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Abstract: 
This deliverable presents work in design and calibration of omnidirectional sensors 

developed for the DIRAC project for visual data acquisition. Several sensor designs 

are presented with both off- and on-line calibration methods. On-line calibration 

method is studied also as a minimal problem using only 8 correspondences for 

simultaneous estimation of epipolar geometry and radial distortion. Feature 

detection in omnidirectional images is tackled and a global and local approach to 

image processing is presented for omnidirectional images. Summary of experimental 

datasets captured during the first year of DIRAC is given at the end of this 

deliverable. 
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1 Introduction 

This deliverable summarizes work on omnidirectional sensor design and calibration and 

features for tracking and 3D reconstruction from omnidirectional images. We advocate 

omnidirectional sensors as visual sensors for the DIRAC demonstrator since they provide 

images covering at least hemi-spherical field of view. Such a large field of view is crucial for 

a system which should react on environment and detect rare events and cannot be provided by 

conventional cameras. Omnidirectional cameras can be both dioptric (fish eye lenses) and 

catadioptric (employing mirrors). We use fish eye lenses for the DIRAC project, therefore the 

words omnidirectional and fish eye will be synonyms in this text.  

 

The aim of this text is to provide only basic technical details on the selected topics. Technical 

reports with more thorough descriptions of selected problems are attached to this deliverable 

(Bakstein et al. 2006, Kukelova and Pajdla 2006, Torii and Pajdla 2006). The structure of this 

deliverable is as follows. Section 2 presents a brief overview of omnidirectional sensors 

developed for visual data acquisition for the DIRAC project. Calibration methods of these 

sensors are discussed in Section 3. Minimal problem formulation of estimation of epipolar 

geometry simultaneously with the radial distortion is presented in Section 4. Global and local 

approaches to feature extraction from omnidirectional images are described in Section 5. 

Finally, Section 6 contains a list of all datasets captured during the first year of the DIRAC 

project. 

2 Omnidirectional Sensor Design and their Calibration 

We have tested several omnidirectional sensors with the aim to design a prototype for the first 

DIRAC demonstrator. We have used these sensors to capture datasets presented in 

Experimental Data Sets 6. Detailed description of the sensors can be found in the attached 

technical report (Bakstein et al. 2006). Here we present a summary in Table 1. It can be seen 

that there is a trade-off between the resolution and the frame rate. It has to be decided, 

whether a lower resolution is suitable for the scene classification task. Also the sensor should 

be as small as possible while providing images of good quality. Currently, there are two main 

setups in use, see Figure 1. The first one is a pair of Kyocera cameras with a high resolution 

and very good image quality, but at a slow frame rate and at the cost of a heavy and bulky 

setup. The second one is a small lightweight setup of two Fire-I cameras, which gives small 

resolution images at a high frame rate. In the future, we will focus on testing of a pair of 

Marlin cameras which give a good compromise on image quality and frame rate in a small 

and light setup.  

Table 1 A summary of omnidirectional sensors. 

Camera Lens FOV Resolution Frames/s. 

Kyocera M410R Nikon FC-E9 183° 4Mpix 3 

Pixelink Door peep hole 170° 1.5Mpix 5 

Pixelink Sunex DSL125 185° 0.6Mpix 5 

Fire-I Sunex DSL125 130°(hor.

) 

0.3Mpix 30 

AVT Marlin Sunex DSL125 185° 1Mpix 7.5 
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Figure 1: A synchronized stereo pair of two Kyocera cameras (left). A compact stereo pair of two Fire-

I cameras (right). 

3 Calibration of Omnidirectional Sensors for Partners 

We have implemented two different omnidirectional camera calibration techniques. Again, 

we refer the reader to the attached technical report (Bakstein et al. 2006) for details, here we 

briefly discuss the methods and their contribution for the DIRAC project. 

 

The first one is an offline calibration (Bakstein 2006) from a known calibration target. This is 

used to determine the model for an unknown lens or mirror, where we make use of the known 

geometry of the target, seeFigure 2. For the partners this means that they have to send the 

lens or mirror to CTU to calibrate it using our 3D calibration object. Once the model is 

determined, any addition calibrations (for example when mounting the lens on a different 

camera) can be performed using the autocalibration approach. 

 

 

Figure 2: Offline calibration using a known calibration target. 
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In case the projection model is known, either provided by the manufacturer or from offline 

calibration, the model parameters can be estimated in an autocalibration procedure (Micusik 

and Pajdla 2006). This estimation is based on features detected in the images and does not 

require any calibration target. The whole procedure starts with feature detection in images 

from the sequence, see Figure 3. Then, epipolar geometry is estimated together with the 

model parameters from tentative correspondences of the detected features in a RANSAC loop 

to get consistent matches. The epipolar geometry is computed from the consistent matches 

and encodes camera position for consecutive image pairs in the sequence and the whole 

camera trajectory and pose can be recovered, see Figure 4. Therefore, the partners have to 

send only the sequence to CTU or run our software themselves. CTU also cooperates with 

KUL on implementation of this autocalibration in the KUL 3D reconstruction module, as it is 

described in Deliverable 3.1. 

 

Figure 3: Features matched using MSER and APTS (Mikolajczyk and Schmid 2002) features in a 

fisheye stereo image pair. 

 

 

Figure 4: Autocalibration from an image sequence with an inwards looking omnidirectional camera 

rotating off-center on a circular path. The recovered camera trajectory on the left and estimated camera 

poses on the right. 

 

4 Minimal Problem Formulation for Radial Distortion 

Autocalibration 

The autocalibration method presented above used nine correspondences for epipolar geometry 

estimation in the RANSAC loop. However, this is not the smallest number of 

correspondences for this task, since the method did not make use of the fact, that the 

fundamental matrix does not have a full rank and therefore the minimal problem for epipolar 
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geometry estimation with radial distortion is to use eight correspondences and the condition 

that determinant of the fundamental is zero. Smaller number of correspondences significantly 

reduces the number of samples to be drawn in the RANSAC loop which brings a considerable 

speed up of the autocalibration procedure. 

 

Unfortunately, the zero determinant condition for the fundamental matrix with radial 

distortion leads to a non-trivial system of algebraic equations. Our approach, described in 

detail in (Kukelova and Pajdla 2006), follows the techniques using a Gröbner basis to solve 

the system of algebraic equations, but instead of computing a full Gröbner basis we compute 

only the action matrix. From its eigenvectors, the fundamental matrix is computed. To 

compute the action matrix, the original algebraic equations arising from the zero determinant 

condition and from the epipolar constraint are transformed into a linear set of equations by 

treating each monomial as an unknown in the new linear set of equations. From this 

undetermined set of equations, we get a basis of its null space expressed as a set of 

polynomial equations, which is simpler than the original set and we compose the action 

matrix by algebraic manipulation of generators of this set. 

 

The algebraic manipulations described above are performed off-line in advance due to the 

fact, that in the problem of estimation of fundamental matrices, the combination of 

monomials is the same regardless on the image measurements, for non-degenerate 

configurations. As a result, the action matrix is composed offline and concrete values are 

filled in the estimation process, the rest of the computation is efficient and can be inserted into 

a RANSAC loop. Figure 5 illustrates output of the method from (Kukelova and Pajdla 2006) 

on real data. 

Figure 5: Left: fish eye image with significant radial distortion. Right: corrected image. Images from 

(Kukelova and Pajdla 2006). 

5  Features for Omnidirectional Images 

We tested different feature detectors directly on omnidirectional images, namely MSER 

(Perdoch 2004) and APTS (Mikolajczyk and Schmid 2002). It turns out that some scene parts, 

such as buildings, are better detected by MSER detectors and other parts, such as trees, by the 

APTS detectors, see Figure 6. 
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Figure 6: Different feature features should be used for different depending on the character the scene. 

Since the APTS take significantly more time to compute and the features are almost 

complementary, we should be able to select the feature detector based on the scene contents 

and to run all possible feature  detectors on the whole image. This will be one of the topics of 

our work in cooperation with KUL in the next year of the project. 

 

Omnidirectional images exhibit significant distortion which varies over the field of view, see 

the top row of circles in Figure 7. As the viewing direction moves towards the edge of the 

field of view, the circles become more distorted. This makes the feature matching task 

difficult. For example, MSER features are created from regions, to which an ellipse is fitted, 

transformed into circle and then a polar sample of this circular region is used to create the 

region descriptor. Similarity or affine transforms can be use dto map the ellipe into the circle, 

both do not compensate for the distortion of the omnidirectional image.Some regions have an 

elliptical shape themselves, but the distortion of omnidirectional regions makes even circular 

regions strongly elliptical and therefore their descriptors for a position in the centre and at the 

edge of the field of view differ.  

 

There are two different approaches to tackle this problem. The first one uses global image 

remapping so that the new image follows a model which does not exhibit distortion dependent 

on viewing direction. This is illustrated in the bottom row of Figure 7, where the original 

image was remapped to follow a stereographic projection which is a conformal mapping so 

that the circles remain circles over the complete field of view. The other approach is a local 

remapping of image patches to a perspective image with a limited field of view; note that the 

whole omnidirectional image cannot be mapped to a perspective image. 

