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Abstract: 

This deliverable presents feature detectors and object modeling approaches 

for detecting objects in images. A fast local feature detector is presented with 

application in a multi-cue object detection. This presents a discriminative 

approach which classifies interest points detected in the images. A generative 

approach to object detection and tracking is also proposed, where a model of 

the object is generated from images captured by a multi-camera setup. A 

single camera can then be used for object tracking. 
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1 Introduction 

This deliverable can be divided into two main parts. The first part discusses local features for 
image recognition and represents a discriminative approach, that is, it selects the parts of the 
image which contains information based on feature detection. These detected cues are then 
combined together in a multi-cue object detection framework. The second part if this report 
presents a generative approach, where a model is generated from the data based on 
constraints, such as that an object can be separated from the background. 
 
The deliverable is structured as follows. Section 2 presents a fast local feature extraction 
method. Evaluation of different feature classifiers is discussed in Section 3 with experimental 
results listed in Appendix A. Section 4 describes a multi-cue object detection and Section 5 
presents a model based approach to object detection and tracking. 

2 Fast Local-Feature Extraction from Perspective Images 

ETHZ and KUL have together developed a novel scale- and rotation-invariant interest region 
detector and descriptor for perspective images, coined SURF (Speeded-Up Robust Features)  
(Bay et al. 2006). It is highly optimized for fast computation and approximates or even 
outperforms previously proposed schemes in terms of repeatability, distinctiveness, and 
robustness.  
 
This is achieved by relying on integral images for image convolutions; by building on the 
strengths of the leading existing detectors and descriptors; and by simplifying those methods 
to the essential. This leads to a combination of novel detection, description, and matching 
steps.  
 
Work on SURF has originally been started in a different project, but due to its success, it has 
been carried over to and extended in DIRAC. In particular, we have adapted SURF, which 
was originally designed for finding exact correspondences between the same structures in two 
images, to the more general task of finding corresponding object parts between different 
objects of the same category. This task is more difficult, since it requires to compensate for 
the larger intra-category variability inherent in natural object categories. 
 
In the following, we give a short outline of the main ideas behind SURF, referring to (Bay et 
al. 2006, added to this deliverable) for details. Extensive experimental evaluation is presented 
in Appendix A, benchmarking SURF for an object detection task and comparing its 
performance against several other state-of-the-art feature extractors. 

2.1 SURF Overview 

The search for discrete image correspondences can be divided into three main steps. First, 
interest points are selected at distinctive locations in the image, such as corners, blobs, or T-
junctions. The most valuable property of an interest point detector is its repeatability, i.e. that 
it reliably finds the same interest points under different viewing conditions. Next, the 
neighbourhood of each interest point is represented by a feature vector. This descriptor has to 
be distinctive and, at the same time, robust to noise, detection errors, and geometric and 
photometric deformations. Finally, the descriptor vectors are matched between different 
images. The matching is often based on a distance between the vectors, e.g. the Mahalanobis 
or Euclidean distance. The dimension of the descriptor has a direct impact on the time this 
step takes, and a lower dimensionality is therefore desirable. However, lower-dimensional 
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feature vectors are in general less distinctive than their higher-dimensional counterparts. We 
address all three of those problems.  

2.2 SURF Detector 

When working with local features, a first issue that needs to be settled is the required level of 
invariance. Clearly, this depends on the expected geometric and photometric deformations, 
which are in turn determined by the possible changes in viewing conditions. Here, we focus 
on scale and image rotation invariant detectors and descriptors. These seem to offer a good 
compromise between feature complexity and robustness to commonly occurring 
deformations. In some cases, even rotation invariance can be left out, resulting in a scale-
invariant only version of our descriptor, which we refer to as upright SURF (U-SURF). 
 
The SURF detector is based on the Hessian matrix (similar to the well-known Hessian-
Laplace detector (Mikolajczyk et al. 2005a)), but uses a basic approximation. It relies on 
integral images to reduce the computation time for image derivatives. As a simpler alternative 
to Gaussian derivatives, the method evaluates 9 ´ 9 box filters, which can be computed 
independently of their scale by few lookups in the integral image. As verified in our 
experiments, the performance is comparable to the one using more exact Gaussian filters. 
 
Our method then relies on the Hessian determinant for determining both the location and 
scale of feature points.  Since the underlying box filters can be evaluated at any size at exactly 
the same speed through our use of integral images, the need to compute a Gaussian image 
pyramid is removed. Instead, we analyze the scale space by up-scaling the filter size rather 
than iteratively downscaling the image size. In order to localize interest point in the image 
and over scales, non-maximum suppression is applied in a 3 ´ 3 ´ 3 neighbourhood. The 
maxima of the determinant of the Hessian matrix are then interpolated in scale and image 
space. 

2.3 SURF Descriptor 

The SURF descriptor is based on similar properties as the well-known SIFT descriptor (Lowe 
2004), with a complexity stripped down even further. It describes a distribution of Haar-
wavelet responses within the interest point neighbourhood. Again, we exploit integral images 
for fast computation. Moreover, different versions of the descriptor with 32, 48, 64, and 128 
dimensions are proposed to trade off computation and matching time for robustness. 
 
The first computation step consists of determining a reproducible orientation based on 
information from a circular region around the interest point. For that purpose, we first 
calculate the Haar-wavelet responses in x and y direction in a circular neighbourhood around 
the interest point and weight them with a Gaussian centred on this point. The dominant 
orientation is estimated by maximizing the sum of all responses within a sliding orientation 
window covering an angle of 60°. Note that U-SURF skips this step. 
 
Next, we construct a square region aligned to the selected orientation and extract the SURF 
descriptor from it. This region is split up regularly into 4 ´ 4 smaller sub-regions in order to 
preserve spatial information. For each sub-region, we compute approximated first derivatives 
dx and dy at a grid of 5 ´ 5 sample points and again weight them with a Gaussian centred at the 
interest point. Based on those results, we represent each grid sub-region by a set of 4 (for 
SURF-64) or 8 (for SURF-128) feature values computed from dx and dy. Finally, the 
computed vectors for each cell are normalized to unit length and concatenated into a single 
feature vector. 



 
 

6 

2.4 Feature Matching 

For fast indexing during the matching stage, we propose an improvement over the original 
matching scheme from (Lowe 2004). As a first and very quick matching criterion, our method 
considers the sign of the Laplacian (i.e. the trace of the Hessian matrix) for the underlying 
interest points. As those points are typically found at blob-like structures, the sign of the 
Laplacian distinguishes bright blobs on dark backgrounds from the reverse situation. This 
feature is available at no additional computational cost, as it was already computed during the 
detection phase. In the matching stage, we only compare features if they come from the same 
contrast situation. This allows for faster matching without reducing the descriptor's 
performance. 

2.5 Experimental Results 

The different parameter choices for the individual SURF stages have been extensively 
evaluated, and the final detector and descriptor have been compared with the state-of-the-art 
on a set of standard test sets for the task of image matching. Results on this evaluation are 
presented in (Bay et al. 2006). Those results show that SURF performs at the same level or 
even better than previously proposed methods, while being faster by a factor of 3-5. 
Executables of the latest version of the SURF detector and descriptor for both Linux and 
Windows are made publicly available1. 

2.6 Connection to Acoustic Features and Speech Recognition 

There are some remarkable parallels between the visual features described here and the 
acoustic features employed for speech processing in deliverable D1.3. Those acoustic features 
consist of two-dimensional matched filters modelling cortical receptive fields that are 
sensitive to time- and frequency-localized stimuli. Recent research results indicate that the 
processing of such features extending over longer temporal spans plays an important role for 
human speech recognition and understanding. 
 
In comparison, the SURF detector localizes a feature in image space, and its automatic scale 
selection determines the spatial frequencies that are encoded by the descriptor. As each local 
descriptor is based only on a single image, however, the temporal dimension currently plays 
only a minor role. In more recent work, ETHZ and KUL have therefore started an extension 
of SURF for spatio-temporal feature extraction. This extension is inspired by successful 
speech-processing techniques, in which the temporal dimension is of prime importance. Its 
purpose is to find features that are well-localized in space and time and encode a longer 
temporal span, while applying the same speedup techniques already used in spatial SURF. 
 
It is to be expected that the additional information available from such a descriptor will be 
useful for visual classification tasks in which the temporal domain becomes important, such 
as action classification and temporal matching of video sequences. Research on spatio-
temporal SURF is underway.  First experiments on inter-video feature matching and human 
action classification are promising, but further fine-tuning and experimental evaluation is 
necessary. 

3 Evaluation of Local Features for Object Detection 

Local-feature based approaches have shown considerable promise for dealing with the large 
degree of intra-category variation and partial occlusion inherent in real-world categorization 
and detection tasks. Consequently, many approaches have been developed that use local 

                                                      
1 SURF features website: http://www.vision.ee.ethz.ch/~surf 
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features in different ways, and considerable progress has been made in the understanding of 
the underlying feature detectors and descriptors.  
 
Users can now choose from a plethora of different local feature types. However, most of those 
have only been evaluated for exact matching tasks, such as image registration or object 
identification.  Only few studies have so far tried to experimentally quantify the performance 
of different feature combinations for object detection tasks, which impose a very different set 
of constraints. 
 
ETHZ therefore performed a performance evaluation of local features, extracted from 
perspective images, specifically for the task of fast object detection. In the context of our 
study, we consider a local feature as a combination of an interest region detector and a local 
descriptor.  
 
A first version of this evaluation, comprising 3 state-of-the-art region detectors (Harris-
Laplace, Hessian-Laplace, and DoG) and 5 different local descriptors (SIFT, GLOH, PCA-
SIFT, Shape Context, Patch), as well as all of their 15 combinations, has been published in  
(Leibe et al. 2006) (appended to this deliverable). In more recent work, this evaluation has 
been extended to also include the SURF detector and SURF-64 and SURF-128 descriptors 
introduced in Section 2, raising the total number of evaluated feature combinations to 26 out 
of the possible 28 combinations. As this more recent part has not been published yet, we will 
report it in more detail in Appendix A in this deliverable. 

4 Multi-Cue Integration for Object Detection 

The results presented in Appendix A provide valuable information about the performance of a 
large selection of local cues and how they should be applied for fast object detection. Yet, 
each feature detector and descriptor can only capture part of the information contained in the 
image, and indeed its value for an application depends on the degree to which it can distil 
exactly the right kind of information for a specific purpose. As a consequence, the better a 
feature extractor is suited for a specific task, the more likely it is to degenerate when the task 
conditions deviate too far from its target scenario. In order to be both discriminative and 
robust, an application should therefore utilize a combination of different local cues. 
 
For this reason, ETHZ has developed a novel method for integrating multiple local cues in the 
context of object detection (Leibe et al. 2006). Rather than to fuse the outputs of several 
distinct classifiers in a fixed setup, our approach implements a highly flexible combination 
scheme, in which the contributions of all individual cues are opportunistically recombined 
depending on  their explanatory power for each new test image. The key idea behind our 
approach is to integrate the cues over an estimated top-down segmentation which allows to 
quantify how much each of them contributed to the object hypothesis. By combining those 
contributions on a per-pixel level, our approach ensures that each cue only contributes to 
object regions for which it is confident and that potential correlations between cues are 
effectively factored out. 
 
Experimental results on several challenging data sets show that the proposed multi-cue 
integration scheme increases object detection performance significantly.  This improvement is 
consistent over three different data sets and two categories. It is particularly prominent for the 
detection precision and leads to high recognition rates at the zero-false-positive level. In the 
following, we will shortly outline the idea behind our proposed multi-cue integration 
procedure. The paper (Leibe et al. 2006), attached to this report, provides more details. 
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4.1 Integration Strategy 

Previous studies comparing different local cues, including the one in Section 3, have 
considered each cue in isolation. For multi-cue integration, it is however also important to 
know how different cues interact, i.e. how correlated their responses are and what new 
information an additional cue can contribute.  This information is difficult to retrieve, as 
different cues are often not directly comparable, both because they typically have different 
dimensionalities and because they represent information in different ways. 
 
Previous research has therefore mainly focused classifier combination, i.e. on the problem of 
fusing the outputs of several “black-box” classifiers, possibly with associated confidence 
ratings. This approach is valid if the classifiers are independent. In our application, however, 
their outputs are often correlated, and the degree of correlation may vary from image to 
image. Rather than just to fuse the outcomes of several classifiers, we therefore need to 
explore how the underlying information and the respective support in the image can be 
combined. 
 
In our proposed multi-cue integration approach (Leibe et al. 2006), we present a flexible 
integration scheme which combines different local cues in an opportunistic manner depending 
on their explanatory power for the image at hand. The integration proceeds in two stages. The 
first stage extends the ISM recognition procedure to include multiple cues and collect their 
contributions in a combined Hough voting space. Its main purpose is to express the cues on a 
common basis, in terms of their similarities to a learned set of prototype appearances, so that 
their information can be pooled, and initial hypotheses can be found. This stage makes the 
cues comparable. However, it still ignores cue correlation. Indeed, it has no other choice, 
since correlation can only be measured relative to a reference hypothesis, and hypotheses are 
only available after the stage has been executed. 
 
Therefore, the second step then reveals correlation by backprojecting hypotheses to the image 
and computing a top-down segmentation for each cue separately. This step uses an extension 
of the ISM top-down segmentation algorithm, described later in the appendix and in (Leibe et 
al. 2004, Leibe et al. 2005a), adapted to multiple cues. The thus-obtained segmentations show 
on a per-pixel level which image structures were responsible for a detection and how much 
each pixel contributed to the cue's response. The correlation between two cues can then be 
expressed as the overlap between their respective p(figure) probability maps. 
 
