed to evaluate the performance of the various 

techniques. The obtained results are shown in Table 4, where M, E, E+ZC, MLP, MS represent manual, 

energy, energy + zero-crossing, multi layer perceptron, and modulation spectrum based segmentations, 

respectively. The values in the first column represent baseline word error rate, which are obtained from 

the manual segmentation of the speech data. All the other values are compared with respect to these 

values. From the Table 4, it is clear that energy based approach (method E) performs poorly for all the 

channels. Adding the zero-crossing feature to energy (method E+ZC) helps in reducing the WER by about 

50 % in all the cases. The MLP based approach performs close to manual segmentation as it is trained on 

headset data of the large corpus [65]. However, the performance decreases as the same MLP (headset 

trained) is used for lapel, distance microphone, and microphone array output for obvious reasons. From 

the table, it is also clear that the proposed modulation spectrum based approach is accurate and close to 

manual segmentation for all the channels.   

Table 4: Word error rates for speech recognition system exploiting SND technique. The values in the first column 

represent baseline WER, obtained from manual segmentation, and other values are compared with respect to these 

values. 

SIGNAL M E E+ZC MLP MLP 

Headset microphone 21.3 12.8 6.1 0.6 0.8 

Lapel microphone 27.9 11.4 4.8 1.8 0.6 

Distant Microphone 38.6 8.0 5.3 7.2 0.4 

Beamformer Output 26.8 6.5 4.1 2.4 0.3 



 

28 

7. Discussion and conclusions 

Short-term spectrum of speech and its spectral envelopes have been basis of features for ASR since its 

beginning. Gradually, auditory-like modifications of is frequency resolution [38] and of its amplitude axis 

[16], together with attempts for describing temporal dynamics of spectral envelopes [14] have emerged 

and been accepted by the engineering community. The current article shows that these modifications are 

supported by the character of speech signal. Namely, the nonlinear (critical-band like) spectral resolution 

as well as the description of spectral dynamics by local temporal derivatives emerges from the phoneme-

based linear discriminant analysis of speech spectro-temporal plane. Moreover, these analyses also show 

the dominance of low (1-12 Hz) modulation frequencies in coding the phoneme-related information in 

speech with the subsequent need for relatively long (up to 1 second) segments of the speech signal when 

extracting this information from the signal. Further speculative reasoning then leads to abandoning the 

spectral envelope altogether, replacing it by frequency-specific posterior probabilities of speech-related 

events.  

 

Further, the LDA analysis of spectro-temporal domain was done on quite different and much larger 

database of conversational speech . A tensorial LDA is proposed for processing long time-frequency slices 

and a revisited LDA is used for dealing with singular covariance matrices. Temporal basis have similar 

magnitude frequency characteristic as RASTA filters but differ in phase, spectral bases have similar 

frequency sensitivity as the Bark scale of hearing and obtained 2D filters show localization properties both 

in time and frequency. Those conclusions are qualitatively consistent with what was presented earlier in 

literature [23, 49, 55] on smaller databases. We found a large improvement in the use of data driven front-

end when only 13 features are used. In this case the most important gain in performances is obtained when 

time trajectories are filtered with first temporal discriminant. On the other side only small improvements 

are obtained when dynamic features are added. The fact that results were carried over different databases 

supports the universal (speech specific and not task specific) nature of our findings. 

 

That all then leads to a new data-driven feature extraction technique called TRAP-TANDEM which 

derives ASR features related to posterior probabilities of context-independent phoneme classes. In several 

aspects, TRAP-TANDEM represents a significant conceptual departure from the current practice in 

feature extraction for ASR. The knowledge used for feature extraction is not coming from beliefs and 

convictions of the designer but is derived from development data. The goal here is to derive and to put 

into the feature extraction module the speech-specific but task-independent knowledge. In this way, the 

subsequent pattern classification module needs to learn only the task-specific knowledge, possibly 

reducing the need for the re-learning the same knowledge again and again each time the task changes. 