 

Figure 7: Top row: As a circular target moves over the field of view in an image acquired by a fish eye 

lens, the circle get distorted. Bottom row: In an image remapped using a stereographic mapping, the 

circular shape is preserved. 
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5.1 Global Image Rectification 

Global image remapping first lifts the image points to a sphere and then reprojects them to the 

image plane by a stereographic projection, see Figure 8. For the lifting to a sphere, the model 

of the fish eye projection has to be known. There are several models for fish eye lenses, see 

the attached technical report (Bakstein et al. 2006) for details. We used an equidistant 

projection in our experiments. More details on the lifting of points to the sphere  can be found 

in (Torii and Pajdla 2006). 

 

Figure 8: Left: fish eye image is first mapped to a sphere and then stereographic projection is used to 

create a conformal image. Right: An image from the experiment illustrated in Figure 7. Image from 

(Torii and Pajdla 2006). 

 

The effect of the proposed method on feature descriptions can be seen in Figure 9. The top 

row shows images at the centre and edge of the field of view for both original and 

stereographic image. For matching, a circular region around the features is converted into a 

polar patch using similarity resp. affine transform; the polar patches are shown in the bottom 

row. It can be seen that the polar patch after the similarity transform contains also pixels from 

the surrounding of the region and that number of these pixels is smaller for the stereographic 

image.  

 

Figure 9: Selected distinguished region for a fish eye image (Original) and the fish eye image 

transformed a stereographic image captured at the center (a,e,i,m) and at the edge (b,f,j,n) of the field 

of view. Similarity (left) and affine (right) transform was used to relate the region descriptors. 

Stereographic image gives a small visual improvement over the original image for both transforms. 

Image from (Torii and Pajdla 2006). 
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The improvement in similarity of the patches for the affine transform is clearer from 

comparison of the values of affine coefficients l1 and l2 of all descriptors shown in Figure 10 

and Figure 11 respectively. The figures show affine coefficients for all detected distinguished 

regions (used to compute the MSERs) and for tentative regions, which are selected as match 

candidates. The ratio of the affine coefficients of the tentative regions is closer to 1 for the 

stereographic image, which gives better results in matching. 

 

 

Figure 10: l1 and l2 of all distinguished regions and tentative correspondences detected in a fish eye 

image. 

 

Figure 11: l1 and l2 of all distinguished regions and tentative correspondences detected in a 

stereographic image.  
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5.2 Local Perspective Mapping 

5.2.1 Perspective Patches for Scene Classification 

 

For classification of the type of object in the scene, image patches are compared with learned 

samples in a database. For omnidirectional images, the patches are obtained as small 

perspective cut-outs from the omnidirectional image. The centres of these cut-outs were 

obtained by a sphere tessellation with icosahedron as a starting surface as midpoints of the 

triangles approximating the sphere. The number of subdivisions of triangular sides on the 

icosahedron determines the number of patches and should be in correspondence with the 

image resolution and patch size. For example, in the case of DIRAC -CMPdata-05 dataset, the 

input images have resolution of 750 ´562 pixels and the optimal patch size for subdivision 

level 4 is 13 pixels, resulting in 624 patches. We used 16 x 16 pixel patches for convenience. 

 

The next level in the Gaussian pyramid is created by filtering the input image by a 13 ´13 

Gaussian filter with s=1.5 and scaling down to 369 ´276 image. The scaling factor is a ratio of 

angles between centres (respective their representations as using vectors on a sphere) of the 

two neighbouring patches for tessellation of the sphere with subdivision level 4 (for the input 

image) and 3, for the filtered image.  

 

The last level in the Gaussian pyramid is created with the same filtering and scaling computed 

again as a ratio of angles between the centres of two neighbouring patches. The resulting 

down scaled image has size 174 ´ 130 pixels and the subdivision level for the tessellation is 2. 

All patches extracted from the pyramid are shown in Figure 12. 

 

 
 

 
 

 

Figure 12: Image patches for different levels of the image pyramids. 
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It should be noted that fisheye images can be mapped to a sphere, not to a plane. Therefore, 

the patches are computed using spherical coordinates, with azimuth corresponding to an angle 

in the fisheye image and elevation maximal p/2 in the centre of this image, zero at the edges. 

The patches do not have the same orientation; they are transformed so that azimuth 

corresponds to the rows and elevation to the columns. This means that the objects in the 

patches are rotated, depending on their position in the field of view.  

5.2.2 Perspective Patches for Feature Matching 

 

The same idea, to generate local perspective patches for some viewing direction, can be used 

for feature matching in epipolar geometry estimation. As it was mentioned before at the 

beginning of this section, omnidirectional images are generally not conformal and object 

shapes vary significantly over the field of view. In feature matching, the algorithms assume 

that the features are related by affine transform, which does not adequately model the 

variance in shapes in omnidirectional images. Our approach to this problem was to modify 

our wide-baseline matching code so that the feature descriptions are generated from small 

perspective cut-outs instead of from patches from the original omnidirectional image.  

 

The correspondence between different the levels in the pyramid is as follows. At the lowest 

level, the first patch corresponds to the first 4 patches at the higher level. First from these 4 

patches corresponds to first 4 patches at the top level. The second one to the next 4 and so on. 

This follows from the tessellation, where each triangle of the initial shape, the icosahedron, is 

subdivided into four triangles. This subdivision is then repeated recursively. 

 

6 Experimental Data Sets 

 

Table 2 summarizes all datasets acquired during the first year of the project. We begun with 

tests of different acquisition hardware, produced data for experiments with various features 

for scene classification, and last but not least, we captured first dataset with video and audio, 

in cooperation with the Oldenburg group. All experimental data sets are published on our 

DIRAC project page: http://cmp.felk.cvut.cz/projects/dirac/. 

 

Table 2 Summary of datasets acquired by CTU during the first year of the DIRAC project. 

DIRAC -CMPData-01 Walking Omni-Camera, Kyocera Camera + Nikon Lens, video and 

audio, not synchronized 

DIRAC -CMPData-02 Walking Omni-Camera, Kyocera Camera + Nikon Lens, every 10-

th frame from the sequence 

DIRAC -CMPData-03 Walking Omni-Camera, Kyocera Camera + Nikon Lens, Images 

(jpg) and regions saved in Matlab matrices. 

DIRAC -CMPData-04 Walking Stereo Omni-Camera, 2 x Kyocera Camera + Nikon Lens, 

Images (jpg) and regions saved in Matlab matrices for both 

cameras. 

DIRAC -CMPData-05 Image patches from images in the DIRAC -CMPdata-03 dataset. 

DIRAC -CMPData-06 Image from the test of the Marlin camera in CMP. 

DIRAC -CMPData-07 First dataset with video and audio, acquired in Leuven during the 

DIRAC workshop. 
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6.1 First data set with audio and video data 

 

We captured one data set which contains both audio and video. Audio stream was recorded by 

the Oldenburg team using dummy hearing aids. Video data was recorded using a pair of Fire-I 

cameras set to 15 frames/sec. A timestamp was assigned to each image, which allows to 

detect dropped frames. A crude synchronization of audio and video streams by hand clapping 

was used in the experiment. We plan to detect visual features in the images while IDIAP team 

will detect audio features in the short pieces of audio data centred at the time of the respective 

image, determined from the timestamps. Thus, for a known time, there will be a combined 

audio and visual descriptor which we plan to use for rare even detection in the future work. 

7 Conclusion 

We have designed and tested various sensors for the DIRAC project and captured several 

datasets for our partners. We have also done research in the field of feature detection in 

omnidirectional images, with both global and local approaches. Calibration of the 

omnidirectional cameras became a natural part of our work since it is a key to handling 

images from such cameras. We may conclude that the goals for the first year were reached.  
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Omnidirectional sensors and their calibration for

the Dirac project

Hynek Bakstein Michal Havlena Petr Pohl
Tomáš Pajdla

1 Introduction

This report describes various omnidirectional sensor designs developed for
the Dirac project. The aim is to create a light weight omnidirectional setup
with a stero pair of cameras. Calibration procedure for omnidirectional
cameras is presented both as offline calibration from a known 3D target and
autocalibration from image sequences. The report is structured as follows.
Section 2 discusses the sensor design and parameters. Section 3 presents
models of omnidirectional sensors and calibration approaches, from simple
approximation to complex model.

2 Omnidirectional sensors

Omnidirectional sensors capture a wide field of in a single image and provide
peripheral view. Peripheral view is essential for a system which should
react to changing environment. In the following, we present omnidirectional
sensors designed for the Dirac project.

2.1 Omni-stereo rig

We designed an omnidirectional stereo camera rig consisting of two consumer
digital cameras — Kyocera M410R equipped with a Nikon FC-E9 fisheye
adapter. These cameras can capture 4Mpix images at a frame rate of 3
frames per second and the fisheye adapter provides 183◦ field of view. Our
colleague Pavel Krsek has built a remote control box, shown in Figure 1
bottom, which allows to release both shutters at the same time and also
to lock exposures of both cameras at once or separately for each cameras.
The remote control is connected to the cameras by wires soldered directly
to the camera shutters. A schematic digram of the remote control is shown
in Figure 2.
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Figure 1: Omnidirectional stereo rig.

2.2 Compact omnidirectional camera

Our aim is to design a compact light weight system with an omnidirec-
tional optics and a 1Mpix resolution camera with a frame rate at least 15
frames/second in case of a single camera and 7.5 frames/second for a stereo
pair. At first, we presented a design employing a door peep hole and a Pix-
elink camera, shown in Figure 3(a). Door peep hole is compact enough but
does not have good optical properties.