This expression in terms of the pixel-wise top-segmentation is the key idea between our 
multi-cue integration strategy. If two cues draw their support from different image pixels, 
they are clearly orthogonal, and their evidence should be combined. If, on the other hand, 
their support is based on the same image pixels, the two cues are correlated, and their 
combined score should be adapted accordingly. 
 
Once the cue correlation has been identified, the next question is how to use this information 
to improve recognition performance. In (Leibe et al. 2006), we present three combination 
criteria that relate to different strategies for this step. The canonical strategy would be to 
simply ignore correlation and sum the contributions of all cues. As the experimental results 
from (Leibe et al. 2006) show, this criterion breaks down when the cues are strongly 
correlated. The opposite philosophy would be to completely factor out correlation and only 
use the cue that best explains the current pixel. This translates into a per-pixel max operation. 
However, this strategy is problematic, too, if some cues cannot fully be trusted. We therefore 
propose a third criterion of building up a robust per-pixel average of only the sufficiently 
confident cues, which combines both ideas from above. As the evaluation in (Leibe et al. 
2006) demonstrates, this criterion performs consistently best. As also shown in (Leibe et al. 
2006), the resulting multi-cue integration significantly improves detection performance for 
different test sets and several object categories. 
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4.2 Application for Object Detection 

In addition, our multi-cue detection system has been used in deliverable D3.1, where it has 
been successfully applied to difficult real-world object detection tasks. For this application, 
the multi-cue integration scheme proved very important in order to achieve robustness to 
degraded imaging conditions encountered there.  In particular, the input image streams were 
often captured at relatively low resolutions (e.g. 384 ´ 248 pixels for a full street scene image) 
and contained strong contrast changes between brightly lit areas and dark shadows. 
 
Any single interest region detector on its own had problems finding enough useful features 
under those deteriorated conditions. However, the combination of several different detectors 
and descriptors, robustly combined with the average criterion, provided enough information 
to allow robust object detection in this application. 

5 Model-based Detection and Tracking of Body Parts 

The discriminative approach described above has been also complemented by another 
approach, which uses a generative model. The model of the object to be tracked is build 
online from the observations in the input sequence. 

5.1 Automatic Model Generation and Tracking 

A general tracking approach for rigid bodies is described in detail in (Zimmermann et al. 
2006). It is a model-based generative approach where the model can be provided beforehand 
but it can be also built automatically from 3D reconstruction of an object in front of the 
cameras. For the model construction, at least a stereo pair of cameras is required, but for the 
tracking, only a single camera is sufficient. Figure 1 shows an image from a camera tracking 
an object with the model projected into the image, together with a reconstructed trajectory of 
the object in 3D and views of the 3D model reconstructed from the images. 
 
The model is always updated when new parts consistent with the current model are found. For 
example, the model is built based on observation of a head but then the motion of the torso is 
found to be consistent with the motion of the head and the model is updated to accommodate 
also the torso. The model is not considered to be complete, only the fact that no new 3D 
points should be added is indicated. 
 
Unlike methods based in 2D image models, a 3D model-based approach can model the 
variance of the tracked object caused by changing orientation. At each tracking step, the 
model T is projected by a function f, which describes the position and pose of the tracked 
object, into the current image I, see Figure 2. 
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Figure 1: Model of a face is automatically generated from a stereo reconstruction and then tracked 
through a sequence. Top left: model projected into an image. Top right: tracked trajectory. Bottom row: 
two different views of the reconstructed model. 

The 3D model does not have to be complete and dense, a fish-scales representation is used for 
the model. Fish-scales represent a point based model with normal and colour information, a 
lambertian surface is assumed. It should be noted that the method is general, not only limited 
to people tracking, see Figure 3. 

 

Figure 2: Model T is projected by a function f into an actual image I. 
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Figure 3: The proposed approach is not limited to human body parts. 

 
The above method was applicable only to rigid bodies, but a human body is not rigid. There 
are several ways to model the human body; we will discuss two which can be applied for the 
DIRAC project.  

5.2 Tracking a Human Body in a Monocular Sequence 

The first approach models the human body as a tree of rectangular parts connected by spring 
like joints, see Figure 4. Each body part is detected separately using colour constancy criteria 
on a foreground image. The most probable configuration is obtained by randomized sampling. 
Probabilistic model which includes appearance models of individual body parts and their 
mutual positions is used and the best sample is selected to minimize the Chamfer distance 
between the models and the features in the image, as it is illustrated in Figure 5. The model 
has to be trained separately on a training set, the poses of people in the training images 
determine which poses will be detected in the image and the model cannot generate new 
poses significantly different from those in the test set. 
 
We have implemented this state of-the-art approach (Felzenszchwalb and Huttenlocher 2005) 
to gain experience and to be able to compare our techniques to the state of the art. The details 
are described in the master thesis (Fajt 2006). 
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Figure 4: Model of a human body as rectangular part connected with strings. 

 

 

Figure 5: Model fitting as a minimization of Chamfer distance. 
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5.3 Bone and Mesh Based Model of a Human Body 

The second approach is based on computer graphics models of human body, which consist of 
bones, connected by joints and covered by meshes modelling the muscles. The bone model 
has a structure of a tree, as it is depicted in Figure 6 and can be quite detailed. The model can 
be covered with texture from real images, once it is fitted to images from a multicamera 
setup, see Figure 7.  
 
We use this model to get ground truth data of realistic poses. There are numerous datasets 
with motion capture data of real humans which can be used with the bone and mesh human 
model to generate training and testing datasets. This method can be used to generate both 
training and testing datasets for the previous approach. The work was is described in detail in 
the master thesis (Mazany 2006). 
 

 

Figure 6: Bone-based model of a human body. 
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Figure 7: Fitting the bone-based model to images of a human in a multicamera setup. 

 

6 Conclusion 

We worked on object detection and tracking with focus on human body parts detection. The 
results are promising and several important building blocks have been implemented, such as 
the fast local feature detection, multi-cue object detection procedure, rigid body tracking 
based on a model generated automatically from the data, and human body detection using an 
articulated model.  
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A Evaluation of Local Features for Object Detection 

A.1 Recognition Approach 
As a testbed for our evaluation, we use the Implicit Shape Model (ISM) approach by (Leibe et 
al. 2004, Leibe et al. 2005a), which combines the capabilities of object detection and top-
down segmentation. This model represents an object category by a set of local appearance 
clusters (a codebook) and their spatial occurrence distributions. In the following, we will 
briefly review its main components. Since a basic knowledge of the ISM approach is 
necessary for the evaluation, we will briefly review its main components in the following. 
 

A.1.1  Training 
Training proceeds in two steps. First, local features are extracted from the training images 
using the selected detector/descriptor combination and clustered to form the codebook. The 
codebook is created using Average-Link agglomerative clustering (Agarwal et al. 2004, Leibe 
et al. 2004).  Starting with each feature as a separate cluster, the two most similar clusters P 
and Q are merged as long as the average similarity between their constituent features (and 
thus the cluster compactness) stays above a certain threshold t: 

 
In a second run over the training data, the spatial occurrence distributions are estimated by 
recording for each codebook entry all matching locations on the training objects. For this, the 
extracted features fi are compared to all codebook entries Cj, and all matches are stored for 
which  

 
Together with each occurrence, the approach stores a local segmentation mask, which is later 
used for inferring top-down segmentations. 
 

A.1.2  ISM Recognition 
During recognition, local features are again extracted from the image and matched to the 
codebook. Each matching codebook entry then cast votes for possible object locations and 
scales in a probabilistic extension of the Hough transform (Leibe et al. 2004). 
 
Formally, this is expressed as follows.  Let f be a local descriptor computed at location l. 
When matched to the codebook, it may activate several codebook entries Ci with probabilities 
p(Ci|f). Each matched codebook entry then votes for instances of the object category on at 
different locations and scales l=( lx, ly, ls) according to its learned occurrence distribution 
P(on,l|Ci,l).  Thus, any single vote has the weight P(on,l| Ci,l)p(Ci|f) and the feature's total 
contribution can be expressed by the following marginalization: 

 
The votes are collected in a continuous 3D voting space, and object hypotheses are found by 
Mean Shift Mode Estimation using a scale-adaptive kernel K with bandwidth b(l) (Leibe et al. 
2005a): 
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A.1.3  Top-Down Segmentation 
Once a hypothesis h=(on, l) has been found, its top-down segmentation can be inferred by 
backprojecting the supporting votes to the image and combining them with the local patch 
segmentation masks p(p=fig.|on, l,Ci,l) that have been stored for each recorded codebook 
occurrence during training. As shown in (Leibe et al. 2004), the per-pixel probabilities of each 
pixel containing figure or ground can then be obtained by a double marginalization, first over 
sampled features, then over codebook entries: 

 
Based on these results, the final segmentation is computed by building the likelihood ratio 
between figure and ground probabilities. 
 

A.1.4  Segmentation-based Verification 
Finally, the ISM approach implements an MDL-based hypothesis verification stage which 
uses the top-down segmentations to disambiguate overlapping hypotheses. Each hypothesis h 
is evaluated based on the savings \cite{Leonardis95} that can be obtained in the description of 
an image by explaining part of it by h. The savings of each hypothesis are expressed as (see 
(Leibe et al. 2004, Leibe et al. 2005a) for the complete derivation) 

 
where N is the number of pixels that can be explained by h, As is its expected area at scale s, 
and k1 and k2 are constants. k2 is a weighting factor to balance out the influence of a 
hypothesis's area versus its support in the image (left at a fixed value in our experiments), and 
k1 is the parameter over which the final performance curves are plotted. 
 
If multiple hypotheses overlap, their respective savings terms interact, since each pixel can 
only be assigned to a single hypothesis. Using the method from (Leibe et al. 2005a), 
hypothesis selection is formulated as a quadratic boolean optimization problem, which allows 
to find the combination of hypotheses that best explains the image (see (Leibe et al. 2005a) 
for details). 
 
A.2 Experimental Setup 
 

A.2.1 Interest Region Detectors 
We compare four different scale-invariant interest region detectors. The Harris-Laplace and 
Hessian-Laplace detectors look for scale-adapted maxima of the Harris function and Hessian 
determinant, respectively (Mikolajczyk and Schmid 2005), where the locations along the 
scale dimension are found by the Laplacian-of-Gaussian. The DoG detector (Lowe 2004) 
finds regions at 3D scale-space extrema of the Difference-of-Gaussian. The SURF detector 
(Bay et al. 2006), finally, is highly optimized for run-time efficiency. It searches for 3D scale-
space extrema of the Hessian determinant, but approximates all derivatives through Haar 
wavelets computed on an integral image representation. 
 

A.2.2 Region Descriptors 
In addition, we evaluate seven different region descriptors. SIFT descriptors (Lowe 2004) are 
3D histograms of gradient locations and orientations with 4 ´ 4 location and 8 orientation 
bins. The resulting descriptor has 128 dimensions. GLOH descriptors (Mikolajczyk and 
Schmid 2005) are an extension of SIFT. They use 17 location and 16 orientation bins 
organized in a log-polar grid. PCA is used to reduce the dimensionality to 128. PCA-SIFT (Ke 
and Sukthankar 2004) are vectors of image gradients in x and y direction sampled within the 
support region and reduced to 36 dimensions with PCA.  Shape Context (SC) (Belongie et al. 
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2002, Mikolajczyk and Schmid 2005) descriptors are histograms of gradient orientations 
sampled at edge points in a log-polar grid with 9 location and 4 orientation bins and thus 36 
dimensions.  
 
SURF descriptors (Bay et al. 2006) are also based on a grid of  4 ´ 4 location bins, where each 
bin is represented by the sums of signed and absolute gradient values in x and y direction. We 
consider two variants, SURF-64 and SURF-128, which differ in the number of dimensions 
used to describe each bin. For comparison and as a baseline method, we include simple 25 ´ 
25 pixel Patches (Agarwal et al. 2004, Leibe et al. 2004), which lead to a descriptor of length 
625. 
 
This set of descriptors was explicitly chosen to sample different sources of information. SIFT, 
GLOH, PCA-SIFT, and the SURF variants are based on gradient information; SC descriptors 
are based on edges; and Patches take the full image region into account. The evaluation is 
performed with an own implementation of the DoG detector (denoted eDoG in the figures) 
and Patch descriptor. For all other detectors and descriptors, we used the implementations 
publicly available2. Since our test sets contain only little in-plane rotation, only the rotation-
variant versions of the descriptors are used. Patches are compared using Normalized 
Correlation; all other descriptors are compared using Euclidean distances. 
 
A.2.3 Training and Test data 
We first evaluate detection performance on the TUD motorbike set, which is part of the 
PASCAL collection (Everingham et al. 2005). This data set consists of 115 images containing 
a total of 125 motorbikes at different scales and with clutter and occlusion. Training is done 
on 153 motorbike side views from the CalTech training set (Fergus et al. 2003) which are 
shown in front of uniform backgrounds allowing for easy segmentation.  
 
In an extension of this study  (Leibe et al. 2006), appended to this report, we then show that 
the results generalize also to other scenarios by applying a subset of 9 successful detector-
descriptor combinations to two more challenging data sets using the same parameter settings. 
The first is the VOC motorbikes test2 set, which has been used as a localization benchmark 
in the 2005 PASCAL Challenge (Everingham et al. 2005). This data set consists of 202 
images containing a total of 227 motorbikes at different scales and seen from different 
viewpoints. Only about 37% of those motorbikes are shown in side views, though, thus 
limiting the maximally achievable recall for our system. Finally, we apply the different cues 
to the pedestrian test set from (Leibe et al. 2005a). It consists of 209 images containing 
crowded scenes with a total of 595 pedestrians, mostly shown in side views but with 
significant overlap and occlusion.  Training for this test is done on 216 side views of 
pedestrians for which a segmentation mask was available, using the same parameter settings 
as for the motorbike experiments. 
 