Derived features do not represent the shape of the short-term spectral envelope of speech. Instead, in the 

early stages of the feature extraction, the frequency-localized evidence is converted to frequency-localized 

estimates of likelihoods of speech events  (the TRAP part). These estimates are then used in later stages of 

the feature extraction (the TANDEM part). In that way, many vulnerabilities of the short-term spectral 

envelope of speech (discussed earlier in this paper) are alleviated .Evidence used for deriving the features 

does not come from relatively short segments of speech representing a short part of the underlying sub-

word class (phoneme). Instead the time span employed covers the typical coarticulation span of the 

phoneme. In that way, each feature vector carries most of the available information about the underlying 

phoneme. Final features represent estimates of posterior probabilities of sub-word classes postulated in the 

subsequent HMM-based pattern classification. In that way, the feature set can be smaller and the burden 

on the subsequent HMM classifier is reduced. Unlike the conventional feature extraction approaches, it is 

consistent with the current knowledge of higher cognitive levels of mammalian auditory perception. The 

TANDEM-TRAP technique is still evolving and in order to get the most out of it, it may require some 

evolution in the existing ASR approach. However, it is already beneficial for the existing mainstream 

HMM-based ASR 
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A technique based on modulation spectrum from long temporal spans was employed in  

Speech/Non-speech detection task.  This technique has been compared to manual segmentation, short-

term energy, short-term energy and zero-crossing based segmentation techniques, and a recently proposed 

MLP classifier trained system. The speech recognition based evaluations are performed on real data in a 

meeting room for stationary speaker for all the methods and varying signal-to-noise ratios i.e. headset, 

lapel, distant microphone, and beamformer output. The results illustrate that the proposed simple 

technique is accurate, robust, close to real-time, and can be applied for SND tasks for any mode of speech 

acquisition and unforeseen conditions. Our study also raised a number of issues, including the approaches 

for decision without using the evaluation data (presently mean of the smoothed normalized energy is 

used), and the number of parameters involved in the method to suit different environments and acquisition 

channels. 

References 

[1] Adami, A., L. Burget, S. Dupont, H. Garudadri, F. Grezl, H. Hermansky, P. Jain, S. Kajarekar, N. 

Morgan and S. Sivadas, "QUALCOMM-ICSI-OGI Features for ASR", in Proceedings of 

International Conference on Spoken Language Processing ,  Denver, Colorado, USA, Sep, 2002 

[2] Athineos, M. and D. Ellis, “Frequency-domain linear prediction for temporal features”, Proc. IEEE  

Workshop on Automatic Speech Recognition and Understanding, St. Thomas, US Virgin Islands, 

2003  

[3] Atick, J.J. “Could information theory provide an ecological theory of sensory processing?”, in 

Network: Computation in Neural Systems, Vol. 3, 213-251, 1992 

[4] Bilmes, J. “Maximal mutual information based reduction strategies for cross-correlation based joint 

distributional modeling”, Proceedings of the International Conference on Acoustics, Speech and 

Signal Processing, SP14.6, Seattle, 1998 

[5] Brown, P. “The Acoustic-Modeling Problem in Automatic Speech Recognition”, PhD Thesis, 

Computer Science Department, Carnegie Mellon University. 1987. 

[6] Bourlard, H.  and Ch. Wellekens, “Links Between Markov Models and Multilayer Perceptrons.”, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 12: 1167-1178, 1990  

[7] Bourlard, H.and N. Morgan, “Connectionist Speech Recognition --- A Hybrid Approach”, Kluwer 

Academic Publishers, 1994 

[8] Cooper, F.S., A.M. Liberman, J.M. Borst, “The Interconversion of Audible and Visible Patterns as a 

Basis for Research in the Perception of Speech”, Proceedings of the National Academy of Sciences of 

the United States of America, Vol. 37, No. 5, 318-325, 1951 

[9] Depireux, D.D.,  J.Z. Simon, D.J. Klein, S.S. Shamma, “Spectro-Temporal Response Fields 

Characterization with Dynamic Ripples in Ferret Primary Auditory Cortex”, in J. Neurophysiology, 

Vol. 85, 1220-1234, 2001 

[10] Davis, S.B. and P. Mermelstein, “Comparison of parametric representations for monosyllabic word 

recognition in continuously spoken sentences”, IEEE Trans. on Acoustics, Speech, and Signal 

Processing, Vol. 28, 357-366, 1980 



 

30 

[11] deCharms,  C.R., D. Blake, M.M. Merzenich , “Optimizing sound feature for cortical neurons”, 

Science, Vol. 280, May 29, 1998 

[12] Fletcher, H. “Speech and hearing in communication”, The ASA edition, edited by J.B. Allen,  Acoust. 

Soc. Am., 1995,  reissue of the original edition from 1953 

[13] Fukunaga,  K. “Statistical Pattern Recognition”, Academic Press, San Diego, 1990. 