Next, we have selected an appropriate lens, the Sunex DSL125 fisheye
lens with a 180◦ field of view [3]. This lens is suitable for a megapixel camera
with a 1/2” sensor size and provides good image quality. Its main drawback
is that it has to be mounted very close to the imager, 4.31 mm. Since the
lens is very compact, a C-mount adapter has to be used and because of
the small distance between the exit pupil of the lens and the images, the
C-mount thread on the camera has to be shortened.

With a compact lens, a compact camera should be used too. We have
two options, one is a cheap Fire-I camera [1], shown in Figure 3(b), which
can be directly fitted with the Sunex lens. It has a good frame rate but low
resolution and image quality. The other option is an AVT Marlin camera [7],
with a good resolution and image quality, which has a C-mount thread and
has to be adapted to accommodate the Sunex lens. We will discuss both
cameras later in this report.
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Figure 2: Diagram of the remote control for two Kyocera cameras.

2.3 Synchronization of the camera pair

An important issue is the synchronization of the two cameras in the stereo
pair. For the two Kyocera cameras, there is a synchronized shutter release
implemented in the remote control but this assures only that the two cameras
start recording at the same time. For the rest of the sequence we have to rely
on a constant frame rate. We made experiments with a counter and found
this synchronization satisfactory. Eventual dropped frames can be detected
from the trajectory estimation run for each camera separately, since the
frame rate is slow and the cameras move significantly between the frames.

Different situation is with the Fire-I cameras which do not have any
hardware shutter control. We have to rely on their high frame rate and on
the time stamps assigned to each frame by our capturing application once it
is captured. The camera are capable of 30 frames per second, which means
that the worst case difference between two frames is 33 milliseconds. This
should be sufficient for our purpose.

A solution to the synchronization problem is to use an external trigger
for the cameras. The Marlin camera, which we plan to use in the future
experiments, supports external triggering.

2.4 Summary of the sensor designs

Table 1 summarizes the camera/lens setups we designed and tested.
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(a) (b)

Figure 3: (a) A small omnidirectional camera from a door peep hole. (b)
Sunex DSL125 fisheye lens on a Fire-i camera.

Camera Lens FOV Resolution Frames/s.
Kyocera M410R Nikon FC-E9 183◦ 4Mpix 3
Pixelink Door peep hole 170◦ 1.5Mpix 5
Pixelink Sunex DSL125 185◦ 0.6Mpix 5
Fire-I Sunex DSL125 130◦ (hor.) 0.3Mpix 30
AVT Marlin Sunex DSL125 185◦ 1Mpix 7.5

Table 1: A summary of omnidirectional sensors.

2.5 Sensor specifications for the first Dirac demonstrator

We have tested the following system and we propose it as the first design
for the Dirac demonstrator:

• Fire-i Color Board Camera (with RAW),

• Sunex DSL 125, and

• Firewire card - Kouwell L1582V (no power connector) or Kouwell
7002V (with power connector and USB 2.0).

A stereo pair of the Fire-I cameras is capable of capturing images at a frame
rate up to 15 frames/second (each) and is depicted in Figure 4.

We have also made preliminary tests with AVT Marlin F-146C camera
provided by KUL. We succeeded in connecting the Marlin camera to our

4



Figure 4: A stereo rig of two Fire-I cameras with the Sunex DSL125 fisheye
lenses.

image acquisition software and to capture testing dataset. What has to be
done is a synchronization and modification of the lens mount to accommo-
date the Sunex DSL125 lens, the tests were performed with Nikon FC-E8
(predecessor to FC-E9 used on the Kyocera cameras) fish eye adapter. How-
ever, the Marlin camera provides images with higher resolution and better
quality than the Fire-I camera and we plan to use it in the final design of
the Dirac demonstrator.

3 Omnidirectional camera calibration

Fish eye images exhibit significant radial distortion. Moreover, when the
field of view approaches to 180◦, perspective projection cannot be used to
model the fish eye image since it involves tangent of the angle between the
light ray and the optical axis, as it is depicted in Figure 5(a). From the
figure also follows that we assume the projection function to be radially
symmetric, that is to map light rays with a constant angle θ into circle with
a radius r, as illustrated in Figure 5(b).
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(a) (b)

Figure 5: (a) Fisheye projection is parameterized by angles θ between light
rays p and the optical axis. (b) Projection models then map the angle θ to
image radius r.

3.1 Approximation by equidistant projection

Figure 6: RANSAC-based circle fitting used for estimation of the maximal
radius of the fisheye image.

The first approach to handling a fish eye image is to use a simple equidis-
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tant projection model, which can be written as

r = aθ , (1)

where a is the only model parameter. This model maps constant increments
in the angle θ to constant increments of image radius r. This model can be
easily initialized if the field of view of the lens θmax and the maximal radius
in the image rmax is known. The first value is usually provided by the
manufacturer of the lens and the second has to be measured in the image.
We usually work with circular fish eye lenses where a circle corresponding to
θmax is visible. Due to its uneven boundary, vignetting effects, and parasitic
light, some robust circle fitting approach has to be used to get rmax. We
use a RANSAC based method on a thresholded image, see Figure 6.

3.2 Model determination using an off-line calibration target

Figure 7: Offline calibration using a known calibration target.

Different models are used for the fish eye lens designs to suit a particu-
lar task. The sensor calibration therefore begins with selection of a model
which approximates the best the lens. It can be either provided by the
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manufacturer or estimated using our calibration target, shown in Figure 7.
The choice of a model does not only depend on the lens, but also the task
and precision required. For a RANSAC based outlier rejection a simple
one parametric model, such as equidistant projection, described above, is
sufficient.

When higher precision is needed, we can use a model with more param-
eters, such as equi-solid angle projection

r = a sin
θ

b

or stereographic projection

r = a tan
θ

b

or a polynomial approximation of the unknown true function [2]. These
models have a big disadvantage that they do not have a direct inverse func-
tion, a lookup table has to be used. Therefore, we use the following model
for autocalibration, described in depth in [5] and briefly in the next sec-
tion. A projection of a scene point into the image is given by the following
equation.

r =
a−

√
a2 − 4θ2b

2bθ
(2)

The projection equation has an inverse, the reprojection equation, describing
the relation between the image point and the light ray.

θ =
ar

1 + br2
(3)

We have implemented Matlab functions of the above projection and re-
projection equations for our partners, available at our Dirac pages. The
functions allow to measure angle between light rays defined by two image
points and to create a perspective cut-out from a part of the fish eye image,
as it is depicted in Figure 8.

3.3 Autocalibration from images

The division model has another advantage, besides the direct inverse func-
tion. It can be included into a formulation of the epipolar constraint so
that the fundamental matrix describes not only the mutual position of two
cameras but also the radial distortion.

Epipolar geometry defines a relation between two corresponding image
points x and x′ as the familiar epipolar constraint, where F is the funda-
mental matrix.

xFx′ = 0

Moreover, each point defines a so called epipolar line, which is a projection
of the light rays respective to the point into the second image. The above
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(a) (b)

Figure 8: (a) An image acquired with a Sunex DSL125 lens. (b) A perspec-
tive cut-out from the fisheye image (a).

Figure 9: Matched points in a pair of fisheye images satisfying the epipolar
constraint. Yellow lines are magnified distances from the epipolar curves.

formulation was written for perspective cameras but holds also for calibrated
fish eye lenses (F then becomes the essential matrix E), but the epipolar
lines become curves [6]. However, we can still evalute distance between the
points and the epipolar curves, as it is dpicted in Figure 9.

A concept of fundamental matrix exists also for fish eye lenses, where it
accommodates also the distortion parameters. In [6], it is shown that the
epipolar constraint leads to a Polynomial Eigenvalue Problem (PEP),

(D1 + aD2 + d2D3 + a3D4 + d4D5)f = 0 ,

where Di is composed from image coordinates of detected points, a is a
model parameter and f contains elements of the fundamental matrix F.
PEP can be efficiently solved, in Matlab it is implemented in a function
polyeig.

The equation 2 is a formulation of a two-parametric model. In the same
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manner as mentioned above with the equidistant projection, a simpler one-
parametric formulation of the division model can be used for fast outlier re-
jection in the RANSAC loop. The advantage is that for the one-parametric
model 9 correspondences are required for a direct estimation using the PEP
formulation while the two-parametric model has to be estimated using 15
correspondences [6]. Moreover, the two-parametric model cannot be directly
transformed into a PEP formulation, it has to be at first linearized [6]. This
linearization is based on partial derivatives of the model function at appro-
priate values of the model parameters. Equivalently to the approximation
by the equidistant projection, the maximal image radius rmax is used to
initialize the first parameter and the second is put equal to zero [6].

We have implemented both algorithms, for the 9-point and for the 15-
point formulation. To further speed up the RANSAC estimation, even
smaller number of correspondences can be used, since the 9-point algorithm
ignores the fact that the fundamental matrix is singular and a zero determi-
nant condition can be used to reduce the number of correspondences to eight,
which represent a minimal problem formulation for simultaneous estimation
of epipolar geometry and radial distortion [4].