A.2.4 Evaluation Criterion 
In all three cases, the task is to detect and localize the objects in the test images and determine 
their correct bounding boxes (using the evaluation criterion from (Leibe et al. 2005a) for the 
first and third test set, and the criterion from (Everingham et al. 2005) for the second test set). 
Throughout the evaluation, detection performance is presented in terms of precision and 
recall, which are defined as follows: 

                                                      
2 Oxford interest point webpage. http://www.robots.ox.ac.uk/~vgg/research/affine/ 
detectors.html. 
Surf features website. http://www.vision.ee.ethz.ch/~surf. 
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By varying the final acceptance threshold for the hypothesis scores, we create a recall-
precision curve (RPC) for the selected detector/descriptor combination.  
 
The performance of each cue will depend on several additional parameters. In order to 
investigate the effects of those parameters, we create an RPC for each parameter setting and 
determine the cue's equal-error-rate performance (EER), i.e. the point on the curve at which 
precision and recall are equal. We then plot a curve showing how those EER values change 
when the parameter is varied. 
 

A.2.5 Experimental Procedure 
In order to obtain an unbiased estimate of the cues' potentials, it is important to ensure that 
they are evaluated at their optimal setting. As a first step, we therefore try to find each cue's 
performance optimum. In the recognition approach, as formulated at the beginning of this 
appendix, there are four open parameters that need to be adjusted for each cue.  
 
The first is related to the question how much the clustering step should compress the training 
features during codebook generation. With the agglomerative clustering scheme we are using, 
this translates to the question how compact the codebook clusters should be for optimal 
performance. One option is to define a minimum similarity after which clustering should be 
stopped. Another option is to fix a certain cluster compression ratio #features/#clusters, 
which should only be dependent on the selected interest region detector. Previous evaluations 
(Mikolajczyk et al. 2003) have favored the latter option, but it is not guaranteed that this 
choice is optimal. Our evaluation will investigate this issue in the next section. 
 
The second question is how to set the activation threshold for matching features to the 
codebook during the first stage of the recognition procedure. This parameter determines how 
tolerant the matching process is and thus how many of the sampled features may contribute to 
a hypothesis. In this evaluation, we set the matching threshold to the same value as the final 
cluster similarity that stopped agglomerative clustering, so that we are left with only one 
parameter. The interpretation of this design choice is that we allow each test image feature to 
activate all codebook entries with which it could potentially have been merged during 
clustering if this feature had been observed in the training set. 
 
The third parameter comes into play during recognition. It determines how strong an initial 
peak ),(ˆ xop n  in the voting space has to be before an object hypothesis is created from it. 

This parameter is mainly used for speed reasons, but since it also gives a measure of the 
available image evidence, a high cut-off threshold reduces the potential number of false 
positives. In this evaluation, we set the parameter by performing an initial test run on test set 1 
and fixing the cut-off threshold to the highest value that still yields 98% recall from the 
remaining hypotheses (or alternatively the highest reachable recall value for the given cue). 
Such a procedure follows the assumption that some object instances may simply be too hard 
to detect for any single cue. 
 
Finally, the last parameter is k1 from eq. 6, which corresponds to a final acceptance threshold 
for the confidence in a verified hypothesis. This is the parameter over which the performance 
curves are plotted.  
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A.3 Recognition Approach 
In order to analyze the clustering/matching threshold's influence on recognition performance, 
we applied all detector/descriptor combinations to the TUD motorbikes set and compared 
their equal error rate (EER) detection performance for 5—11 different threshold settings. 
Figure 8 shows the results of this experiment ordered by descriptor. Figure 10 shows the 
same results as above, but this time ordered by detector. 
 

A.3.1 Clustering Similarity vs. Compression Ratio 
From the plots, we can make the following observations. First, when comparing descriptors 
across different detectors, a distinct performance optimum can be found at a certain 
clustering/matching similarity for SIFT, GLOH, PCA-SIFT, Shape Context, and SURF. The 
cluster compression ratio, on the other hand, does not seem to have a consistent influence. We 
can therefore formulate the recommendation to use the cluster similarity as a criterion for 
selecting the clustering level for those descriptors. 
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Figure 8: Single-cue EER performances for all detector/descriptor combinations on the TUD 
motorbikes as a function of the clustering/matching threshold. 
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A.3.2 Effect of Different Detectors/Descriptors 
For the following experiments, we choose the best-performing clustering/matching threshold 
for each detector/descriptor combination and only report the cue's performance at this optimal 
setting. Figure 11 and Figure 9 show the corresponding recall-precision curves. Together, 
these results allow to rank the detector/descriptor combinations based on their detection 
performance. For the descriptors, SIFT and Shape Context perform consistently best over all 
four detectors. SURF128 performs only slightly worse, followed by SURF-64 and GLOH. 
Patch descriptors only perform well based on DoG regions, while PCA-SIFT can only 
convince in conjunction with the Harris-Laplace and Hessian-Laplace detectors.  
 
For the detectors, DoG performs best in 5 of the 7 cases. Next come Hessian-Laplace and 
SURF, with only small differences between them. Harris-Laplace, finally, ranks last in all but 
2 cases. In general, however, the performance differences between the detectors are much 
smaller than those between the descriptors. 
 
In terms of combinations, DoG+SIFT and DoG+Shape Context obtain the best performance 
with 87.2\% EER, followed by SURF+SIFT with 85.6% EER, DoG+SURF128 with 84.8%, 
Hessian-Laplace+SIFT with 84.0%, and Hessian-Laplace+SC with 83.2%. Considering the 
limited size of the test set and the discrete parameter sampling, the relatively small differences 
between those combinations should however not be overrated. All of them are viable 
alternatives in terms of detection performance.  
 
A possible explanation for the relatively poor performance of DoG in conjunction with GLOH 
and PCA-SIFT could be that those two descriptors involve a PCA dimensionality reduction 
step, which projects the original feature vectors on a pre-defined lower-dimensional basis. 
Personal communication with the author of the used implementation of those descriptors3 
revealed, however, that the corresponding PCA basis functions were computed only from a 
collection of Hessian-Laplace and Harris-Laplace regions.  As a result, the resulting 
descriptors are probably not well-suited for representing DoG regions. 
 

                                                      
3 Oxford interest point webpage. http://www.robots.ox.ac.uk/�vgg/research/ 

affine/detectors.html. 
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Figure 9: Comparison of the different detectors with all 7 descriptors (on the TUD motorbikes, optimal 

parameter settings). 
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Figure 10: Single-cue EER performances for all detector/descriptor combinations on the TUD 

motorbikes as a function of the cluster compression ratio (#features/#clusters). 

 

 

Figure 11: Comparison of the different descriptors for all 4 detectors (on the TUD motorbikes, optimal 
parameter settings). 
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A.3.3 Effect of the Number of Extracted Features 
 
Table 1 shows the number of interest regions the four detectors used in our evaluation 
extracted on the motorbike training set. This comparison is important, since the performance 
of the ISM approach generally improves as a function of the number of features it can base its 
decisions on. It can be seen that the Hessian-Laplace and DoG detectors find roughly twice as 
many features as Harris-Laplace and SURF. The lower recognition performance of Harris-
Laplace can thus partially be explained by its lower feature count. 
 
Compared to the other interest region detectors, SURF however performs very well, 
especially considering the lower number of regions it delivers (c.f. Figure 8 (a,b,d)). It reaches 
the same performance level as Hessian-Laplace and performs only slightly worse than DoG. 
For this evaluation, we ran all detectors at their default settings, which were typically 
optimized for exact matching tasks. It can thus be expected that the performance of the SURF 
detector can still be improved by adaptations that increase the number of interest regions it 
returns. 
 

Table 1: Number of features extracted on the motorbike training set for the different interest region 
detectors. 

Detector Harris-Laplace Hessian-Laplace DoG SURF 
# features 12,547 23,379 19,221 10,128 
 
 
 

 

Figure 12: Single-cue EER performances for all detector/descriptor combinations on the TUD 
motorbikes as a function of the number of clusters. 
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A.3.4 Run-Time Considerations 
SURF was developed with the goal of fast feature extraction. In this respect, it is clearly 
superior to all 3 other region detectors. However, in the context of an entire recognition task, 
total system performance also depends on the other stages of the pipeline.  
 
In the ISM approach, the main other factors influencing recognition run-time are the number 
of codebook clusters the extracted features are matched to and the number of stored 
occurrence  locations per cluster. The former determines the effort required for feature 
matching; the latter is responsible for the complexity of the Hough voting stage. The exact 
influence of both stages depends on implementation details, but generally speaking, the lower 
both numbers are, the faster recognition will be. 
 
Figure 12 and Figure 13 display the recognition performance as a function of the codebook 
size (#clusters) and the matching ratio (#occurrences/#clusters), respectively. It can be seen 
that both the SURF-64 and SURF-128 descriptors reach their performance optima already at a 
relatively small codebook size, resulting in low matching costs. Except for their conjunction 
with the DoG detector, both descriptors also require a relatively low matching ratio.  
 
However, in terms of absolute recognition performance, SURF-128 is still outperformed by 
SIFT and SC for three of the four detectors.  It reaches its best absolute performance in 
combination with DoG (with 84.8% EER compared to 87.2% for DoG+SIFT/SC), but this 
performance is only achieved at a relatively high matching ratio, indicating a high cost for the 
voting stage. Together, these results suggest that there is still some potential for improving the 
SURF descriptors for their application to object detection. 
 

 

Figure 13: Single-cue EER performances for all detector/descriptor combinations on the TUD 
motorbikes as a function of the matching ratio (#occurrences/#clusters). 
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A.4 Discussion 
It is important to also keep in mind the limits of this evaluation. The results analyzed so far 
have been obtained on a single test set. Small differences between the different detection 
performances should therefore not be overrated. In order to compare the effects of different 
parameters, we had to reduce the full performance curves to a single key figure, in our case 
the performance at the EER. This will naturally introduce additional noise in the evaluation. 
In (Leibe et al. 2006), the evaluation is therefore extended to two other data sets for a subset 
of 3 ´ 3=9 detector/descriptor combinations, showing that the results generalize also to other 
scenarios. 
 
Nevertheless, we can draw several interesting conclusions from the results of our 
experiments.   
  

• When comparing descriptors across different detectors, we could find a clear 
performance optimum at a certain clustering/matching similarity for SIFT, GLOH, 
Shape Context, and SURF-64/SURF-128.  The cluster compression ratio, on  the other 
hand, did not seem to have a consistent influence. We can therefore formulate the 
recommendation to use the cluster similarity as a criterion for selecting the clustering 
level for those descriptors. As our evaluation was based on commonly available 
feature implementations, our results should be readily transferrable to other 
researchers. 

• For the categories we tested, SIFT/Shape Context features seemed to be the best local 
descriptors, closely followed by SURF-128. This result was consistent across all four 
detectors. Those three descriptors can therefore be seen as almost equivalent, and it is 
to be expected that their relative ordering will depend mainly on the characteristics of 
the object category. 

• In terms of the interest region detectors, DoG performed best in most cases, followed 
by Hessian-Laplace and SURF. The good performance of SURF is however worth 
noting, as it is based on a far smaller number of interest regions. It can thus be 
expected that this result can further be improved by adapting the SURF detector to 
return more regions. 
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Abstract. In this paper, we present a novel scale- and rotation-invariant
interest point detector and descriptor, coined SURF (Speeded Up Ro-
bust Features). It approximates or even outperforms previously proposed
schemes with respect to repeatability, distinctiveness, and robustness, yet
can be computed and compared much faster.
This is achieved by relying on integral images for image convolutions; by
building on the strengths of the leading existing detectors and descriptors
(in casu, using a Hessian matrix-based measure for the detector, and a
distribution-based descriptor); and by simplifying these methods to the
essential. This leads to a combination of novel detection, description, and
matching steps. The paper presents experimental results on a standard
evaluation set, as well as on imagery obtained in the context of a real-life
object recognition application. Both show SURF’s strong performance.

1 Introduction

The task of finding correspondences between two images of the same scene or
object is part of many computer vision applications. Camera calibration, 3D
reconstruction, image registration, and object recognition are just a few. The
search for discrete image correspondences – the goal of this work – can be di-
vided into three main steps. First, ‘interest points’ are selected at distinctive
locations in the image, such as corners, blobs, and T-junctions. The most valu-
able property of an interest point detector is its repeatability, i.e. whether it
reliably finds the same interest points under different viewing conditions. Next,
the neighbourhood of every interest point is represented by a feature vector. This
descriptor has to be distinctive and, at the same time, robust to noise, detec-
tion errors, and geometric and photometric deformations. Finally, the descriptor
vectors are matched between different images. The matching is often based on a
distance between the vectors, e.g. the Mahalanobis or Euclidean distance. The
dimension of the descriptor has a direct impact on the time this takes, and a
lower number of dimensions is therefore desirable.

It has been our goal to develop both a detector and descriptor, which in
comparison to the state-of-the-art are faster to compute, while not sacrificing
performance. In order to succeed, one has to strike a balance between the above
requirements, like reducing the descriptor’s dimension and complexity, while
keeping it sufficiently distinctive.
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A wide variety of detectors and descriptors have already been proposed in the
literature (e.g. [1–6]). Also, detailed comparisons and evaluations on benchmark-
ing datasets have been performed [7–9]. While constructing our fast detector and
descriptor, we built on the insights gained from this previous work in order to get
a feel for what are the aspects contributing to performance. In our experiments
on benchmark image sets as well as on a real object recognition application, the
resulting detector and descriptor are not only faster, but also more distinctive
and equally repeatable.