[14] Furui, S. “Cepstral analysis technique for automatic speaker verification”, IEEE Trans. on Acoustic, 

Speech, & Signal Processing, vol. 29, 254-272, 1981 

[15] Grezl, F.  and H. Hermansky, “Local averaging and differentiating of spectral plane for TRAP-based 

ASR”, Proc. Eurospeech 2003, Geneva 2003 

[16] Hermansky, H.  “Perceptual linear predictive (PLP) analysis of speech”,  J. Acoust. Soc. Am., vol. 87, 

no. 4, 1738-1752, 1990.  

[17] Hermansky, H. "The Modulation Spectrum in the Automatic Recognition of Speech",  Workshop on 

Automatic Speech Recognition and Understanding Proceedings,  S. Furui, B.H. Juang, W. Chou, 

Eds. IEEE 1997 

[18] Hermansky, H. and S. Sharma, "TRAPS  Classifiers of Temporal Patterns", in Proceedings of 

International Conference on Spoken Language Processing 1998, Sydney, Australia, 1998, 

[19] Hermansky, H. and P. Jain,”Band-independent speech event categories for TRAP based ASR”,  Proc. 

Eurospeech 2003, Geneva 2003 

[20] Hermansky, H. "Should recognizers have ears?", in Speech Communication, vol. 25,  3-27, 1998 

[21] Hermansky, H. and D.P.W. Ellis and S. Sharma, "Connectionist Feature Extraction for Conventional 

HMM Systems", in  Proceedings of the International Conference on Acoustics, Speech and Signal 

Processing, Istanbul, Turkey, 2000 

[22] Hermansky, H. and S. Sharma, "Temporal Patterns (TRAPS) in ASR of Noisy Speech", in 

Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Phoenix, 

Arizona, USA, Mar, 1999 

[23] Hermansky, H. and N. Malayath, "Spectral Basis Functions from Discriminant Analysis", in 

Proceedings of International Conference on Spoken Language Processing, Sydney, Australia, 1998 

[24] Hermansky, H and N. Morgan, "RASTA processing of speech", IEEE Trans. Speech and Audio 

Processing, vol.2, no.4, pp.578-589, 1994. 

[25] Hunt, M.J., “A statistical approach to metrics for word and syllable recognition”, J. Acoust. Soc. Am., 

66(S1), S35(A), 1979. 

[26] www.icsi.berkeley.edu/speech/faq/ICSI_SPEECH_FAQ 

[27] Jain, P., Temporal Patterns of Frequency-Localized Features in ASR,   PhD. thesis, Department of 

Electrical and Computer Engineering, OGI School of Oregon Health & Sciences University, 

Portland, Oregon, 2003 

[28] Jain, P. and H. Hermansky, “Effect of combining temporal patterns from critical-bands on ASR “, 

Proc. Eurospeech 2003, Geneva 2003 

 



 

31 

[29] Jelinek F., Statistical Methods for Speech Recognition, MIT Press, 1998 

[30] von Kempelen, W. Mechanismus der menschlischen Spraeche, Vienna, J.B. Degen, 1791 

[31] Klein, D.J.,  D.A. Depireux, J.Z. Simon, S.S. Shamma,” Robust spectro-temporal reverse correlation 

for auditory system: Optimizing stimulus design”, in J. Comp. Neuroscience, Vol. 9, 85-111, 2000 

[32] Kajarekar, S. and H. Hermansky, “ Analysis of information in speech and its application in speech 

recognition”,  in Proceedings of  Workshop in Text, Speech and Dialogue 2000, Brno, Czech 

Republic, Springer-Verlag, 2000 

[33] Kanedera,  N., T. Arai, H. Hermansky and M. Pavel, “On the relative importance of  various 

components of modulation spectrum for automatic speech recognition”, Speech Communication, 28, 

43-55, Elsevier 1999 

[34] Lewicki, M.S.,  “Efficient coding of natural sounds”, Nature Neuroscience, 5(4),  356-363, 2002 

[35] Malayath, N. and H. Hermansky, “Bark resolution from speech data”, Proceedings International 

Conference on Spoken Language Processing 2002, Denver, Colorado, September 2002. 

[36] Malayath, N. and H. Hermansky, “Data-driven spectral basis functions for automatic speech 

recognition”, Speech Communication, Vol. 40 (4),  446-466, June 2003. 