3.4 Model refinement

The linearization of the two-parametric model uses some values at which
partial derivatives of the model function are computed. This choice affects
the precision of the model estimation. The best results were obtained by
local optimization of the two-parametric model using an output from offline
calibration as the initial estimate. Results from the off-line optimization
on using the calibration target are also not precise due to imprecision of
the target assembly, but their values provide a good start for the autocal-
ibration. Figure 10 shows the difference between models estimated off-line
and after refinement. Visual illustration of this difference is depicted in Fig-
ures 11 and 12 which show a fish eye image mapped onto a cube, with the
sides of the cube being perspective images.

4 Conclusion

We have summarized omnidirectional sensors developed for the Dirac project.
W focused on creating a light weight setup with a pair of cameras equipped
with a fish eye lens and achieving a frame rate of 15 frames/second. We
developed two functional prototypes, the first one with a high resolution
and the second one meeting the requirements, but with a low resolution.
Our future work will focus on a final setup for the first Dirac demonstrator
which will use the Marlin cameras, with sufficient resolution.

We also discussed the calibration procedures for fish eye lenses, starting
with a simple approximation by an equidistant projection, ending with an

10



Figure 10: Difference between model parameters estimated in the offline
calibration procedure and locally optimized parameters from a real sequence.

autocalibration procedure which uses off-line computed parameters as an
initial value. Function for manipulation with fish eye images have been
implemented and made available for the partners in the project.
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Abstract

Epipolar geometry and relative camera pose computation are examples
of tasks which can be formulated as minimal problems, i.e. they can be
solved from a minimal number of image points. Finding the solution leads to
solving systems of algebraic equations. Often, these systems are not trivial
and therefore special algorithms have to be designed to achieve numerical
robustness and computational efficiency. In this work we suggest improve-
ments of current techniques for solving systems of polynomial equations
suitable for some vision problems. We introduce two tricks. The first trick
helps to reduce the number of variables and degrees of the equations. The
second trick can be used to replace computationally complex construction of
Gröbner basis by a simpler procedure. We demonstrate benefits of our tech-
nique by providing a solution to the problem of estimating radial distortion
and epipolar geometry from eight correspondences in two images. Unlike
previous algorithms, which were able to solve the problem from nine corre-
spondences only, we enforce the determinant of the fundamental matrix be
zero. This leads to a system of eight quadratic and one cubic equation. We
provide an efficient and robust solver of this problem. The quality of the
solver is demonstrated on synthetic and real data.

1 Introduction
Estimating camera models from image matches in an important problem. It is one
of the oldest computer vision problems and even though much has already been
solved some questions remain still open. For instance, a number of techniques for
modeling and estimating projection models of wide angle lenses [6, 18, 10, 28, 29]
appeared recently. Often in this case, the projection is modeled as the perspective
projection followed by radial “distortion” in the image plane.
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Figure 1: (Left) Pair of images with radial distortion. (Right) Corrected images.

Methods for estimating distortion parameters may be divided into three groups
(1) the plumbline methods, (2) the 3D-2D point correspondences methods and (3)
the 2D-2D point correspondences methods.

The plumbline methods estimate radial distortion parameters using only one
input image. They are based on the fact that the straight lines in the world are
distorted into curves in the image. Therefore, they require a presence of straight
lines in the scene which must be identified in the image [1, 4, 13, 27].

The second group of methods estimates radial distortion parameters using cor-
respondences between points in the scene with known 3D coordinates and their
2D projections in the image [32, 30]. They again need only one image, however
their disadvantage is that they need to use a known 3D calibration object.

The third group of methods are methods which use image point correspon-
dences. These method need to have two or more views of the scene. Their big
advantage is that no scene structure has to be known a priori. Some of these meth-
ods form the problem of estimating radial distortion parameters as a minimization
problem [21, 31] and use some iterative nonlinear optimization algorithms, e.g.
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Levenberg-Marquardt, to solve it. These methods have classical problems of iter-
ative nonlinear optimization algorithms.

The particularly interesting formulation, based on the division model [6], has
been introduced by Fitzgibbon. His formulation leads to solving a system of al-
gebraic equations. It is especially nice because the algebraic constraints of the
epipolar geometry, det(F) = 0 for an uncalibrated and 2 E E>E− trace(E E>)E = 0
for a calibrated situation [11], can be “naturally” added to the constraints arising
from correspondences to reduce the number of points needed for estimating the
distortion and the fundamental matrix. A smaller number of points considerably
reduces the number of samples in RANSAC [5, 11]. This is the good news. The
bad news is that the resulting systems of polynomial equations are more diffi-
cult than, e.g., the systems arising from similar problems for estimating epipolar
geometry of perspective cameras [24, 23].

In this work we will solve the problem arising from taking det(F) = 0 con-
straint into account.

Fitzgibbon [6] did not use the algebraic constraints on the fundamental matrix.
In fact, he did not explicitly pose his problem as finding a solution to a system of
algebraic equations. Thanks to neglecting the constraints, he worked with a very
special system of algebraic equations which can be solved numerically by using
a quadratic eigenvalue solver. In this way he simultaneously estimate a multiple
view geometry and radial distortion from nine point correspondences.

Micusik and Pajdla [18] also neglected the constraints when formulating the
estimation of paracatadioptric camera model from image matches as a quartic
eigenvalue problem. The work [20] extended Fitzgibbon’s method for any num-
ber of views and any number of point correspondences using generalized quadratic
eigenvalue problem for rectangular matrices, again without explicitly solving al-
gebraic equations.

Li and Hartley [15] treated the original Fitzgibbon’s problem as a system of
algebraic equations and used the hidden variable technique [2] to solve them. This
technique allows to use different algebraic distortion models with different num-
ber of parameters. Authors of this work mentioned the possibility of using the
singularity of the fundamental matrix as a algebraic constraint which allows to es-
timate two distortion parameters from minimum nine point correspondences but
they didn’t practically use this constraint. Using this constraint makes the prob-
lem much harder because the degree of equations involved significantly increases.
Therefore, for estimating more then one parameter they collect groups of nine
point correspondences to obtain sufficient number of equations just from epipo-
lar constraints. This leads to problems of solving systems of more polynomial
equations of higher degree. Thus, this algorithm is suitable for computing only
few parameters like one-parameter division model. The resulting technique [15]
for one-parameter division model solves exactly the same problem as [6] but in
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a different way. Our experiments have shown that the quality of the result was
comparable but the technique [15] was considerably slower than the original tech-
nique [6].

The division model has also been used by [29]. They have proposed a linear
approach that can estimate any number of radial distortion parameters of the di-
vision model by estimating the radial trifocal tensor using seven correspondences
across three views. However, this method works only for a camera observing a
plane or undergoing a pure rotation.

Claus and Fitzgibbon [7] introduced a new rational function model for radial
lens distortion in wide-angle and catadioptric lenses and have proposed a method
for estimating distortion parameters of this model from point correspondences.

In our work we formulate the problem of estimating the radial distortion from
image matches as a system of algebraic equations and by using the constraint
det(F) = 0 we get a minimal solution to the autocalibration of radial distortion
from eight correspondences in two views.

Our work adds a new minimal problem solution to the family of previously
developed minimal problems, e.g. the perspective three point problem [5, 9], the
five point relative pose problem [19, 23, 16], the six point focal length prob-
lem [24, 14], and six point generalized camera problem [25].

These problems often lead to a nontrivial systems of algebraic equation. For
solving such nontrivial systems there doesn’t exist one general robust and compu-
tationally efficient method. Therefore in recent years various algorithms based on
algebraic geometry concepts have been proposed. Most of these algorithms are
based on two important algebraic concepts: Gröbner basis and resultants. There
exist many papers and books which deal with algebraic methods for solving sys-
tems of polynomial equations and Gröbner basis and resultants concepts including
theory and applications, like works of Mourrain, Emiris, Cox i.e. [2, ?, ?]

Stewénius [22] proposed a Gröbner basis method to solve some minimal prob-
lems in computer vision. Using this method Stewénius et al. solved problems like
five point relative pose problem [23], six point focal length problem [24], six point
generalized camera problem [25] and other problems. This solver is a variation
of the classical Gröbner basis technique [2], which is a standard algebraic tech-
nique for solving polynomial systems. Stewenius solver is based on the fact that
in a class of problems the way of computing the Gröbner basis is always the same
and for particular data these Gröbner bases differ only in coefficients and on the
fact that the algorithm for computation of the Gröbner basis can be realized using
Gauss-Jordan elimination.

Another technique was used in [16] and [14] where a simple algorithms based
on the hidden variable resultant technique to solve two minimal problems, five
point relative pose problem and six point focal length problem has been proposed.
These problems were previously solved by Stewenius and Nister using Gröbner
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basis and Gauss-Elimination techniques [23, 24, 19]. Comparing to the Gröbner
basis algorithms, the hidden-variable algorithms are easier to understand and to
implement.

We follow the general paradigm for solving minimal problems in which a
problem is formulated as a set of algebraic equations which need to be solved.
Our main contribution is in improving the technique for solving the set of al-
gebraic equations proposed in [22] and applying it to solve the minimal prob-
lem for the autocalibration of radial distortion. We use the algebraic constraint
det(F) = 0 on the fundamental matrix to get an 8-point algorithm. It reduces the
number of samples in RANSAC and is more stable than previously known 9-point
algorithms [6, 15].