When working with local features, a first issue that needs to be settled is
the required level of invariance. Clearly, this depends on the expected geomet-
ric and photometric deformations, which in turn are determined by the possible
changes in viewing conditions. Here, we focus on scale and image rotation invari-
ant detectors and descriptors. These seem to offer a good compromise between
feature complexity and robustness to commonly occurring deformations. Skew,
anisotropic scaling, and perspective effects are assumed to be second-order ef-
fects, that are covered to some degree by the overall robustness of the descriptor.
As also claimed by Lowe [2], the additional complexity of full affine-invariant fea-
tures often has a negative impact on their robustness and does not pay off, unless
really large viewpoint changes are to be expected. In some cases, even rotation
invariance can be left out, resulting in a scale-invariant only version of our de-
scriptor, which we refer to as ’upright SURF’ (U-SURF). Indeed, in quite a few
applications, like mobile robot navigation or visual tourist guiding, the camera
often only rotates about the vertical axis. The benefit of avoiding the overkill of
rotation invariance in such cases is not only increased speed, but also increased
discriminative power. Concerning the photometric deformations, we assume a
simple linear model with a scale factor and offset. Notice that our detector and
descriptor don’t use colour.

The paper is organised as follows. Section 2 describes related work, on which
our results are founded. Section 3 describes the interest point detection scheme.
In section 4, the new descriptor is presented. Finally, section 5 shows the exper-
imental results and section 6 concludes the paper.

2 Related Work

Interest Point Detectors The most widely used detector probably is the Har-
ris corner detector [10], proposed back in 1988, based on the eigenvalues of the
second-moment matrix. However, Harris corners are not scale-invariant. Lin-
deberg introduced the concept of automatic scale selection [1]. This allows to
detect interest points in an image, each with their own characteristic scale. He
experimented with both the determinant of the Hessian matrix as well as the
Laplacian (which corresponds to the trace of the Hessian matrix) to detect blob-
like structures. Mikolajczyk and Schmid refined this method, creating robust
and scale-invariant feature detectors with high repeatability, which they coined
Harris-Laplace and Hessian-Laplace [11]. They used a (scale-adapted) Harris
measure or the determinant of the Hessian matrix to select the location, and the
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Laplacian to select the scale. Focusing on speed, Lowe [12] approximated the
Laplacian of Gaussian (LoG) by a Difference of Gaussians (DoG) filter.

Several other scale-invariant interest point detectors have been proposed. Ex-
amples are the salient region detector proposed by Kadir and Brady [13], which
maximises the entropy within the region, and the edge-based region detector pro-
posed by Jurie et al. [14]. They seem less amenable to acceleration though. Also,
several affine-invariant feature detectors have been proposed that can cope with
longer viewpoint changes. However, these fall outside the scope of this paper.

By studying the existing detectors and from published comparisons [15, 8],
we can conclude that (1) Hessian-based detectors are more stable and repeat-
able than their Harris-based counterparts. Using the determinant of the Hessian
matrix rather than its trace (the Laplacian) seems advantageous, as it fires less
on elongated, ill-localised structures. Also, (2) approximations like the DoG can
bring speed at a low cost in terms of lost accuracy.

Feature Descriptors An even larger variety of feature descriptors has been pro-
posed, like Gaussian derivatives [16], moment invariants [17], complex features [18,
19], steerable filters [20], phase-based local features [21], and descriptors repre-
senting the distribution of smaller-scale features within the interest point neigh-
bourhood. The latter, introduced by Lowe [2], have been shown to outperform
the others [7]. This can be explained by the fact that they capture a substantial
amount of information about the spatial intensity patterns, while at the same
time being robust to small deformations or localisation errors. The descriptor
in [2], called SIFT for short, computes a histogram of local oriented gradients
around the interest point and stores the bins in a 128-dimensional vector (8
orientation bins for each of the 4 × 4 location bins).

Various refinements on this basic scheme have been proposed. Ke and Suk-
thankar [4] applied PCA on the gradient image. This PCA-SIFT yields a 36-
dimensional descriptor which is fast for matching, but proved to be less distinc-
tive than SIFT in a second comparative study by Mikolajczyk et al. [8] and slower
feature computation reduces the effect of fast matching. In the same paper [8],
the authors have proposed a variant of SIFT, called GLOH, which proved to be
even more distinctive with the same number of dimensions. However, GLOH is
computationally more expensive.

The SIFT descriptor still seems to be the most appealing descriptor for prac-
tical uses, and hence also the most widely used nowadays. It is distinctive and

relatively fast, which is crucial for on-line applications. Recently, Se et al. [22]
implemented SIFT on a Field Programmable Gate Array (FPGA) and improved
its speed by an order of magnitude. However, the high dimensionality of the de-
scriptor is a drawback of SIFT at the matching step. For on-line applications
on a regular PC, each one of the three steps (detection, description, matching)
should be faster still. Lowe proposed a best-bin-first alternative [2] in order to
speed up the matching step, but this results in lower accuracy.

Our approach In this paper, we propose a novel detector-descriptor scheme,
coined SURF (Speeded-Up Robust Features). The detector is based on the Hes-
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sian matrix [11, 1], but uses a very basic approximation, just as DoG [2] is a
very basic Laplacian-based detector. It relies on integral images to reduce the
computation time and we therefore call it the ’Fast-Hessian’ detector. The de-
scriptor, on the other hand, describes a distribution of Haar-wavelet responses
within the interest point neighbourhood. Again, we exploit integral images for
speed. Moreover, only 64 dimensions are used, reducing the time for feature com-
putation and matching, and increasing simultaneously the robustness. We also
present a new indexing step based on the sign of the Laplacian, which increases
not only the matching speed, but also the robustness of the descriptor.

In order to make the paper more self-contained, we succinctly discuss the con-
cept of integral images, as defined by [23]. They allow for the fast implementation
of box type convolution filters. The entry of an integral image IΣ(x) at a location
x = (x, y) represents the sum of all pixels in the input image I of a rectangular

region formed by the point x and the origin, IΣ(x) =
∑i≤x

i=0

∑j≤y
j=0 I(i, j). With

IΣ calculated, it only takes four additions to calculate the sum of the intensities
over any upright, rectangular area, independent of its size.

3 Fast-Hessian Detector

We base our detector on the Hessian matrix because of its good performance in
computation time and accuracy. However, rather than using a different measure
for selecting the location and the scale (as was done in the Hessian-Laplace
detector [11]), we rely on the determinant of the Hessian for both. Given a point
x = (x, y) in an image I, the Hessian matrix H(x, σ) in x at scale σ is defined
as follows

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
, (1)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative
∂2

∂x2 g(σ) with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ).
Gaussians are optimal for scale-space analysis, as shown in [24]. In practice,

however, the Gaussian needs to be discretised and cropped (Fig. 1 left half), and
even with Gaussian filters aliasing still occurs as soon as the resulting images are
sub-sampled. Also, the property that no new structures can appear while going to
lower resolutions may have been proven in the 1D case, but is known to not apply
in the relevant 2D case [25]. Hence, the importance of the Gaussian seems to have
been somewhat overrated in this regard, and here we test a simpler alternative.
As Gaussian filters are non-ideal in any case, and given Lowe’s success with LoG
approximations, we push the approximation even further with box filters (Fig. 1
right half). These approximate second order Gaussian derivatives, and can be
evaluated very fast using integral images, independently of size. As shown in the
results section, the performance is comparable to the one using the discretised
and cropped Gaussians.

The 9× 9 box filters in Fig. 1 are approximations for Gaussian second order
derivatives with σ = 1.2 and represent our lowest scale (i.e. highest spatial
resolution). We denote our approximations by Dxx, Dyy, and Dxy. The weights
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Fig. 1. Left to right: the (discretised and cropped) Gaussian second order partial
derivatives in y-direction and xy-direction, and our approximations thereof using box
filters. The grey regions are equal to zero.

applied to the rectangular regions are kept simple for computational efficiency,
but we need to further balance the relative weights in the expression for the

Hessian’s determinant with
|Lxy(1.2)|F |Dxx(9)|F
|Lxx(1.2)|F |Dxy(9)|F

= 0.912... � 0.9, where |x|F is

the Frobenius norm. This yields

det(Happrox) = DxxDyy − (0.9Dxy)
2. (2)

Furthermore, the filter responses are normalised with respect to the mask size.
This guarantees a constant Frobenius norm for any filter size.

Scale spaces are usually implemented as image pyramids. The images are
repeatedly smoothed with a Gaussian and subsequently sub-sampled in order to
achieve a higher level of the pyramid. Due to the use of box filters and integral
images, we do not have to iteratively apply the same filter to the output of a
previously filtered layer, but instead can apply such filters of any size at exactly
the same speed directly on the original image, and even in parallel (although the
latter is not exploited here). Therefore, the scale space is analysed by up-scaling
the filter size rather than iteratively reducing the image size. The output of the
above 9× 9 filter is considered as the initial scale layer, to which we will refer as
scale s = 1.2 (corresponding to Gaussian derivatives with σ = 1.2). The following
layers are obtained by filtering the image with gradually bigger masks, taking
into account the discrete nature of integral images and the specific structure of
our filters. Specifically, this results in filters of size 9×9, 15×15, 21×21, 27×27,
etc. At larger scales, the step between consecutive filter sizes should also scale
accordingly. Hence, for each new octave, the filter size increase is doubled (going
from 6 to 12 to 24). Simultaneously, the sampling intervals for the extraction of
the interest points can be doubled as well.

As the ratios of our filter layout remain constant after scaling, the approx-
imated Gaussian derivatives scale accordingly. Thus, for example, our 27 × 27
filter corresponds to σ = 3× 1.2 = 3.6 = s. Furthermore, as the Frobenius norm
remains constant for our filters, they are already scale normalised [26].

In order to localise interest points in the image and over scales, a non-
maximum suppression in a 3 × 3 × 3 neighbourhood is applied. The maxima
of the determinant of the Hessian matrix are then interpolated in scale and
image space with the method proposed by Brown et al. [27]. Scale space inter-
polation is especially important in our case, as the difference in scale between
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Fig. 2. Left: Detected interest points for a Sunflower field. This kind of scenes shows
clearly the nature of the features from Hessian-based detectors. Middle: Haar wavelet
types used for SURF. Right: Detail of the Graffiti scene showing the size of the de-
scriptor window at different scales.

the first layers of every octave is relatively large. Fig. 2 (left) shows an example
of the detected interest points using our ’Fast-Hessian’ detector.

4 SURF Descriptor

The good performance of SIFT compared to other descriptors [8] is remarkable.
Its mixing of crudely localised information and the distribution of gradient re-
lated features seems to yield good distinctive power while fending off the effects
of localisation errors in terms of scale or space. Using relative strengths and
orientations of gradients reduces the effect of photometric changes.

The proposed SURF descriptor is based on similar properties, with a com-
plexity stripped down even further. The first step consists of fixing a reproducible
orientation based on information from a circular region around the interest point.
Then, we construct a square region aligned to the selected orientation, and ex-
tract the SURF descriptor from it. These two steps are now explained in turn.
Furthermore, we also propose an upright version of our descriptor (U-SURF)
that is not invariant to image rotation and therefore faster to compute and
better suited for applications where the camera remains more or less horizontal.

4.1 Orientation Assignment

In order to be invariant to rotation, we identify a reproducible orientation for the
interest points. For that purpose, we first calculate the Haar-wavelet responses
in x and y direction, shown in Fig. 2, and this in a circular neighbourhood of
radius 6s around the interest point, with s the scale at which the interest point
was detected. Also the sampling step is scale dependent and chosen to be s. In
keeping with the rest, also the wavelet responses are computed at that current
scale s. Accordingly, at high scales the size of the wavelets is big. Therefore, we
use again integral images for fast filtering. Only six operations are needed to
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compute the response in x or y direction at any scale. The side length of the
wavelets is 4s.

Once the wavelet responses are calculated and weighted with a Gaussian (σ =
2.5s) centered at the interest point, the responses are represented as vectors in a
space with the horizontal response strength along the abscissa and the vertical
response strength along the ordinate. The dominant orientation is estimated by
calculating the sum of all responses within a sliding orientation window covering
an angle of π

3 . The horizontal and vertical responses within the window are
summed. The two summed responses then yield a new vector. The longest such
vector lends its orientation to the interest point. The size of the sliding window
is a parameter, which has been chosen experimentally. Small sizes fire on single
dominating wavelet responses, large sizes yield maxima in vector length that are
not outspoken. Both result in an unstable orientation of the interest region. Note
the U-SURF skips this step.

4.2 Descriptor Components

For the extraction of the descriptor, the first step consists of constructing a
square region centered around the interest point, and oriented along the orienta-
tion selected in the previous section. For the upright version, this transformation
is not necessary. The size of this window is 20s. Examples of such square regions
are illustrated in Fig. 2.

The region is split up regularly into smaller 4 × 4 square sub-regions. This
keeps important spatial information in. For each sub-region, we compute a few
simple features at 5×5 regularly spaced sample points. For reasons of simplicity,
we call dx the Haar wavelet response in horizontal direction and dy the Haar
wavelet response in vertical direction (filter size 2s). ”Horizontal” and ”vertical”
here is defined in relation to the selected interest point orientation. To increase
the robustness towards geometric deformations and localisation errors, the re-
sponses dx and dy are first weighted with a Gaussian (σ = 3.3s) centered at the
interest point.

Then, the wavelet responses dx and dy are summed up over each subregion
and form a first set of entries to the feature vector. In order to bring in in-
formation about the polarity of the intensity changes, we also extract the sum
of the absolute values of the responses, |dx| and |dy|. Hence, each sub-region
has a four-dimensional descriptor vector v for its underlying intensity structure
v = (

∑
dx,

∑
dy ,

∑
|dx|,

∑
|dy|). This results in a descriptor vector for all 4×4

sub-regions of length 64. The wavelet responses are invariant to a bias in illumi-
nation (offset). Invariance to contrast (a scale factor) is achieved by turning the
descriptor into a unit vector.