[37] Marr,  D., Vision, W.H. Freeman, San Francisco, 1982 

[38] Mermelstein, P.,  “Distance measures for speech recognition, psychological and instrumental”, in 

Pattern Recognition and Artificial Intelligence, R.C.H. Chen, ed., Academic Press: New York,  374-

388, 1976 

[39] Morgan, N., Qifeng Zhu,  A. Stolcke,  K. Sonmez, , S. Sivadas,, T. Shinozaki, M. Ostendorf,  P.  Jain,  

H. Hermansky,  D. Ellis,  G. Doddington, B. Chen,  O. Cretin, H. Bourlard, M. Athineos,  “Pushing 

the envelope - aside”,  IEEE Signal Processing Magazine,  22 (5), 81- 88, 2005 

[40] Sachs, M. and E. Young, “Encoding of steady state vowels in the auditory nerve: representation in 

terms of discharge rate”, J. Acoust. Soc. Am. 66,  470-479, 1979 

[41] Schwarz, P., P. Matejka  and J.Cernocký,  “Recognition of Phoneme Strings using TRAP 

Technique”, Proc. Eurospeech 2003, Geneva 2003 

[42] Sivadas, S. and H. Hermansky, "Hierarchical Tandem Feature Extraction", in Proceedings of the 

International Conference on Acoustics, Speech and Signal Processing  2002, Orlando, Florida, USA, 

May, 2002 

[43] Umesh, S.,  L. Cohen and D. Nelson, Frequency warping and speaker normalization, Proceedings of 

the International Conference on Acoustics, Speech and Signal Processing, Munich, Germany, 1997 

[44] Yang, H.H.,  S. Sharma, S. van Vuuren and H. Hermansky, "Relevance of Time-Frequency Features 

for Phonetic and Speaker/Channel Classification", in Speech Communication, Aug, 2000 

[45] Young, E. and M. Sachs, “Representation of steady-state vowels in the temporal aspects of the 

discharge patterns of population of auditory nerve fibers, J. Acoust. Soc. Am 66, 1381-1403, 1979. 

[46] Hermansky: “Human Speech Perception: Some Lessons from Automatic Speech Recognition, Text”, 

Speech and Dialogue 2001, Matousek et al. Eds. Springer 2001. 



 

32 

[47] Chen L., Liao H.,Ko M.,Lin J. and Yu G.: “A new lda-based face recognition system which can solve 

the small sample size problem”. Pattern Recognition, 33(10):1713-1726, Oct 2000 

[48] H. Yu and J. Yang: “A direct LDA algorithm for high-dimensional data with application to face 

recognition”, Pattern Recognition, vol. 34, pp. 2067-2070, 2001. 

[49] van Vuren S., Hermansky H.: Data-Driven Design of RASTA-Like Filters, Proc. of Eurospeech 87, 

Rhodes, Greece, 1997. 

[50] Hermansky H. and Fousek P.: “Multi-resolution RASTA filtering for TANDEM-based ASR”, 

Proc.of Interspeech 2005, Lisboa, 2005. 

[51] Kajarekar A., Yegnanarayana B. and Hermansky H., ”A Study of Two Dimensional Linear 

Discriminants for ASR”, Proc. of ICASSP’01, Salt Lake City, Utah, USA, May, 2001 

[52] Kozhevnikov and L. Chistovich, “Speech, Articulation and Perception”, translated by Joint 

Publications Research Service, Washington, 1965 

[53] Jieping Y., Ravi J. and Qi L.: “Two-Dimensional Linear Discriminant Analysis, Advances”, in 

Neural Information Processing Systems 17, MIT Press, Cambridge, MA, pp. 1569-1576, 2005. 

[54] Haeb-Umbach, R., and Ney, H. :”Linear Discriminant Analysis for Improved Large Vocabulary 

Continuous Speech Recognition, in Proc. ICASSP 1992, San Francisco, CA, March 1992, pp I.13-

I.16. 

[55] Picheny M., Personal communications 2000. 

[56] Chistovich, Vencov, Granstrem, i dr. Fiziologija rechi. Vosprijatie rechi chelovekom (Nauka, 1976) 

[57] Junqua J-C., “Robustness and cooperative multimodal man-machine communication applications,” 

SMMD, 1991, vol. I, pp. 101–112. 

[58] Ajmera J., McCowan I., and Bourlard H., “Speech/music segmentation using entropy and dynamism 

features in a hmm classification framework,” Speech Communication, vol. 40, pp. 351–363, May 

2003. 