2 Solving algebraic equations
In this section we will introduce the technique we use for solving systems of
algebraic equations. We use the nomenclature from excellent monographs [3,
2], where all basic concepts from polynomial algebra, algebraic geometry, and
solving systems of polynomial equations are explained.

Our goal is to solve a system of algebraic equations f1 (x) = ... = fm (x) = 0
which are given by a set of m polynomials F = {f1, ..., fm| fi ∈ C [x1, ..., xn]}
in n variables over the field C of complex numbers. We are only interested in
systems which have a finite number, say N , solutions and thus m ≥ n.

The ideal I generated by polynomials F can be written as

I =

{
m∑

i=1

fi pi | pi ∈ C [x1, ..., xn]

}

with f1, ..., fm being generators of I. The ideal contains all polynomials which can
be generated as an algebraic combination of its generators. Therefore, all polyno-
mials from the ideal are zero on the zero set Z = {x|f1 (x) = ... = fm (x) = 0}.
In general, an ideal can be generated by many different sets of generators which all
share the same solutions. There is a special set of generators though, the reduced
Gröbner basis G = {g1, ..., gl} w.r.t. the lexicographic ordering, which generates
the ideal I but is easy (often trivial) to solve. Computing this basis and “reading
off” the solutions from it is the standard method for solving systems of polynomial
equations. Unfortunately, for most computer vision problems this “Gröbner ba-
sis method w.r.t. the lexicographic ordering” is not feasible because it has double
exponential computational complexity in general.

To overcome this problem, a Gröbner basis G under another ordering, e.g.
the graded reverse lexicographical ordering, which is often easier to compute,
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is constructed. Then, the properties of the quotient ring A = C [x1, ..., xn] /I ,
i.e. the set of equivalence classes represented by remainders modulo I , can be
used to get the solutions. The linear basis of this quotient ring can be writ-
ten as B = {xα|xα /∈ 〈LM(I)〉} =

{
xα|xαG

= xα
}

, where xα is monomial

xα = xα1
1 xα2

2 ...xαn
n , xαG is the reminder of xα on the division by G, and 〈LM(I)〉

is ideal generated by leading monomials of all polynomials form I. In many cases
(when I is radical [2]), the dimension of A is equal to the number of solutions
N . Then, the basis of A consists of N monomials, say B =

{
xα(1), ...,xα(N)

}
.

Denoting the basis as b (x) =
[
xα(1)...xα(N)

]T , every polynomial q (x) ∈ A can
be expressed as q (x) = b (x)T c, where c is a coefficient vector. The multiplica-
tion by a fixed polynomial f (x) (a polynomial in variables x = (x1, ..., xn)) in the
quotient ring A then corresponds to a linear operator Tf : A → A which can be
described by a N ×N action matrix Mf . The solutions to the set of equations can
be read off directly from the eigenvalues and eigenvectors of the action matrices.
We have

f (x) q (x) = f (x)
(
b (x)T c

)
=

(
f (x) b (x)T

)
c

Using properties of the action matrix Mf , we obtain
(
f (x) b (x)T

)
c = b (x)T Mfc,

Each polynomial t ∈ C [x1, ..., xn] can be written in the form t =
∑l

i=1 higi + r,
where gi are basis vectors gi ∈ G = {g1, ..., gl} , hi ∈ C [x1, ..., xn] and r is the
reminder of t on the division by G.

If p = (p1, ..., pn) is a solution to our system of equations, then we can write

f (p) q (p) =
(
f (p) b (p)T

)
c =

l∑
i=1

hi (p) gi (p) + r (p)

where r (p) is the reminder of f (p) q (p) =
(
f (p) b (p)T

)
c on the division by

G.
Because gi (p) = 0 for all i = 1, ..., l we have

∑l
i=1 hi (p) gi (p) + r (p) =

r (p) and therefore

(
f (p) b (p)T

)
c = r (p) =

(
f (p) b (p)T

)
c
G

.

So for a solution p, we have

(
f (p) b (p)T

)
c
G

=
(
f (p) b (p)T

)
c = b (p)T Mfc
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for all c, and therefore
f (p) b (p)T = b (p)T Mf .

Thus, if p = (p1, ..., pn) is a solution to our system of equations and f (x) is
chosen such that the values f (p) are distinct for all p, the N left eigenvectors of
the action matrix Mf are of the form

v = βb (p) = β
[
pα(1)...pα(N)

]T
,

for some β ∈ C, β 6= 0.

Thus “action” matrix Mf of the linear operator Tf : A → A of the multiplica-
tion by a suitably chosen polynomial f w.r.t. the basis B of A can be constructed
and then the solutions to the set of equations can then be read off directly from the
eigenvalues and eigenvectors of this action matrix [2].

2.1 Simplifying equations by lifting

The complexity of computing an action matrix depends on the complexity of
polynomials. It is better to have the degrees as well as the number of variables
low. Often, original generators F may be transformed into new generators with
lower degrees and fewer variables. Next we describe a particular transformation
method—lifting method—which proved to be useful.

Assume m polynomial equations in l monomials. The main idea is to consider
each monomial that appears in the system of polynomial equations as an unknown.
In this way, the initial system of polynomial equations of arbitrary degree becomes
linear in the new “monomial unknowns”. Such system can by written in a matrix
form as

MX = 0

where X is a vector of l monomials and M is a m× l coefficient matrix.
If m < l, then a basis of m − l dimensional null space of matrix M can be

found and all monomial unknowns can be expressed as linear combinations of ba-
sic vectors of the null space. The coefficients of this linear combination of basic
vectors become new unknowns of the new system which is formed by utilizing
algebraic dependencies between monomials. In this way we obtain a system of
polynomial equations in new variables. The new set of variables consists of un-
known coefficients of linear combination of basic vectors and of old unknowns
which we need for utilizing dependencies between monomials. The new system
is equivalent to the original system of polynomial equations but may be simpler.
This abstract description will be made more concrete in section 3.1 or from the
following simple example:
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Consider a system of 4 quadratic equations in 4 unknowns x1, x2, x3, x4 and
in 6 monomials: x1x3, x2x4, x4, x3, x2, x1. Write the i− th polynomial ci1x1x3 +
ci2x2x4 + ci3x4 + ci4x3 + ci5x2 + ci6x1, where cij ∈ C. Write




c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46







x1x3

x2x4

x4

x3

x2

x1




= 0

Consider each monomial that appears in the system as an unknown. We have
a system of four linear equations in six ”monomial” unknowns. In general, we
can find a 2-dimensional null space of matrix M . Denote the basic vectors of the
null space by b1 = (b11,b12,..., b16)

T and b2 = (b21,b22,..., b26)
T . We can write:




x1x3

x2x4

x4

x3

x2

x1




= a1




b11

b12

b13

b14

b15

b16




+ a2




b21

b22

b23

b24

b25

b26




for some unknown coefficients a1, a2 ∈ C and known bij ∈ C, i = 1, 2
and j = 1, ..., 6. Coefficients a1, a2 become new unknowns of the new system
which we form by utilizing the dependencies between monomials. We know that
X1 = x1x3, X4 = x3, X6 = x1. Thus X1 = X4X6 and X́2 = X3X5. We get

a1b11 + a2b21 = (a1b14 + a2b24) (a1b16 + a2b26)

a2b12 + a2b22 = (a1b13 + a2b23) (a1b15 + a2b25)

or equivalently

b14b16a
2
1 + (b14b26 + b16b24) a1a2 + b24b26a

2
2 − a1b11 − a2b21 = 0

b13b15a
2
1 + (b13b25 + b15b23) a1a2 + b23b25a

2
2 − a1b12 − a2b22 = 0

In this way we obtain two new quadratic equations in two new unknowns a1 and
a2 which are equivalent to the original four quadratic equations in 4 unknowns
x1, x2, x3, x4 but they are simpler to solve.
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2.2 Constructing action matrix efficiently
The standard method for computing action matrices requires to construct a com-
plete Gröbner basis and the linear basis B of the algebra A and to compute
Tf

(
xα(i)

)
= fxα(i)

G
for all xα(i) ∈ B =

{
xα(1), ...,xα(N)

}
[2]. Note that

xα(i) = x
α1(i)
1 x

α2(i)
2 ...x

αn(i)
n . For some problems, however, it may be very ex-

pensive to find a complete Gröbner basis. Fortunately, to compute Mf we do not
always need a complete Gröbner basis. Here we propose a method for construct-
ing the action matrix assuming that the monomial basis B of algebra A is known
or can be computed for a class of problems in advance.

Many minimal problems in computer vision have the convenient property that
the monomials which appear in the set of initial generators F are always same irre-
spectively from the concrete coefficients arising from non-degenerate image mea-
surements. For instance, when computing the essential matrix from five points,
there always need to be five linear linearly independent equations in elements
of E and ten higher order algebraic equations 2 E E>E − trace(E E>) E = 0 and
det(E) = 0 which do not depend on particular measurements. Therefore, the
leading monomials of the corresponding Gröbener basis, and thus the monomials
in the basis B are always the same. They can be found once in advance. To do so,
we use the approach originally suggested in [24, 22, 23] for computing Gröbner
bases but we retrieve the basis B and polynomials required for constructing the
action matrix instead.

Having B, the action matrix can be computed as follows. If for some xα(i) ∈ B

and chosen f , fxα(i) ∈ A, then Tf

(
xα(i)

)
= fxα(i)

G
= fxα(i) and we are done.