Fig. 3 shows the properties of the descriptor for three distinctively different
image intensity patterns within a subregion. One can imagine combinations of
such local intensity patterns, resulting in a distinctive descriptor.

In order to arrive at these SURF descriptors, we experimented with fewer
and more wavelet features, using d2

x and d2
y , higher-order wavelets, PCA, median

values, average values, etc. From a thorough evaluation, the proposed sets turned
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Fig. 3. The descriptor entries of a sub-region represent the nature of the underlying
intensity pattern. Left: In case of a homogeneous region, all values are relatively low.
Middle: In presence of frequencies in x direction, the value of

∑
|dx| is high, but all

others remain low. If the intensity is gradually increasing in x direction, both values∑
dx and

∑
|dx| are high.

out to perform best. We then varied the number of sample points and sub-regions.
The 4×4 sub-region division solution provided the best results. Considering finer
subdivisions appeared to be less robust and would increase matching times too
much. On the other hand, the short descriptor with 3× 3 subregions (SURF-36)
performs worse, but allows for very fast matching and is still quite acceptable
in comparison to other descriptors in the literature. Fig. 4 shows only a few of
these comparison results (SURF-128 will be explained shortly).

Fig. 4. The recall vs. (1-precision) graph for different binning methods and two different
matching strategies tested on the ’Graffiti’ sequence (image 1 and 3) with a view change
of 30 degrees, compared to the current descriptors. The interest points are computed
with our ’Fast Hessian’ detector. Note that the interest points are not affine invariant.
The results are therefore not comparable to the ones in [8]. SURF-128 corresponds
to the extended descriptor. Left: Similarity-threshold-based matching strategy. Right:
Nearest-neighbour-ratio matching strategy (See section 5).
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We also tested an alternative version of the SURF descriptor that adds a
couple of similar features (SURF-128). It again uses the same sums as before,
but now splits these values up further. The sums of dx and |dx| are computed
separately for dy < 0 and dy ≥ 0. Similarly, the sums of dy and |dy| are split
up according to the sign of dx, thereby doubling the number of features. The
descriptor is more distinctive and not much slower to compute, but slower to
match due to its higher dimensionality.

In Figure 4, the parameter choices are compared for the standard ‘Graffiti’
scene, which is the most challenging of all the scenes in the evaluation set of
Mikolajczyk [8], as it contains out-of-plane rotation, in-plane rotation as well as
brightness changes. The extended descriptor for 4 × 4 subregions (SURF-128)
comes out to perform best. Also, SURF performs well and is faster to handle.
Both outperform the existing state-of-the-art.

For fast indexing during the matching stage, the sign of the Laplacian (i.e.
the trace of the Hessian matrix) for the underlying interest point is included.
Typically, the interest points are found at blob-type structures. The sign of
the Laplacian distinguishes bright blobs on dark backgrounds from the reverse
situation. This feature is available at no extra computational cost, as it was
already computed during the detection phase. In the matching stage, we only
compare features if they have the same type of contrast. Hence, this minimal
information allows for faster matching and gives a slight increase in performance.

5 Experimental Results

First, we present results on a standard evaluation set, fot both the detector and
the descriptor. Next, we discuss results obtained in a real-life object recognition
application. All detectors and descriptors in the comparison are based on the
original implementations of authors.

Standard Evaluation We tested our detector and descriptor using the image
sequences and testing software provided by Mikolajczyk 3. These are images of
real textured and structured scenes. Due to space limitations, we cannot show
the results on all sequences. For the detector comparison, we selected the two
viewpoint changes (Graffiti and Wall), one zoom and rotation (Boat) and lighting
changes (Leuven) (see Fig. 6, discussed below). The descriptor evaluations are
shown for all sequences except the Bark sequence (see Fig. 4 and 7).

For the detectors, we use the repeatability score, as described in [9]. This
indicates how many of the detected interest points are found in both images,
relative to the lowest total number of interest points found (where only the part
of the image that is visible in both images is taken into account).

The detector is compared to the difference of Gaussian (DoG) detector by
Lowe [2], and the Harris- and Hessian-Laplace detectors proposed by Mikola-
jczyk [15]. The number of interest points found is on average very similar for all

3 http://www.robots.ox.ac.uk/˜vgg/research/affine/



10 H. Bay, T. Tuytelaars, and L. Van Gool

detectors. This holds for all images, including those from the database used in
the object recognition experiment, see Table 1 for an example. As can be seen
our ’Fast-Hessian’ detector is more than 3 times faster that DoG and 5 times
faster than Hessian-Laplace. At the same time, the repeatability for our detector
is comparable (Graffiti, Leuven, Boats) or even better (Wall) than for the com-
petitors. Note that the sequences Graffiti and Wall contain out-of-plane rotation,
resulting in affine deformations, while the detectors in the comparison are only
rotation- and scale invariant. Hence, these deformations have to be tackled by
the overall robustness of the features.

The descriptors are evaluated using recall-(1-precision) graphs, as in [4] and [8].
For each evaluation, we used the first and the fourth image of the sequence,
except for the Graffiti (image 1 and 3) and the Wall scene (image 1 and 5),
corresponding to a viewpoint change of 30 and 50 degrees, respectively. In fig-
ures 4 and 7, we compared our SURF descriptor to GLOH, SIFT and PCA-SIFT,
based on interest points detected with our ’Fast-Hessian’ detector. SURF out-
performed the other descriptors for almost all the comparisons. In Fig. 4, we
compared the results using two different matching techniques, one based on the
similarity threshold and one based on the nearest neighbour ratio (see [8] for
a discussion on these techniques). This has an effect on the ranking of the de-
scriptors, yet SURF performed best in both cases. Due to space limitations, only
results on similarity threshold based matching are shown in Fig. 7, as this tech-
nique is better suited to represent the distribution of the descriptor in its feature
space [8] and it is in more general use.

The SURF descriptor outperforms the other descriptors in a systematic and
significant way, with sometimes more than 10% improvement in recall for the
same level of precision. At the same time, it is fast to compute (see Table 2).
The accurate version (SURF-128), presented in section 4, showed slightly bet-
ter results than the regular SURF, but is slower to match and therefore less
interesting for speed-dependent applications.

Note that throughout the paper, including the object recognition experiment,
we always use the same set of parameters and thresholds (see table 1). The
timings were evaluated on a standard Linux PC (Pentium IV, 3GHz).

Object Recognition We also tested the new features on a practical application,
aimed at recognising objects of art in a museum. The database consists of 216
images of 22 objects. The images of the test set (116 images) were taken un-

detector threshold nb of points comp. time (msec)

Fast-Hessian 600 1418 120
Hessian-Laplace 1000 1979 650
Harris-Laplace 2500 1664 1800

DoG default 1520 400

Table 1. Thresholds, number of detected points and calculation time for the detectors
in our comparison. (First image of Graffiti scene, 800 × 640)
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U-SURF SURF SURF-128 SIFT

time (ms): 255 354 391 1036

Table 2. Computation times for the joint detector - descriptor implementations, tested
on the first image of the Graffiti sequence. The thresholds are adapted in order to
detect the same number of interest points for all methods. These relative speeds are
also representative for other images.

der various conditions, including extreme lighting changes, objects in reflecting
glass cabinets, viewpoint changes, zoom, different camera qualities, etc. More-
over, the images are small (320× 240) and therefore more challenging for object
recognition, as many details get lost.

In order to recognise the objects from the database, we proceed as follows.
The images in the test set are compared to all images in the reference set by
matching their respective interest points. The object shown on the reference
image with the highest number of matches with respect to the test image is
chosen as the recognised object.

The matching is carried out as follows. An interest point in the test image
is compared to an interest point in the reference image by calculating the Eu-
clidean distance between their descriptor vectors. A matching pair is detected,
if its distance is closer than 0.7 times the distance of the second nearest neigh-
bour. This is the nearest neighbour ratio matching strategy [18, 2, 7]. Obviously,
additional geometric constraints reduce the impact of false positive matches, yet
this can be done on top of any matcher. For comparing reasons, this does not
make sense, as these may hide shortcomings of the basic schemes. The average
recognition rates reflect the results of our performance evaluation. The leader is
SURF-128 with 85.7% recognition rate, followed by U-SURF (83.8%) and SURF
(82.6%). The other descriptors achieve 78.3% (GLOH), 78.1% (SIFT) and 72.3%
(PCA-SIFT).

Fig. 5. An example image from the reference set (left) and the test set (right). Note
the difference in viewpoint and colours.
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Fig. 6. Repeatability score for image sequences, from left to right and top to bottom,
Wall and Graffiti (Viewpoint Change), Leuven (Lighting Change) and Boat (Zoom and
Rotation).

6 Conclusion

We have presented a fast and performant interest point detection-description
scheme which outperforms the current state-of-the art, both in speed and accu-
racy. The descriptor is easily extendable for the description of affine invariant
regions. Future work will aim at optimising the code for additional speed up. A
binary of the latest version is available on the internet4.
Acknowledgements: The authors gratefully acknowledge the support from
Swiss SNF NCCR project IM2, Toyota-TME and the Flemish Fund for Scientific
Research.
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Fig. 7. Recall, 1-Precision graphs for, from left to right and top to bottom, View-
point change of 50 (Wall) degrees, scale factor 2 (Boat), image blur (Bikes and Trees),
brightness change (Leuven) and JPEG compression (Ubc).
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Abstract

This paper proposes a novel method for integrating multiplelocal cues, i.e. lo-
cal region detectors as well as descriptors, in the context of object detection.
Rather than to fuse the outputs of several distinct classifiers in a fixed setup,
our approach implements a highly flexible combination scheme, where the con-
tributions of all individual cues are flexibly recombined depending on their ex-
planatory power for each new test image. The key idea behind our approach
is to integrate the cues over an estimated top-down segmentation, which allows
to quantify how much each of them contributed to the object hypothesis. By
combining those contributions on a per-pixel level, our approach ensures that
each cue only contributes to object regions for which it is confident and that
potential correlations between cues are effectively factored out. Experimental
results on several benchmark data sets show that the proposed multi-cue combi-
nation scheme significantly increases detection performance compared to any of
its constituent cues alone. Moreover, it provides an interesting evaluation tool
to analyze the complementarity of local feature detectors and descriptors.

1 Introduction
Local feature based approaches have shown considerable promise for dealing with the large
degree of intra-category variation and partial occlusion inherent in real-world categorization
and detection tasks. Consequently, many approaches have been developed that use local
features in different ways [1, 6, 4, 10, 12], and considerable progress has been made in the
design and understanding of the underlying feature detectors and descriptors [12, 14]. Yet,
each feature descriptor and detector can only capture part of the information contained in the
image, and indeed its value for an application depends on thedegree to which it can distill
exactly the right kind of information for a specific purpose.As a consequence, the better a
descriptor or detector is suited to a specific task, the more likely it is to degenerate when the
task conditions deviate too far from its target scenario. Inorder to be both discriminative and
robust, an application should therefore utilize a combination of different local cues.

Several recent studies have evaluated the suitability of various local features in the con-
text of object identification [14] and categorization tasks[13]. However, those studies have
only considered each cue in isolation. For multi-cue integration, it is also important to know
how the different cues interact, i.e. how correlated their responses are and what new infor-
mation an additional cue can contribute. However, this information is difficult to retrieve, as
different cues are often not directly comparable, both because they typically have different
dimensionalities and because they represent information in different ways.

Previous research has therefore mainly focused onclassifier combination, i.e. on the
problem of fusing the outputs of several “black-box” classifiers, possibly with associated
confidence ratings [20, 9, 7, 15]. This approach is valid if the classifiers are independent.
In our application, however, their outputs are often correlated, and the degree of correlation



may vary from image to image. Rather than just to fuse the outcomes of several classifiers,
we therefore need to explore how the underlying informationand the respective support in
the image can be combined.

In this paper, we present a flexible integration scheme whichcombines different local
cues in an opportunistic manner depending on their explanatory power for the image at hand.
The integration proceeds in two steps. First, the sampled features are represented in terms
of their similarity to a set of prototypes, anappearance codebook, which has been learned
for each cue separately. Together with their learned spatial distributions, those codebook
prototypes convert the activations from matching featuresinto a probability distribution for
possible object locations and scales. This makes the cues comparable. However, their in-
dividual responses might still be correlated. Therefore, the second step backprojects the
extracted object hypotheses to the image in order to determine for each cue separately which
image pixels were responsible for a detection and how much each pixel contributed to the
cue’s response. By comparing the overlap in their supporting area, our approach can deter-
mine the complementarity between two cues and integrate their contributions more robustly.

This paper makes the following three contributions. Firstly, it develops a robust multi-cue
integration approach that can be applied regardless of whether the cues are correlated or not.
The proposed scheme is directly interpretable and opens up interesting venues for analyzing
the complementarity of local cues. Secondly, it presents anextensive evaluation of state-of-
the-art region detectors and descriptors in the context of multi-cue integration. The obtained
results allow us to rank the cues based on their individual performances and to formulate
clear usage guidelines for their combination. Last but not least, experimental results on
several challenging data sets show that the proposed multi-cue integration scheme increases
object detection performance significantly. The improvement is particularly prominent for
the detection precision and leads to high recognition ratesat the zero-false-positive level.
The paper is structured as follows. The next section discusses related work. Section 2 then
reviews the basic recognition approach. Extending this approach, we derive our proposed
multi-cue integration scheme in Section 3. Section 4 describes our experimental setup, and
Section 5 finally presents the results of our evaluation.

Related Work. Many authors have stressed the need for integrating multiple global or local
cues in order to increase robustness of recognition [18, 11,7]. In practice, multi-cue systems
for object recognition have often been implemented by combining classifiers [20, 9, 7] or
by using cue confidences in a voting scheme [3, 15]. However, these approaches are often
static in that they use a fixed confidence rating per cue, e.g. based on previously observed
performance. As such, they cannot readily adapt to novel settings when a cue’s perfor-
mance characteristics degrade due to changed environmental conditions. It has therefore
been argued that cue weights should be adapted dynamically [17]. For tracking scenarios,
cue integration techniques have been proposed which combine cues probabilistically based
on their estimated likelihood [19]. However, in the contextof single-frame object detection,
no such mechanism has been known. In this paper, we propose such a mechanism based on
the top-down segmentation approach by [10].