[59] Scheirer E. and Slaney M., “Construction and evaluation of a robust multifeature speech/music 

discriminator,” ICASSP, 1997, vol. 1, pp. 1331–1334. 

[60] Drullman R., Festen J., and Plomp R., “Effect of reducing slow temporal modulations on speech 

reception,” Journal Acoust. Soc., vol. 95, pp. 2670–2680, 1994. 

 [61] Kanedera N., Arai T., Hermansky H., and Pavel M., “On the relative importance of various 

components of the modulation spectrum for automatic speech recognition,” Speech Communications, 

vol. 28, pp. 43–55, 1999. 

[62] Hermansky H., “Auditory modeling in automatic recognition of speech,” ECSAP, 1997. 

[63] Rabiner L.R., and Sambur M.R., “An algorithm for determining the endpoints of isolated utterances,” 

Bell Systems Tech. Jour., vol. 54, pp. 297–315, February 1975. 

[64] Young S. and et al, The HTK Book Version 2.2, Entropic Ltd, 1999. 

[65] Dines J., Vepa J., and Hain T., “The segmentation of multichannel meeting recordings for automatic 

speech recognition,” ICSLP, 2006. 



 

33 

[66] Lincoln M., McCowan I., Vepa J., and Maganti H., “The multichannel wall street journal audio-

visual corpus (mc-wsj-av): Specification and initial experiments,” ASRU, 2005. 

[67] McCowan I., Maganti H., Gatica-Perez D., and et al, “Speech acquisition in meetings with an audio-

visual sensor array,” ICME, 2005. 

[68] J. Makhoul, “Spectral linear prediction: Properties and applications,” in Trans. ASSP, vol. 23:3, Jun 

1975, pp. 283–296. 

[69] H. Hermansky, H. Fujisaki, and Y. Sato, “Analysis and synthesis of speech based on spectral 

transform linear predictive method,” in Proc. ICASSP, vol. 8, Apr 1983, pp. 777–780. 

[70] R. Drullman, J. M. Festen, and R. Plomp, “Effect of temporal envelope smearing on speech 

reception,” The Journal of the Acoustical Society of America, vol. 95, 1994.  

[71] H. Hermansky, “TRAP-TANDEM: Data-driven extraction of temporal features from speech,” in 

Proc. IEEE ASRU, St. Thomas, USVI, 2003. 

[72] J. Herre and J. Johnston, “Enhancing the Performance of Perceptual Audio Coders by Using 

Temporal Noise Shaping (TNS),” in Proc. 101st AES Conv., Nov 1996. 

[73] J. L. Marple, “Computing the discrete-time ’analytic’ signal via fft,” IEEE Transactions on Acoustics, 

Speech, and Signal Processing, vol. 47, Sep 1999. 

[74] P. Jain and H. Hermansky, “Beyond a single criticalband in TRAP based ASR,” in Proc. Eurospeech, 

Geneva, Switzerland, Nov 2003. 

[75] R. Kumaresan and A. Rao, “Model based approach to envelope and positive instantaneous frequency 

estimation of signal with speech applications,” The Journal of the Acoustical Society of America, vol. 

105, 1999. 

[76] Makhoul J., “Linear Prediction : A Tutorial Review”, in Proc. of IEEE, Vol. 63, No. 4, April 1975.  

[77] OppenheimA.V., SchaferR.W.,“Discrete-Time SignalProcessing”,2ndEd.,Prentice-Hall,NJ, USA, 

1998.  

[78] Churchill R. V., Brown J. W., “Introduction to Complex Variables Applications”, 5th Ed., McGraw-

Hill Book Company, NY, USA, 1982.  

[79] Motlicek P., Hermansky H., Garudadri H., and Srinivasamurthy N. “Speech Coding based on 

Spectral Dynamics”, in "Ninth International Conference on TEXT, SPEECH and DIALOGUE 

(TSD), 2006. 

[80] Motlicek P., Ullal V., Hermansky H., “Wide-Band Perceptual Audio Coding based on Frequency-

Domain Linear Prediction”, accepted for IEEE ICASSP conference 2007. 

[81] Athineos,  M., H. Hermansky, D. P.W. Ellis. “LP-TRAP: Linear predictive temporal patterns”, in 

Proc. of ICSLP, pp. 1154-1157, Jeju, S. Korea, October 2004. 