For all other xα(i) ∈ B for which fxα(i) /∈ A consider polynomials qi = fxα(i) +

hi from I with hi ∈ A. For these xα(i), Tf

(
xα(i)

)
= fxα(i)

G
= qi − hi

G
=

−hi ∈ A. Since polynomials qi are from the ideal I , we can generate them as
algebraic combinations of the initial generators F . Write hi =

∑N
j=1 cjix

α(j) for
some cji ∈ C, i = 1, ..., N . Then the action matrix Mf has the form

Mf =




c11 c12 . . . c1N

c21 . .
. . .
. . .
. . .

cN1 cN2 cNN




.

To get this action matrix Mf , it suffice to generate polynomials qi = fxα(i) +∑N
j=1 cjix

α(j) from the initial generators F for all these xα(i) ∈ B. This in gen-
eral seems to be as difficult as generating the Gröbner basis but we shall see that it
is quite simple for the problem of calibrating radial distortion which we describe

9



in the next section. It is possible to generate qi’s by starting with F and system-
atically generating new polynomials by multiplying them by individual variables
and reducing them by the Gauss-Jordan elimination. This technique is a variation
of the F4 algorithm for constructing Gröbner bases [8] and seems to be applicable
to more vision problems. We are currently investigating it and will report more
results elsewhere.

2.3 The solver
The algorithmic description of our solver of polynomial equations is as follows.

1. Assume a set F = {f1, ..., fm} of polynomial equations.

2. Use the lifting to simplify the original set of polynomial equations if possi-
ble. Otherwise use the original set.

3. Fix a monomial ordering (The graded reverse lexicographical ordering is
often good).

4. Use Macaulay 2 [22] to find the basis B as the basis which repeatedly ap-
pears for many different choices of random coefficients. Do computations
in a suitably chosen finite field to speed them up.

5. For suitably chosen polynomial f construct the polynomials qi by system-
atically generating higher order polynomials from generators F . Stop when
all qi’s are found. Then construct the action matrix Mf .

6. Solve the equations by finding eigenvectors of the action matrix. If the ini-
tial system of equations was transformed, extract the solutions to the origi-
nal problem.

This method extends the Gröbner basis method proposed in [24, 22] (i) by
using lifting to simplify the problem and (ii) by constructing the action matrix
without constructing a complete Gröbner basis. This brings an important advan-
tage for some problems. Next we will demonstrate it by showing how to solve the
minimal problem for correcting radial distortion from eight point correspondences
in two views.

3 A minimal solution for radial distortion
We want to correct radial lens distortion using the minimal number of image
point correspondences in two views. We assume one-parameter division distor-
tion model [6]. It is well known that for standard uncalibrated case without con-
sidering radial distortion, 7 point correspondences are sufficient and necessary to

10



estimate the epipolar geometry. We have one more parameter, the radial distortion
parameter λ. Therefore, we will need 8 point correspondences to estimate λ and
the epipolar geometry. To get this “8-point algorithm”, we have to use the sin-
gularity of the fundamental matrix F. We obtain 9 equations in 10 unknowns by
taking equations from the epipolar constraint for 8 point correspondences

p>ui
(λ) Fp′ui

(λ) = 0, i = 1, . . . , 8

and the singularity of F
det (F) = 0,

where p′u (λ) ,pu (λ) represent homogeneous coordinates of a pair of undistorted
image correspondences.

The one-parameter division model is given by the formula

pu ∼ pd/(1 + λr2
d)

where λ is the distortion parameter, pu = (xu, yu, 1), resp. pd = (xd, yd, 1), are
the corresponding undistorted, resp. distorted, image points, and rd is the radius
of pd w.r.t. the distortion center. We assume that the distortion center has been
found, e.g., by [10]. We also assume square pixels, i.e. r2

d = x2
d + y2

d. To use the
standard notation, we write the division model as

x + λz =




xd

yd

1


 + λ




0
0
r2
d


 ∼




xu

yu

1


 .

3.1 Reducing 9 to 7 unknowns by lifting
We simplify the original set of equations by lifting. The epipolar constraint gives
8 equations with 15 monomials (nine 1storder, five 2ndorder, one 3rd order)

(xi + λzi)
T
F (x′i + λz′i) = 0, i = 1, ..., 8

xT
i Fx

′
i + λ

(
xT

i Fz
′
i + zT

i Fx
′
i

)
+ λ2zT

i Fz
′
i = 0, i = 1, ..., 8

F =




f1 f2 f3

f4 f5 f6

f7 f8 f9




We consider each monomial as an unknown and obtain 8 homogenous equations
linear in the new 15 monomial unknowns. These equation can be written in a
matrix form

MX = 0

11



where X = (f1, f2, f3, f4, f5, f6, f7, f8, f9, λf3, λf6, λf7, λf8, λf9, λ
2f9, )

T and M

is the coefficient matrix.
If we denote the i-th row of the matrix M as mi and write

xi + λzi =




xd

yd

1


 + λ




0
0
r2
d


 ,

then mi = (xdx
′
d, xdy

′
d, xd, ydx

′
d, ydy

′
d, yd, x′d, y′d, 1, xdr

′2
d , xydr

′2
d , r2

dx
′
d, r2

dy
′
d, r2

d+
r′2d , r2

dr
′2
d ).

We obtain 8 linear equations in 15 unknowns. So, in general we can find 7
dimensional null-space. We write

X = x1N1 + x2N2 + x3N3 + x4N4 + x5N5 + x6N6 + x7N7

where N1, ..., N7 ∈ R15×1 are basic vectors of the null space and x1, . . . , x7 are
coefficients of the linear combination of the basic vectors. Assuming x7 6= 0, we
can set x7 = 1. Then we can write

X =
7∑

i=1

xiNi =
6∑

i=1

xiNi + N7

Xj =
6∑

i=1

xiNij + N7j, j = 1, .., 15

Considering dependencies between monomials and det (F) = 0 we get 7 equa-
tions for 7 unknowns x1, x2, x3, x4, x5, x6, λ :

X10 = λ.X3 ⇒
6∑

i=1

xiNi,10 + N7,10 = λ
6∑

i=1

xiNi,3 + N7,3

X11 = λ.X6 ⇒
6∑

i=1

xiNi,11 + N7,11 = λ
6∑

i=1

xiNi,6 + N7,6

X12 = λ.X7 ⇒
6∑

i=1

xiNi,12 + N7,12 = λ

6∑

i=1

xiNi,7 + N7,7

X13 = λ.X8 ⇒
6∑

i=1

xiNi,13 + N7,13 = λ
6∑

i=1

xiNi,8 + N7,8

X14 = λ.X9 ⇒
6∑

i=1

xiNi,14 + N7,14 = λ
6∑

i=1

xiNi,9 + N7,9

X15 = λ.X14 ⇒
6∑

i=1

xiNi,15 + N7,15 = λ

6∑

i=1

xiNi,14 + N7,14

12



det (F) = 0 ⇒ det




X1 X2 X3

X4 X5 X6

X7 X8 X9


 = 0

This set of equations is equivalent to the initial system of polynomial equations
but it is simpler because instead of eight quadratic and one cubic equation in 9
unknowns (assuming f9 = 1) we have only 7 equations (six quadratic and one
cubic) in 7 unknowns. We will use these 7 equations to create the action matrix
for the polynomial f = λ.

3.2 Computing B and the number of solutions
To compute B, we solve our problem in a random finite prime field Zp (Z/ 〈p〉)
with p >> 7, where exact arithmetic can be used and numbers can be represented
in a simple and efficient way. It speeds up computations and minimizes memory
requirements.

We use algebraic geometric software Macaulay 2, which can compute in finite
fields, to solve the polynomial equations for many random coefficients from Zp,
to compute the number of solutions, the Gröbner basis, and the basis B. If the
basis B remains stable for many different random coefficients, it is generically
equivalent to the basis of the original system of polynomial equations. Then, we
are done.

We can use the Gröbner basis and the basis B computed for random coeffi-
cients from Zp thanks to the fact that in our class of problems the way of com-
puting the Gröbner basis is always the same and for particular data these Gröbner
bases differ only in coefficients. This holds for B, which consists of the same
monomials, as well. Also, the way of obtaining polynomials that are necessary to
create the action matrix is always the same and for a general data the generated
polynomials differ again only in their coefficients. This way we have found that
our problem has 16 solutions. To create the action matrix, we use the graded re-
verse lexicographic ordering with x1 > x2 > x3 > x4 > x5 > λ > x6. With this
ordering, we get the basis B = (x3

6, λ
2, x1x6, x2x6, x3x6, x4x6, x5x6, x

2
6, x1, x2, x3,

x4, x5, λ, x6, 1) of the algebra A = C [x1, x2, x3, x4, x5, λ, x6] /I which, as we
shall see later, is suitable for finding the action matrix Mλ.

3.2.1 Computing the number of solutions and basis B in Macaulay 2

Here we show the program for computing the number of solutions and basis B of
our problem in Macaulay 2. Similar programs can be used to compute the number
of solutions and basis of the algebra A for other problems.