2 Recognition Approach
Our multi-cue recognition approach closely builds upon theImplicit Shape Model (ISM)
formalism by [10, 11], which combines object detection and top-down segmentation capa-
bilities. This model represents an object category by a set of local appearance clusters (a
codebook) and their spatial occurrence distributions. Since a basicknowledge of this ap-
proach is necessary to understand our method, we will brieflyreview its main components.



Training. For training, local features are extracted from the training images and clustered
to form the codebook [1, 10]. In a second run over the trainingdata, the spatial occurrence
distributions are estimated by recording for each codebookentry all matching locations on
the training objects. Together with each occurrence, the approach stores a local segmentation
mask, which is later used for inferring top-down segmentations.

ISM Recognition. During recognition, local features are extracted from the image and
matched to the codebook. Each matching codebook entry then casts votes for possible object
locations and scales in a probabilistic extension of the Hough transform [10]. For each
hypothesis, the approach then computes a top-down segmentation and finally selects the
subset of hypotheses that best explain the image content under the constraint that each pixel
can be assigned to at most one hypothesis.

3 Multi-Cue Integration
We now present our novel approach for integrating multiple local cues. In the context of
this paper, we understand this as a combination of differentlocal descriptors, but also of
different region detectors, since their preference for certain image structures influences the
characteristics of the sampled information. As already mentioned before, the question how to
combine local cues has no obvious answer, since they are typically not directly comparable.

We therefore proceed in two stages. The first stage extends the recognition procedure
to include multiple cues. Its main purpose is to express the cues on a common basis, so
that their information can be pooled and initial object hypotheses can be found. This stage
still ignores cue correlation. Indeed, it has no other choice, since correlation can only be
measured relative to a reference hypothesis, and hypotheses are only available after the stage
has been executed. However, the second stage then reveals the correlation by backprojecting
hypotheses to the image and computing a top-down segmentation for each cue. This step
extends the ISM segmentation algorithm to deal with multiple cues. The obtained segmenta-
tions show on a per-pixel level which image structures were responsible for a cue’s response.
The correlation between two cues can then be expressed as theoverlap of their respective
p(figure) probability maps. Once the cue correlation has been identified, the next question
is how to use this information to improve recognition performance. In the last part of this
section, we present three combination criteria that relateto different strategies for this step.

Initial Recognition Stage. The key to integrating multiple local cues is to express them
on a common basis. We create such a basis by representing sampled features through their
similarity to stored prototypes. We therefore extend the recognition approach by keeping a
separate codebookC q for every cueq. Let e be a local descriptor computed at locationℓ.
When matched to the codebook, it may activate several codebook entriesC q

i with probabili-
tiesp(C

q
i |e). Each matched codebook entry then votes for instances of theobject categoryon

at different locations and scalesλ = (λx,λy,λσ) according to its learned occurrence distribu-
tion P(on,λ|C q

i , ℓ,q). A feature’s contribution to an object hypothesis can thus be expressed
as p(on,λ|e, ℓ,q) = ∑

i

P(on,λ|C q
i , ℓ,q)p(C

q
i |e). (1)

The contributions from all cues are pooled in a shared 3-dimensional voting space, from
which maxima are extracted by Mean Shift Mode Estimation using a scale-adaptive kernel
K [11], marginalizing over the cuesqm

p̂(on,λ) =
1

nb(λ)3 ∑
m

∑
k

∑
j

p(on,λ j |ek, ℓk,qm)K(
λ−λ j

b(λ)
)p(ek, ℓk|qm)p(qm), (2)

whereb(λ) is the scale-adaptive kernel bandwidth;p(ek, ℓk|qm) is an indicator variable spec-
ifying which image patches and locations have been sampled for qm; and p(qm) is a prior
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Figure 1: Visualization of the multi-cue integration stages: (a) initial detection, (b) top-
down segmentation, (c)p(figure) maps obtained byaveragecombination, (d) closeup view
of theargmaxvisualization (cf. eq.(9)) , (e) histogram of relative cue contributions.

determining how much this cue can be trusted. This prior can be set to reflect previously
observed performance. In order to avoid any bias, however, we leave it at a uniform setting.

Multi-Cue Segmentation. Once a hypothesish = (on,λ) has been found, its top-down
segmentation can be inferred by backprojecting the supporting votes to the image and com-
bining them with the local patch segmentation masksp(p=fig.|on,λ,C q

i , ℓ) that have been
stored for each recorded codebook occurrence during training. As shown in [10], the per-
pixel probabilities of each pixel containingfigureor groundcan then be obtained by a double
marginalization, first over sampled features, then over codebook entries. We adapt this for-
mulation here to compute a separate segmentation for each cue

p(p=fig.|on,λ,q) = ∑
p∈(e,ℓ)

∑
i

p(p=fig.|on,λ,e,C q
i , ℓ,q)p(e,C q

i , ℓ,q|on,λ) (3)

= ∑
p∈(e,ℓ)

∑
i

p(p=fig.|on,λ,C
q
i , ℓ)

p(on,λ|C q
i , ℓ,q)p(C

q
i |e)p(e, ℓ)

p(on,λ)
(4)

Based on these results, the final segmentation is computed bybuilding the likelihood ratio
betweenfigureandgroundprobabilities.

Segmentation-Based Cue Combination. Now we can proceed to combining the contribu-
tions of different cues on the pixel level. For this, we adoptthe idea of formulating hypothesis
selection as a Quadratic Boolean Optimization Problem in anMDL framework [11]. Each
hypothesis is evaluated in terms of thesavingsthat can be obtained in the description of an
image by explaining part of it byh. The savings of each hypothesis are expressed as

Sh=−κ1 +(1−κ2)
N
Aσ

+ κ2
1

Aσ
∑

p∈Seg(h)

f (p,h,Q) (5)

whereN is the number of pixels that can be explained byh, Aσ is itsexpected areaat scaleσ,
κ2 is a weighting factor to balance out the influence of a hypothesis’s area versus its support
in the image (left at a fixed value in our experiments), andκ1 is the parameter over which the
final performance curves are plotted. If multiple hypotheses overlap, their respective savings
terms interact, since each pixel can only be assigned to a single hypothesis.

Depending on the definition off , we can achieve different effects. The canonical way of
combining the different cues would be to simply ignore possible correlations and marginalize
over the cuesqm. This can be expressed by the followingsumcriterion:

fsum(p,h,Q) = ∑
m

p(p = figure|h,qm)p(qm). (6)

However, this marginalization has the problem that it may reinforce local misclassifications
if the cues are correlated. An opposite strategy is to completely remove correlation by only
trusting the strongest cue. This leads to themaxcriterion:
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Figure 2: Some detections and the corresponding relative cue contributions.

fmax(p,h,Q) = max
m

p(p = figure|h,qm)p(qm). (7)

However, this criterion is also problematic, since it relies on the assumption that all cues
are well-behaved. If one or more cues respond too strongly tobackground structures, the
whole system may become biased and additional false positives may be generated. For this
reason, we also propose a third criterion, which is a combination of the two extremes. It
builds the per-pixelaverageover all cues that are sufficiently confident, i.e. wherep(p =
figure|h,qm) ≫ p(p = ground|h,qm).

favg(p,h,Q) = avg
m

p(p = figure|h,qm)p(qm) (8)

These criteria implement a highly flexible combination strategy. Instead of weighting each
cue just by a fixed prior, they can decide for each image pixel anew which cues to consider,
where the decision is made based on the cues’ own confidence estimates. At the same time,
eqs. (6) and (8) avoid putting all trust into a single cue thatmight bias the results negatively.
Figure 1 summarizes the final cue combination procedure. Thesystem first generates a set
of hypotheses (Fig. 1(a)) by pooling the information from all cues. For each hypothesis,
it then computes a top-down segmentation per cue (Fig. 1(b)), whereupon the verification
criterion from eq. (3) is executed in order to fuse the individual cues’p(figure) probability
maps (Fig. 1(c)) into a common system response.

Discussion and Analysis. It is important to emphasize the difference of the proposed cue
integration scheme to the far simpler approach of running several region detectors in parallel
and pooling their features in a common codebook (as used e.g.in [4]). If only a single kind
of region descriptors is used, such an approach would be similar to our integration using the
sumcriterion. However, as soon as several different region descriptors shall be employed, a
combination into a common codebook is no longer possible, since the different descriptors
are not comparable. Our proposed approach, on the other hand, readily scales to this case
and allows to combine the different cue contributions on a flexible per-pixel basis, which is
something no other current approach can achieve.

The proposed cue integration scheme was motivated by the potential of different local
cues to complement each other by interpreting the image information in different ways. In
order to visualize that this can positively affect recognition performance, we introduce the
following argmaxcriterion as an analysis tool.

fargmax(p,h,Q) = argmax
m

p(p = figure|h,qm)p(qm) (9)

This criterion selects for each hypothesis pixel the index of the most confident cue. Fig. 1(d)
shows the resulting maps for the two example images, where each shade of gray corresponds
to one of the five descriptorsSIFT, GLOH, PCA-SIFT, Shape Context, andPatch(c.f. Sec. 4).
These images are readily interpretable. For instance, it becomes evident that in the top
example, the outer rim of the front wheel is best captured byShape Contextdescriptors,
while the wheel’s hub is better represented byGLOH. In the bottom example, on the other
hand, changed contrast to the background has modified the image content sufficiently, such
that similar structures on the rear wheel are better captured bySIFT.

We can further quantify the relative importance of each cue to a particular hypothesishby
building up a histogram of their individual contributions.Fig. 1(e) shows the corresponding
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Figure 3: Single-cue EER performances for all detector/descriptor combinations on the
TUD motorbikes. The plots show the performance gradation when the clustering/matching
threshold is varied. In all following experiments, we use only the best-performing parameter
setting for each cue.

cue importance histograms. As can be seen, the relative importance of the cues changes also
quantitatively. Some more examples for different test images are shown in Fig. 2, further
corroborating this observation.

4 Experimental Setup
In the rest of the paper, we evaluate our proposed multi-cue integration method on real-world
detection tasks. We first describe the selection of cues we build upon and the test data sets.

Interest Region Detectors. We compare three different scale-invariant interest region de-
tectors. TheHarris-LaplaceandHessian-Laplacedetectors look for scale-adapted maxima
of the Harris function and Hessian determinant, respectively [14], where the locations along
the scale dimension are found by the Laplacian-of-Gaussian. TheDoG detector [12] finds
regions at 3D scale-space extrema of the Difference-of-Gaussian.

Region Descriptors. In addition, we evaluate five different region descriptors.SIFT de-
scriptors [12] are 3D histograms of gradient locations and orientations with 4× 4 location
and 8 orientation bins. The resulting descriptor has 128 dimensions. GLOH descriptors
[14] are an extension ofSIFT. They use 17 location and 16 orientation bins organized in a
log-polar grid. PCA is used to reduce the dimensionality to 128. PCA-SIFT[8] are vectors
of image gradients inx andy direction sampled within the support region and reduced to 36
dimensions with PCA.Shape Context(SC) [2, 14] descriptors are histograms of gradient ori-
entations sampled at edge points in a log-polar grid with 9 location and 4 orientation bins and
thus 36 dimensions. For comparison, we include 25×25 pixelPatches[1, 10], which lead to
a descriptor of length 625. This set of descriptors was explicitly chosen to sample different
sources of information.SIFT, GLOH, andPCA-SIFTare based on gradient information;SC
descriptors are based on edges; andPatchestake the full image region into account.

The evaluation is performed with an own implementation of the DoG detector (denoted
eDoGin the figures) andPatchdescriptor. For all other detectors and descriptors, we used
the implementations publicly available at [16]. Patches were compared usingNormalized
Correlation; all other descriptors were compared using Euclidean distances.

Training and Test Data. We first evaluate the different stages of our approach on the TUD
motorbike set, which is part of the PASCAL collection [5]. This data set consists of 115 im-
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Figure 4: Cue combination performances on the TUD motorbikes: (a) single-cue perfor-
mance; (b) performance of the different combination strategies using all 5 descriptors with
the same detector; (c) cue combination performance when thesame descriptors are applied
to different detectors.

ages containing a total of 125 motorbikes at different scales and with clutter and occlusion.
Training is done on 153 motorbike side views from the CalTechtraining set [6] which are
shown in front of uniform backgrounds allowing for easy segmentation. We then show that
the results generalize also to other scenarios by applying the approach to two more challeng-
ing data sets using the same parameter settings. The first is the VOC motorbikestest2
set, which has been used as a localization benchmark in the 2005 PASCAL Challenge [5].
This data set consists of 202 images containing a total of 227motorbikes at different scales
and seen from different viewpoints. Only about 37% of those motorbikes are shown in side
views, though, thus limiting the maximally achievable recall for our system. Finally, we
apply our method to the pedestrian test set from [11]. It consists of 209 images containing
crowded scenes with a total of 595 pedestrians, mostly shownin side views but with signif-
icant overlap and occlusion. Training for this test is done on 216 side views of pedestrians
for which a segmentation mask was available, using the same parameter settings as for the
motorbike experiments. In all three cases, the task is to detect and localize the objects in the
test images and determine their correct bounding boxes (using the evaluation criterion from
[11] for the first and third test set, and the criterion from [5] for the second test set).

5 Results
Single-Cue Performance. In order to obtain an unbiased estimate of the cues’ potentials,
it is important to ensure that they are evaluated at their optimal setting. As a first step, we
therefore evaluate each cue separately and try to find its performance optimum.

In our formulation of the approach, there is one open parameter that has to be adjusted
for each cue, namely the question how much the clustering step should compress the training
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Figure 5: Performance comparison on the TUD motorbikes (left), the more difficult VOC
motorbiketest2 set (middle), and the pedestrian test set (right). The middle plot is rotated
90◦ to make it consistent with the ones in [5]. Please note that while our detector is exclu-
sively trained on side views, only 39% of the motorbikes in the VOC set are shown in side
views, thus limiting the maximally achievable recall.

features during codebook generation. When using agglomerative clustering, this translates
to the question how compact the codebook clusters should be for optimal performance. One
option is to define aminimum similarityafter which clustering should be stopped. Another
option is to fix a certaincluster compression ratio(#features/#clusters). Previous evalua-
tions [13] have favored the latter option, but it is not guaranteed that this choice is optimal.

In order to analyze the clustering/matching threshold’s influence on recognition perfor-
mance, we applied all 15 detector/descriptor combinationsto the TUD motorbikes set and
compared their equal error rate (EER) detection performance for 5–7 different threshold set-
tings. Figure 3 shows the results of this experiment, both separated per descriptor and per
detector. We can make two observations. First, when comparing descriptors across different
detectors, a clear performance optimum can be found at a certain similarity forSIFT, GLOH,
PCA-SIFT, andSC. The cluster compression ratio, on the other hand, does not seem to have
a consistent influence. We can therefore formulate the recommendation to use the cluster
similarity as a criterion for selecting the clustering level for those descriptors. Second, the
results allow to rank the detector/descriptor combinations based on their single-cue perfor-
mance. For the descriptors,SIFT andSCperform consistently best over all three detectors.
For the detectors,Hessian-LaplaceandDoG perform best in all but one case. In terms of
combinations,DoG+SIFTandDoG+SCobtain the best performance with 87% EER.

Combining Different Descriptors. Next, we examine cue combination in a maximally cor-
related setting. For this, we apply all five region descriptors to the output of the same interest
point detector and compare the performance of the three proposed combination strategies.
The results of this experiment can be seen in Fig. 4(a,b). ForHarris-LaplaceandHessian-
Laplace, there is a significant difference between the three performance curves, withsum
combination performing worst, thenmaxcombination, andaveragecombination performing
best. This confirms our expectations from Section 3. Compared to the best single-cue per-
formance withSIFT or SCdescriptors,averagecombination achieves a small performance
increase from 77.6% to 80.0% (Harris-Laplace) and from 82.4% to 85.6% EER (Hessian-
Laplace), respectively. ForDoG, a significant performance increase from 87.2% to 91.2%
EER can be shown if all descriptors exceptPCA-SIFTare combined. IncludingPCA-SIFT
degrades overall performance to 85.6%, suggesting that those descriptors are not as infor-
mative as the others, perhaps because of their projection onto a general-purpose PCA basis.



Figure 6: Example multi-cue detections of our approach on difficult images from the VOC
motorbikes and the pedestrian set (at the EER).

Combining Different Detectors. The opposite experiment is to apply the same descriptors
to three different region detectors and compare the combined performances. This is shown
in Fig. 4(c). As there are only small differences between theperformance of the three com-
bination strategies, we just display the curve foraveragecombination in order to reduce
clutter. The most remarkable observation from this experiment is the improvement of over
10% EER obtained by theGLOH descriptors from 76.0% to 86.4%. Apparently, this de-
scriptor benefits most from additional samples in the image.In contrast,SIFT shows only
a small improvement to 88.8% EER. The best absolute performance is achieved by theSC
combination with 92.8% EER. ThePCA-SIFTandPatchdescriptors, finally, do not profit
from the evaluated combination.

Full Multi-Cue Combination. Finally, we present results combining multiple detectors and
multiple descriptors at the same time. Fig. 5(left) compares the performance ofSIFT+SC
andSIFT+GLOH+SCwith all three detectors. Although those combinations do not increase
EER performance any more, further improvement can be observed in terms of precision. In
particular, recall at the zero-false-positive level is increased from 50% (onlySC) over 62%
(SIFT+SC) to 75% (all three descriptors). This is an important result, since high precision is
a prerequisite for many real-world applications.

In order to ensure that the results generalize also to different settings, we apply our
multi-cue approach to the more challenging VOC motorbikes set using the same parameter
settings as for the first experiments. Fig. 5(middle) shows the results of this experiment. As
can be seen from the plot, the combination of multiple cues again improves performance and
increases the detection precision considerably. As a comparison with [5] shows, it is the best
result reported for this data set so far. The best combination of SIFT+SCachieves 21% recall
with zero false positives and scales up to 30% recall at 90% precision. Considering that the
test set contains only about 39% side views, this is an excellent result. Fig. 6 visualizes the
range of motorbike appearances that are still reliably detected by our approach. Although the
system has only been trained on a single viewpoint, the increased robustness from multi-cue
integration makes it possible to compensate for a certain level of out-of-plane rotation.

Last but not least, we apply our multi-cue approach to the pedestrian test set from [11]
using the same clustering/matching thresholds as for the motorbikes. The results are shown
in Fig. 5(right). Again, the combination of multiple cues increases performance significantly
from 80% EER for the best single cues to 84.7% forSCwith all three detectors and to 82.6%
with HesLapwith SIFT+GLOH+SC. In comparison, we show the results from [11], which
are clearly outperformed by our multi-cue system.



6 Discussion & Conclusion
In conclusion, we have proposed a robust and flexible multi-cue integration scheme that op-
erates even when the cues are highly correlated. It has been shown to improve performance
consistently on three different data sets and for two different categories. The improvement
is particularly visible in terms of recognition precision and, for the motorbike test sets, high
recall values at the zero-false-positive level. Compared to a canonical cue combination strat-
egy of simply adding the weighted cue responses, our proposed approach can react more
flexibly to varying cue performance and adapt itself automatically. This advantage could
also be verified quantitatively in cases where the cues were strongly correlated.

In order to further evaluate its performance we have conducted an extensive study, com-
paring 3 state-of-the-art interest region detectors and 5 different descriptors in the context
of multi-cue integration. The results of this evaluation allow to rank the cues both based
on their individual performance and their suitability for integration. In addition, we can
draw several interesting conclusions. When set to the rightclustering level,SIFT andSC
features performed consistently better than all other descriptors in this evaluation. In addi-
tion, feature combinations with eitherSCdescriptors and several different region detectors or
DoG/Hessian-Laplaceregions with several different descriptors achieved the highest overal
performance level. These two extremes thus provide an axis along which the set of cues can
be varied depending on implementation tradeoffs (i.e. either sampling more points or using
the sampled information more efficiently).
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Abstract

We propose a multiview tracking method for rigid ob-
jects. Assuming that a part of the object is visible in at
least two cameras, a partial 3D model is reconstructed in
terms of a collection of small 3D planar patches of arbi-
trary topology. The 3D representation, recovered fully au-
tomatically, allows to formulate tracking as gradient mini-
mization in pose (translation, rotation) space. As the object
moves, the 3D model is incrementally updated. A virtuous
circle emerges: tracking enables composition of the partial
3D model; the 3D model facilitates and robustifies the mul-
tiview tracking.

We demonstrate experimentally that the interleaved
track-and-reconstruct approach successfully tracks a 360
degrees turn-around and a wide range of motions. Monoc-
ular tracking is also possible after the model is constructed.
Using more cameras, however, significantly increases sta-
bility in critical poses and moves. We demonstrate how to
exploit the 3D model to increases stability in the presence
of uneven and/or changing illumination.

1 Introduction

Existing multiview approaches mostly represent objects
as blobs. Blob representation assumes that the appearance
of an object does not significantly change when the object
rotates. Global object position is sought and the methods do
not attempt to recover the orientation of the object [3, 9].

Most model-based tracking methods use 3D models pre-
pared offline. An overview of such methods was recently
published by Lepetit et al. [7]. Vacchetti et al. [16] pro-
pose a tracker based on matching with keyframes. The
method demonstrates impressive results on out-of-plane ro-
tation data. Still, it cannot track complete turn of the object
and needs offline manual selection of keyframes which are
essential for its stability. Muñoz et al. [10] suggest a method
that track even deformable objects. Their model is com-
posed of small textured planar patches, a set of shape bases,

Figure 1. Interleaved model contruction and
tracking: Camera image with reprojected
model, trajectory of the head and two differ-
ent views of the automatically constructed
model.

and a set of texture bases. The tracking procedure needs
a reference image and optimizes over local shape deforma-
tions, colour/texture changes and overall motion. Results on
real data show successful tracking only of small variations
in object pose and negligible local deformations.

Several approaches build elaborated 3D models from
multiple views. The methods rely heavily on carefully con-
structed and expensive setup and require special scene ar-
rangement since they are based on scene/object segmenta-
tion [1, 5, 8, 17]. Würmlin et al. [17] propose dynamic 3D
point samples for streaming 3D video. This point based rep-
resentation somehow resembles our model. However, the
method does not track object and needs many cameras and
very precise pixel-wise motion segmentation.

1



We propose a combined method that tracks objects in 3D
and constructs a point based appearance model simultane-
ously. The primary interest is object tracking and detec-
tion. The model is rather simple, a set of 3D points asso-
ciated with 3D orientation and albedo. Despite its simplic-
ity, the model is rich enough for recovering orientation of
the object. The tracking can follow a complete 360 degree
turn of object. Rothganger et al. [12] also compose a 3D
model from small planar patches. The patches are recon-
structed from multiview correspondences. Objects are pho-
tographed an object from several viewpoints, corresponding
image patches are found by affine covariant feature match-
ing. Finally, patches are reconstructed in 3D. In fact, it
would be possible to use this model in our tracking. Any
complete off-line built model [11] could be used, too.

Cobzas and Jagersand [2] propose a monocular,
registration-based, 3D camera tracking of the planar 3D
patches. The 3D planar patches are estimated from tracks.
Although the formulation of the tracking resembles our
method, there are several differences. The patch based
model is initialized at the beginning of the sequence (in
about 100 frames) by using a standard 2D patch based
tracker. Then the algorithm switches to tracking and re-
fine the model using 3D model-based tracking. Cobzas et
al. estimate camera pose, assuming a rigid scene. Unlike
our method which models illumination changes, Cobzas et
al. assume constant illumination and intensity of observed
points. Our method builds the model from the very begin-
ning of the sequence. Tracked objects change their position
and orientation w.r.t. to light sources. In this case, con-
stant pixel intensities cannot be assumed even for Lamber-
tian surfaces and our method reflects this.

2 3D tracking

An object O is modelled as a triplet (X, α, N) where
X is a set of 3D points, α : X → R assigns albedo and
N : X → S2 a normal to each point x ∈ X , where S2 is a
sphere. During tracking, intensity T (x) of point x in a given
frame is predicted from its albedo α(x) and an estimated
illumination as detailed in section 3.

Assuming rigidity, the motion of points x ∈ X between
two time instances t1 and t2 is

xt2 = Rxt1 + d,

where R represents rotation and d translation. When the
rotation is small [4] (e.g. between two consecutive video
frames), the motion equation simplifies to

xt = (I + D)xt−1 + d, (1)

where the rotation matrix R is replaced by an antisymmetric
matrix D and an identity matrix I. Matrix D is defined by

Figure 2. Model (template) T is projected by
projection function f and compared to the
current observation I.

three parameters u = [D1, D2, D3]T ;

D =

 0 D3 −D2

−D3 0 D1

D2 −D1 0

 .

Tracking in 3D is defined as the process of finding motion
parameters D,d minimizing the following image dissimilar-
ity ∑

x∈X

[
T

(
xt−1

)
− I

(
f
(
xt

))]2

, (2)

where I : R2 → R assigns intensity to each pixel, T :
X → R assigns intensity to each 3D point. The projection
function f : R3 → R2 maps 3D points to image coordi-
nates and depends on internal and external parameters of
the camera, see Appendix A for details.

Substituting from equation (1) for xt in the dissimilarity
function (2) and simplifying notation by setting xt−1 = x,
a cost function in six unknowns is obtained

J(u,d) =
∑ [

T (x)− I
(
f (x + Dx + d)

)]2

, (3)

where the sum is over all x ∈ X as in (2); starting from (3)
the summation range is omitted for brevity. We seek motion
parameters u and d that minimize dissimilarity J(u,d). At
the minimum, the partial derivatives with respect to all vari-
ables must be zero:

∂J(u,d)
∂d

= 0,
∂J(u,d)

∂u
= 0,

which yields the following two vector equationsX h
T (x)−I

`
f(x+Dx+d)

´i∂I
`
f(x + Dx + d)

´
∂d

= 0, (4)



X h
T (x)−I

`
f(x+Dx+d)

´i∂I
`
f(x + Dx + d)

´
∂u

= 0, (5)

There is no closed-form solution for (u,d). We there-
fore apply Newton-Raphson minimization, approximating
I
(
f(x + Dx + d)

)
by its first-order Taylor expansion

I
(
f(x + Dx + d)

)
≈ I

(
f(x)

)
+ gT (Dx + d), (6)

where
gT = I ′T

(
f(x)

)
f ′(x); (7)

I ′ : R2 → R2 is the gradient of image I and f ′ : R3 →
R2×3 is the Jacobian of the projection function f .

Differentiating the linear approximation (6) leads to

∂I
(
f(x + Dx + d)

)
∂d

≈ g, (8)

∂I
(
f(x + Dx + d)

)
∂u

≈ ∂gTDx
∂u

. (9)

Applying the approximations (8), (9), equations (4), (5) are
simplified toX ˆ

T (x)− I
`
f(x)

´
− gT

Dx− gT d
˜
g = 0 .(10)X ˆ

T (x)− I
`
f(x)

´
− gT

Dx− gT d
˜∂gT Dx

∂u
= 0,(11)

Simple algebraic manipulations confirms that the following
two identities hold

gTDx = (g × x)T u,

∂gTDx
∂u

= (g × x) ,

where × is the cross product. Equations (11) and (10) can
be compactly represented as a system of six linear equa-
tions A.