// polynomial ring with coefficients form Zp (Z30097)
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R = ZZ/30097[x 1..x 9, MonomialOrder=>Lex];

// Formulate the problem over Zp => the set of equations
eq
(known variables -> random numbers from Zp )

F = matrix({{x 1,x 2,x 3},{x 4,x 5,x 6},{x 7,x 8,1 R}});
X1 = matrix{apply(8,i->(random(Rˆ2,Rˆ1)))}

||matrix({{1 R,1 R,1 R,1 R,1 R,1 R,1 R,1 R}});
Z1 = matrix({{0 R,0 R,0 R,0 R,0 R,0 R,0 R,0 R}})

||matrix({{0 R,0 R,0 R,0 R,0 R,0 R,0 R,0 R}})
|| matrix{apply(8, i->X1 (0,i)ˆ2+X1 (1,i)ˆ2)};

X2 = matrix{apply(8,i->(random(Rˆ2,Rˆ1)))}
||matrix({{1 R,1 R,1 R,1 R,1 R,1 R,1 R,1 R}});

Z2 = matrix({{0 R,0 R,0 R,0 R,0 R,0 R,0 R,0 R}})
||matrix({{0 R,0 R,0 R,0 R,0 R,0 R,0 R,0 R}})
|| matrix{apply(8, i->X2 (0,i)ˆ2+X2 (1,i)ˆ2)};

P1 = X1 + x 9*Z1;

P2 = X2 + x 9*Z2;

eq = apply(8, i->(transpose(P1 [i]))*F*(P2 [i]));

// Ideal generated by polynomials eq + the polynomial
det(F)

I1 = ideal(f) + ideal det F;

// Compute the number of solutions

gbTrace 3

dim I1 //the dimension of ideal I (zero-dimensional
ideal ⇐⇒ V(I) is a finite set

degree I1 //the number of solutions (the number of
points in V(I))

// Groebner basis

transpose gens gb I1

A = R/I1 //the quotient ring A=ZZ/30097[x 1..x 9] /I1

B = basis A //the basis of the quotient ring A

The above program in Macaulay 2 gives not only the number of solutions and
the basis B of the algebra A , but also the information like how difficult it is to
compute the Gröbner basis, and how many and which S-polynomials have to be
generated.

The level of verbosity is controlled with the command gbTrace(n).
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• For n=0 no extra information is produced

• For n=3 string “m”, ”o” and “r” are printed.

– The letter “m” is printed when a new S-pair does not reduce to zero
and is added to the basis.

– the letter ”o” indicates that an S-pair or generator is reduced to zero,
but no new syzygy occurred.

– and the letter ”r” when an S-pair has been removed

• For n=100 we get which S-polynomials were computed, from which poly-
nomials were these S-polynomials created, which S-polynomial did not re-
duce to 0, which inserted into the basis and so on.

See [26] for more information about how to use Macaulay 2 to build minimal
solvers.

3.3 Constructing action matrix
Here we construct the action matrix Mλ for multiplication by polynomial f =
λ. The method described in section 2.2 calls for generating polynomials qi =
λxα(i) +

∑N
j=1 cjix

α(j) ∈ I .
In graded orderings, the leading monomials of qi are λxα(i). Therefore, to

find qi, it is enough to generate at least one polynomial in the required form for
each leading monomial λxα(i). This can be, for instance, done by systematically
generating polynomials of I with ascending leading monomials and testing them.
We stop when all necessary polynomials qi are obtained. Let d be the degree of
the highest degree polynomial from initial generators F . Then we can generate
polynomials qi from F in this way:

1. Generate all monomial multiples xαfi of degree ≤ d.

2. Write the polynomial equations in the form MX = 0, where M is the co-
efficient matrix and X is the vector of all monomials ordered by the used
monomial ordering.

3. Simplify matrix M by the Gauss-Jordan (G-J) elimination.

4. If all necessary polynomials qi have been generated, stop.

5. If no new polynomials with degree < d were generated by G-J elimination,
set d = d + 1.

6. Go to 1.
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In this way we can systematically generate all necessary polynomials. Unfortu-
nately, we also generate many unnecessary polynomials. We use Macaulay 2 to
identify the unnecessary polynomials and avoid generating them.

In the process of creating the action matrix Mλ, we represent polynomials by
rows of the matrix of their coefficients. Columns of this matrix are ordered ac-
cording to the monomial ordering. The basic steps of generating the polynomials
necessary for constructing the action matrix are as follows:

1. We begin with six 2nd degree polynomials f
(0)
1 , . . . , f

(0)
6 and one 3rd degree

polynomial f
(0)
7 = det (F) = 0. We perform G-J elimination of the matrix

representing the six 2nd degree polynomials and reconstruct the six reduced
polynomials f

(1)
1 , . . . , f

(1)
6 .

2. We multiply f
(1)
1 , . . . , f

(1)
6 by 1, x1, x2, x3, x4, x5, λ, x6 and add f

(0)
7 to get

49 2nd and 3rd degree polynomials f
(2)
1 , . . . , f

(2)
49 . They can be represented

by 119 monomials and a 49× 119 matrix with rank 49, which we simplify
by one G-J elimination again.

3. We obtain 15 new 2nd degree polynomials (f (2)
29 . . . , f

(2)
43 ), six old 2nd degree

polynomials (reduced polynomials f
(1)
1 , . . . , f

(1)
6 , now f

(2)
44 . . . , f

(2)
49 ) and 28

polynomials of degree three. In order to avoid adding 4th degree polyno-
mials on this stage we add only x1, x2, x3, x4, x5, λ, x6 multiples of these
15 new 2nd degree polynomials to the polynomials f

(2)
1 , . . . , f

(2)
49 . Thus ob-

taining 154 polynomials f
(3)
1 , . . . , f

(3)
154 representable by a 154 × 119 ma-

trix, which has rank 99. We simplify it by G-J elimination and obtain
f

(4)
1 , . . . , f

(4)
99 .

4. The only 4th degree polynomial that we need is a polynomial in the form
λx3

6 + h, h ∈ A. To obtain this polynomial, we only need to add mono-
mial multiples of one polynomial g from f

(4)
1 , ..., f

(4)
99 which has leading

monomial LM(g) = λx2
6. This is possible thanks to our monomial or-

dering. All polynomials f
(4)
1 , ..., f

(4)
99 and x1, x2, x3, x4, x5, λ, x6 multiples

of the 3rd degree polynomial g with LM(g) = λx2
6 give 106 polyno-

mials f
(5)
1 , ..., f

(5)
106 which can be represented by a 106 × 126 matrix of

rank 106. After another G-J elimination, we get 106 reduced polynomi-
als f

(6)
1 , ..., f

(6)
106. Because the polynomial g with LM(g) = λx2

6 has already
been between the polynomials f

(2)
1 , ..., f

(2)
49 , we can add its monomial multi-

ples already in the 3rd step. After one G-J elimination we get the same 106
polynomials. In this way, we obtain polynomial q with LM(q) = λx3

6 as
q = λx3

6 + c1x2x
2
6 + c2x3x

2
6 + c3x4x

2
6 + c4x5x

2
6 +h′, for some c1, ..., c4 ∈ C

and h′ ∈ A instead of the desired λx3
6 + h, h ∈ A.
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Figure 2: Distribution of real roots in [−10, 10] using kernel voting for 500 noise-
less point matches, 200 estimations and λtrue = −0.2. (Left) Parasitic roots
(green) vs. roots for mismatches (blue). (Center) Genuine roots. (Right) All roots,
100% of inliers.

5. Among the polynomials f
(6)
1 , ..., f

(6)
106, there are 12 out of the 14 polynomi-

als that are required for constructing the action matrix. The first polynomial
which is missing is the above mentioned polynomial q1 = λx3

6+h1, h1 ∈ A.
To obtain this polynomial from q, we need to generate polynomials from the
ideal with leading monomials x2x

2
6, x3x

2
6, x4x

2
6, and x5x

2
6. The second miss-

ing polynomial is q2 = λ3 + h2, h2 ∈ A. All these 3rd degree polynomials
from the ideal I can be, unfortunately, obtained only by eliminating the 4th

degree polynomials. To get these 4th degree polynomials, the polynomial
with leading monomial x1x

2
6, resp. x2x

2
6, x3x

2
6, x4x

2
6, x5x

2
6 is multiplied by

λ and subtracted from the polynomial with leading monomial λx6 multi-
plied by x1x6, resp. by x2x6, x3x6, x4x6, x5x6. After G-J elimination, a
polynomial with the leading monomial x2x

2
6, resp. x3x

2
6, x4x

2
6, x5x

2
6, λ3 is

obtained.

6. All polynomials needed for constructing the action matrix are obtained. Ac-
tion matrix Mλ is constructed.

The pseudocode of the algorithm for creating the action matrix Mλ and com-
puting λ′s and F ′s from it is can be found Appendix A.

3.4 Solving equations using eigenvectors

The eigenvectors of Mλ give solutions for x1, x2, x3, x4, x5, λ, x6. Using a back-
substitution, we obtain solutions for f1, f2, f3, f4, f5, f6, f7, f8, f9, λ. In this way
we obtain 16 (complex) solutions. Generally less than 10 solutions are real.
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Figure 3: Distribution of real roots using kernel voting for 500 noiseless point
matches, 100% inliers, 200 groups and λtrue = −0.2. (Left) Distribution of all
roots in [−10, 10]. (Center) Distribution of all roots minus the distribution of roots
from mismatches in [−10, 10]. (Right) Distribution of all roots in [−1, 1].