A

[
u
d

]
= b , (12)

where

A =
∑ [

(g × x)(g × x)T (g × x)gT

g(g × x)T ggT

]
, (13)

b =
∑ [

T (x)− I
(
f(x)

)] [
(g × x)

g

]
. (14)

Assuming regular A, the solution approximately minimizing
equation J(u,d) is [

u
d

]
= A−1b . (15)

The 6× 6 matrix A consists of four 3× 3 sub-matrices and
is block-wise symmetric. Unknown motion parameters d,

u are both 3 × 1 column vectors and b is a 6 × 1 column
vector.

At least six points are required for rank(A) = 6. In prac-
tice, many more points are visible. If the object is weakly
textured back-projected image derivatives g may get close
to zero and matrix A becomes nearly singular. Texture prop-
erties needed for reliable tracking of the object are discussed
in [14]. Unlike [14], we optimize over the whole object not
just over a small patch.

Newton-Raphson iterations are carried out until conver-
gence or a maximum number of steps N . Experiments
showed the process converged usually in 8 − 10 iterations.
Convergence may require more iterations when the motion
is fast, so N was set to 20.

The tracking method was derived for an intensity image
and single camera. Extension to RGB tracking is straight-
forward. The single sum in solution (13,14) is replaced by
summations over all visible points, cameras and all RGB
channels.

3 Compensation of Illumination

Intensity recorded during model acquisition depends, be-
sides the object shape and reflectance, on light sources. We
treat the intensity as albedo. As the object moves, the set
of light sources visible from a point and their photometric
angles change. When modeling these effects we assume:

• cast shadows can be ignored,

• the light sources are distant,

• no specular reflectance.

Under these assumptions, intensities of all points with iden-
tical normals will be scaled by a common matrix (for
grayscale images only scalar is considered). We adopted
a simple method for estimation of the matrix, which per-
formed well in experiments. The method clusters the points
X into n groups G1, . . . , Gn according to their normals and
compensates the illumination of i-th cluster in each opti-
mization step (15) by a color correction matrix

E∗i = arg min
Ei

∑
x∈Gi

‖EiI(f(x))− T (x)‖22. (16)

Let us denote

F (Ei) =
∑
x∈Gi

‖EiI(f(x))− T (x)‖22 =

∑
x∈Gi

IT (f(x))ET
i EiI(f(x))−2TT (x)EiI(f(x))+TT (x)T (x),



then minimization yields the following matrix equation

∂F (Ei)
∂Ei

=
∑
x∈Gi

−2T (x)IT (f(x))+2E∗i I(f(x))IT (f(x)) = 0

(17)
and the least square solution is

E∗i =

[ ∑
x∈Gi

I(f(x))IT (f(x))

]−1 ∑
x∈Gi

T (x)IT (f(x)).

(18)

4 Tracking-Modeling Algorithm

A minimal configuration able to build the model must in-
clude at least one stereo pair. For tracking, a single camera
is sufficient.

If no model is available from a previous tracking-
modeling session, the processing starts with a stereo-based
reconstruction [6] of the visible part of the object. Albedo
of each point is determined from the average of intensities at
its projections onto images used for 3D reconstruction. The
reconstructed points are clustered and replaced by points
on fish-scales [13]. Fish-scales are small oriented planar
patches obtained by local clustering of the cloud of points.
Small clusters of points are replaced by ellipses with half-
axes corresponding to the two main eigenvectors of their co-
variance matrix. The third eigenvector defines the surface
normal. Note that, computation of fish-scale representa-
tion is much simpler then a complete surface triangulation.
Still the fish-scales are experimentally shown to be suffi-
cient representation for 3D tracking. Knowledge of surface
orientation at each points allows:

• Efficient visibility calculations for convex objects.

• Compensation of illumination effects.

Once the partial model is known, it can be used for pose
estimation. If observed motion in the image indicates that a
part of the image moves consistently with points currently
in the model, stereo is invoked again and newly recon-
structed patches are merged into the model. The complete
algorithm is summarized in Figure 3.

Note, that the system never knows when the model is
completed, because another consistently moving rigid part
of the object can appear later. The system only detects that
no reconstruction is currently needed.

5 Experiments

The sequences were captured in an office. We used four
firewire cameras with resolution of 640 × 480 pixels con-
nected to Linux operated computers. The acquisition was

1. Capture images

2. If needed, invoke stereo reconstruction and merge
it to the model.

3. Estimate the pose of the object by iterating least
square solution (15).

4. Update matrices E1, . . . , En and for all i and each
x ∈ Gi recompute object intensity T (x) ←
EiT (x). goto 1.

Figure 3. Tracking-Modeling Algorithm

TCP/IP synchronized and the setup was calibrated. The to-
tal cost of the setup (without computers) is less than 500
dollars and calibration is easy since a free software for au-
tomatic (self)calibration exists [15].

Two different sequences were used. In the human se-
quence, a person makes a variety of motions. The individual
walks around, shakes and tilts his head. The camera setup
consists of two narrow-baseline cameras for stereo recon-
struction and two other cameras spanning approximately a
half-circle.

The book sequence poses slightly different challenges.
The book is a relatively thin object and in some poses the
dominant planes (front and back cover) are invisible. The
camera setup consists of three cameras located near each
other. Two of them are used for stereo, all of them are used
for tracking. The model of the book is incrementally con-
structed from a stereo pair and tracked in all cameras.

Objects are tracked successfully in both sequences and
their shapes are correctly reconstructed. We performed ex-
periments to assess the accuracy and robustness of multi-
view and monocular tracking. Section 5.1 shows that the
accuracy of multiview tracking is sufficient for incremen-
tal model construction without additional alignment. Sec-
tion 5.2 compares monocular and polynocular tracking. We
show that monocular tracking often estimates poses which
are incorrect but look correct in the tracking camera. Ro-
bustness is tested in section 5.3 on the book sequence where
the tracking survives even in frames where dominant planes
are absent. Experiments showing illumination compensa-
tion are described in section 5.4. Tracking speed is con-
sidered in section 5.5. Experiments in sections 5.4,5.5 are
conducted with illumination compensation.

In Figures 3-5, projections of visible points are depicted
in blue and invisible in yellow. Readers are encouraged to
zoom-in the Figures in the electronic version of the docu-
ment and watch the accompanying video sequences.



5.1 Interleaved Tracking and Model Con-
struction

The first experiment demonstrates the interleaved opera-
tion of tracking and model construction. The process starts
with a partial reconstruction in the first frame, see the left-
most column of Figure 4. The tracker is initialized using
this partial model. As the human is turning Fig.4(b), the
model, is augmented by adding further partial reconstruc-
tions Figs. 4(c,d). Once the 360 turn is finished, the model
is complete and further reconstruction are not required.

The 3D model is only a side product of the tracking. Its
visual appearance cannot match models created with spe-
cialized stereo algorithms or visual-hull based algorithms.

5.2 Monocular Model-Based 3D Tracking

In the case of monocular tracking, a 3D model and its ini-
tial position are considered to be known in advance (e.g. we
use the model from previous experiment). The head was
successfully tracked over 630 frames, despite the fact that
both 3D translation and out-of-plane rotation were present
in the sequence. Tracking results are shown in Figure 5.
In images from the tracking camera, the projected model
poses seem correct. However, since only a single camera
was used, the recovered 3D position is inaccurate, see row
2 in Figure 5. Naturally, the more cameras are used for the
optimization, the more accurate 3D pose becomes. Results
from the same sequence with the object tracked by all cam-
eras are depicted in the last row of Figure 5.

5.3 Robustness against Critical Poses

A thin object like the book used in the experiment may
easily appear in poses which are inherently challenging for a
tracking algorithm. If only the back is visible, the tracking
may get unstable. Even during multiview tracking it may
happen that most of the object is visible only in a single
camera. We call such poses critical.

In a critical pose, the book has to be tracked virtually
from the single view. The position of the model does not
correspond to the projection in the cameras where only a
small fraction of the book is observable. After the object
leaves critical pose, the model converges to the true posi-
tion, see Figure 6.

5.4 Compensation of Illuminance Effects

The model points are clustered in 14 equally distributed
clusters according to their normals. Each cluster is associ-
ated with illuminance constant Ei which changes during the
tracking to best fit the observed data.

a) Multiview tracking; blue are visible, yellow invisible
(occluded) projections

b) Corresponding poses and path recorded

c) Incremental construction of the model, as seen from top

d) Incremental construction of the model, an random view

Figure 4. Incremental model construction from
partial 3D reconstructions and registered by 3D
tracking. Rows 1-3: Different views with pro-
jected model. Row 4: Position and orienta-
tion in 3D space. Rows 5-6: incrementally
constructed 3D model. Columns correspond
to frames 1, 100 and 310.

Figure 8-left shows a view with a projected model. Gray
levels of particular fish-scales correspond to the values of
illuminance constants. Higher values corresponds to the re-
cently illuminated points and vice versa. One can see that
in this case light sources were located on the left side of the
object which corresponds to the reality.



Tracking camera, in monocular tracking, this is the only one used
for optimization. Results of monocular tracking projected

Monocular tracking results as projected to a camera which
approximately orthogonal to the tracking one.

Polynocular tracking. The same camera as above. Note the
essentially more consistent 3D pose.

Figure 5. Comparison of monocular (rows 1-2)
and polynocular (row 3) tracking. Monocular:
Row 1: view from the tracking camera, Row
2: observing camera (shows that, accuracy
in orthogonal direction is low). Polynocular:
Row 3: The same camera with the projected
model from multiview tracking.

The office has several light sources placed on opposite
walls and oriented to the irregularly arched ceiling. Cor-
responding changes of the illuminance constant E6 dur-
ing 360 turn are shown at Figure 8-right. Two significant
changes during the turn corresponding the light sources are
clearly visible. The function of illumination changes is not
smooth because during the turn, fish-scales visibility in par-
ticular cameras changes and in different times different sets
of fish-scales are used for the compensation of illuminan-
tion effects. Another reason is local inaccuracy of track-
ing caused by image discretization. Tracking trajectories
as well as illumination changes could be smoothed using a
motion model, but in our experiments only the output of the
optimization is used.

5.5 Speed Evaluation

The speed of the algorithm shown in Figure 3 was tested
on the sequence introduced in the first two experiments
(i.e. 4 cameras, RGB images). Slightly-optimized imple-

Figure 6. Book tracking: Rows 1-2: differ-
ent cameras with projected model, row 3:
shows position and orientation in 3D space,
columns correspond to frames 55, 205 and
265. The second column shows the book in a
critical position where dominant plane is vis-
ible only in one camera.

mentation in Matlab runs cca 1.8 s/frame on an AMD-64b
linux running machine. We experimentally show that the
tracking of the same sequences in graysacle is successful as
well as in RGB. Since one of the most important property
of the tracking is the framerate, we increase it 3 many times
by considering only grayscale model/sequence.

Tracking of grayscale sequence takes approximately
800 ms/frame. Typically, multiple cameras are connected
to different computers. Hence, all the contributions to the
A,b from equation (13,14) can be computed independently
on the particular computers. Using such a system, a frame
rate of 5 frames per second can be achieved with the current
Matlab implementation.

6 Conclusions

We proposed a fully automatic approach of multi-
view/monocular 3D object tracking interleaved with incre-
mental model construction. Neither model nor initialization
are needed to be known in advance. We formulated track-
ing as a gradient based method minimizing dissimilarity of
the observe image and projected 3D point intensities. We
showed that the fish-scale 3D model [13] is accurate enough
to support stable 3D tracking.

We experimentally demonstrated that the proposed in-
terleaved approach, successfully tracks a complete 360 turn
and a wide range of motion without a need for pre-prepared



Figure 7. Book Model: Different views of the
book model. Small non-planarity in one cor-
ner is the reconstructed hand.

Figure 8. Left: The image with projected
model. Colors correspond to the com-
puted illuminance Ei of each particular clus-
ter. Right: Values of E6 during the the 360
turn.

3D model. A 3D model is delivered as a side product.
We demonstrated the robustness of our method on a se-
quence with a thin object where the dominant plane was
often tracked only from one view.

We showed that monocular tracking is possible if the
model is available. The model projection to the tracking
camera often looks correct, projections to other cameras re-
veals 3D inaccuracies. Still, monocular tracking can pro-
vide results acceptable for some applications. Using more
cameras significantly increases stability and accuracy in
critical poses and moves. Exact 3D pose may be neces-
sary in many application ranging from virtual reality, human
computer interfaces to visual surveillance.
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Svoboda was supported by The Czech Ministry of Educa-
tion under project 1M0567. Jiřı́ Matas was supported by
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Appendix A

A 3D point x is projected to 2D image (pixel) coordi-
nates p as [

λp
λ

]
= P

[
x
1

]
,

where P is 3 × 4 camera matrix [4] and λ ∈ R. Let the
camera matrix be parameterized as

P =

 mT
1 t1

mT
2 t2

mT
3 t3

 (19)

the function f : R3 → R2 projecting 3D point to the cam-
era coordinates is

f(x) =

 mT
1 x+t1

mT
3 x+t3

mT
2 x+t2

mT
3 x+t3

 . (20)

Differentiating f with respect to x we obtain f ′ : R3 →
R2×3 Jacobian matrix function, which consists of elements

f ′pq =
mpq(mT

3 x + t3)−m3q(mT
1 x + tp)

(mT
3 x + t3)2

(21)

where mpq, p = 1 . . . 2, q = 1 . . . 3 is q-th elements of mT
p .
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