4 Experiments
We test our algorithm on both synthetic (with various levels of noise, outliers and
radial distortions) and real images and compare it to the existing 9-point algo-
rithms for correcting radial distortion [6, 15]. We can get up to 16 complex roots.
In general, more than one and less than 10 roots are real. If there is more than one
real root, we need to select the best root, the root which is consistent with most
measurements. To do so, we treat the real roots of the 16 (in general complex)
roots obtained by solving the equations for one input as real roots from different
inputs and use RANSAC [5, 11] or kernel voting [15] for several (many) inputs
to select the best root among all generated roots. The kernel voting is done by
a Gaussian kernel with fixed variance and the estimate of λ is found as the posi-
tion of the largest peak. See [15] for more on kernel voting for this problem. To
evaluate the performance of our algorithm, we distinguish three sets of roots.

• “All roots” is the set of all real roots obtained by solving the equations for
K (different) inputs.

• “Genuine roots” denote the subset of all roots obtained by selecting the real
root closest to the true λ for each input containing only correct matches.
The set of genuine roots can be identified only in simulated experiments.

• “Parasitic roots” is the subset of all roots obtained by removing the genuine
roots from all roots when everything is evaluated on inputs containing only
correct matches.

The results of our experiments for the kernel voting are shown in figure 2. Figure 2
(Left) shows that the distribution of all real roots for mismatches is similar to
the distribution of the parasitic roots. This allows to treat parasitic roots in the
same way as the roots for mismatches. Figures 2 (Left and Center) show that the
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Figure 4: Kernel voting results, for λtrue = −0.25, noise level σ = 0.2 (1 pixel),
image size 768 × 576 and (Left) 100% inliers, (Center) 90% inliers (Right) 80%
inliers. Estimated radial distortion parameters were (Left) λ = −0.2510 (Center)
λ = −0.2546 (Right) λ = −0.2495.

distribution of genuine roots is very sharp compared to the distribution of parasitic
roots and roots for mismatches. Therefore, it is possible to estimate the true λ as
the position of the largest peak, figure 2 (Right). These experiments show that it
is suitable to use kernel voting and that it make sense to select the best root by
casting votes from all computed roots. It is clear from results shown in figure 3
that it is meaningful to vote for λ’s either (i) within the range where the most of
the computed roots fall (in our case [-10,10]), figure 3 (Left), or (ii) within the
smallest range in which we are sure that the ground truth lie (in our case [-1,1]),
figure 3 (Right). For large number of input data, it might also makes sense to
subtract the apriory computed distribution of all real roots for mismatches from
the distribution of all roots.

4.1 Tests on synthetic images

We initially studied our algorithm using synthetic datasets. Our testing procedure
was as follows:

1. Generate a 3D scene consisting of N (= 500) random points distributed
uniformly within a cuboid. Project M% of the points on image planes of the
two displaced cameras. These are matches. In both image planes, generate
(100 −M)% random points distributed uniformly in the image. These are
mismatches. Altogether, they become undistorted correspondences.

2. Apply the radial distortion to the undistorted correspondences to generate
noiseless distorted points.

3. Add Gaussian noise of standard deviation σ to the distorted points.

4. Repeat K times (We use K = 100 here, but in many cases K from 30 to 50
is sufficient).
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Figure 5: Estimated λ as a function of noise σ, ground truth λtrue = −0.5 and
(Top) inliers = 90%, (Bottom) inliers = 80%. Blue boxes contain values from
25% to 75% quantile. (Left) 8-point algorithm. (Right) 9-point algorithm.

(a) Randomly choose 8 point correspondences from given N correspon-
dences.

(b) Normalize image point coordinates to [−1, 1] by subtracting the image
center and dividing by max (image width/2, image height/2)..

(c) Find up to 16 roots of the minimal solution to the autocalibration of
radial distortion.

(d) Select the real roots in the feasible interval, e.g., −1 < λ < 1 and the
corresponding F’s.

5. Use kernel voting to select the best root.

The resulting density functions for different outlier contaminations and for the
noise level 1 pixel are shown in figure 4. Here, K = 100, image size was 768×576
and λtrue = −0.25. In all cases, a good estimate, very close to the true λ, was
found as the position of the maximum of the root density function. We conclude,
that the method is robust to mismatches and noise.
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Figure 6: Real data. (Left) Input image with significant radial distortion. (Right)
Corrected image.

In the next experiment we study the robustness of our algorithm to increasing
levels of Gaussian noise added to the distorted points. We compare our results
to the results of two existing 9-point algorithms [6, 15]. The ground truth radial
distortion λtrue was −0.5 and the level of noise varied from σ = 0 to σ = 1, i.e.
from 0 to 5 pixels. Noise level 5 pixels is relatively large but we get good results
even for this noise level and 20% of outliers.

Figure 5 (Left) shows λ computed by our 8-point algorithm as a function of
noise level σ. Fifty lambdas vere estimated from fifty 8-tuples of correspondences
randomly drawn for each noise level and (Top) 90% and (Bottom) 80% of inliers.
The results are presented by the Matlab function boxplot which shows values 25%
to 75% quantile as a blue box with red horizontal line at median. The red crosses
show data beyond 1.5 times the interquartile range. The results for 9-point algo-
rithms [6, 15], which gave exactly identical results, are shown for the same input,
figure 5 (Right).

The median values for 8-point as well as 9-point algorithms are very close to
the ground truth value λtrue = −0.5 for all noise levels. The variances of the
9-point algorithms, 5 (Right), are considerably larger, especially for higher noise
levels, than the variances of the 8-point algorithm 5 (Left). The 8-point algorithm
thus produces more good estimates for the fixed number of samples. This is good
both for RANSAC as well as for kernel voting.

4.2 Tests on real images

The input images with relatively large distortion, figures 1 (Left) and 6 (Left),
were obtained as cutouts from 180◦ angle of view fish-eye images. Tentative
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Figure 7: Distribution of real roots obtained by kernel voting for image in figure 6.
Estimated λ = −0.22.

point correspondences were found by the wide base-line matching algorithm [17].
They contained correct as well as incorrect matches. Distortion parameter λ was
estimated by our 8-point algorithm and the kernel voting method. The input (Left)
and corrected (Right) images are presented in figures 1 and 6. Figure 7 shows the
distribution of real roots, for image from figure 6 (Left), from which λ = −0.22
was estimated as the argument of the maximum.

A Appendix

Algorithm for correcting radial lens distortion from 8 point correspondences
Input: Eight corresponding pairs Q1, Q2.
Output: F = vector of computed 3x3 possible fundamental matrices

lambda = radial distortion parameter
function [lamda, F ] = EightPoint(Q1, Q2)

1: Using Q1 and Q2 create matrix M (M.X=0)
2: [U, S, V ] = svd(M)
3: N = V (:, 9 : 15);
4: B = zeros(161, 330);

5: Add six 2nd degree equations (f (0)
1 , . . . , f

(0)
6 ) to the matrix B

6: B = ReduceSubmatrix(B);

7: Multiply f
(1)
1 , . . . , f

(1)
6 (rows 1-6 of B) by 1, x1, x2, x3, x4, x5, λ, x6

8: Add multiplied polynomials to B
9: Add equation det (F ) = 0 to B
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10: B = ReduceSubmatrix(B);

11: Multiply 15 new 2nd degree polynomials from B (f (2)
29 . . . , f

(2)
43 )

(rows 29-43 of B) by 1, x1, x2, x3, x4, x5, λ, x6

12: Multiply the 3rd degree polynomial with LT (λ.x2
6) (row 28 of B) by

13: 1, x1, x2, x3, x4, x5, λ, x6

14: Add multiplied polynomials to B
15: B = ReduceSubmatrix(B);
16: p1 = λ.q1, where q1 is a polynomial with LM (q1) = (x1x

2
6)

(row 84 of B)
17: p2 = x1x6.q2, where q2 is a polynomial with LM (q2) = (λx6)

(row 106 of B)
18: Add polynomial p2 − p1 to B (as 85 row of B)
19: B = ReduceRowInMatrix(B, 85);
20: p1 = λ.q1, where q1 is a polynomial with LM (q1) = (x2x

2
6)

(row 85 of B)
21: p2 = x2x6.q2, where q2 is a polynomial with LM (q2) = (λx6)

(row 107 of B)
22: Add polynomial p2 − p1 to B (as 86 row of B)
23: B = ReduceRowInMatrix(B, 86);
24: p1 = λ.q1, where q1 is a polynomial with LM (q1) = (x3x

2
6)

(row 86 of B)
25: p2 = x3x6.q2, where q2 is a polynomial with LM (q2) = (λx6)

(row 108 of B)
26: Add polynomial p2 − p1 to B (as 87 row of B)
27: B = ReduceRowInMatrix(B, 87);
28: p1 = λ.q1, where q1 is a polynomial with LM (q1) = (x4x

2
6)

(row 87 of B)
29: p2 = x4x6.q2, where q2 is a polynomial with LM (q2) = (λx6)

(row 109 of B)
30: Add polynomial p2 − p1 to B (as 88 row of B)
31: B = ReduceRowInMatrix(B, 88);
32: p1 = λ.q1, where q1 is a polynomial with LM (q1) = (x5x

2
6)

(row 88 of B)
33: p2 = x5x6.q2, where q2 is a polynomial with LM (q2) = (λx6)

(row 110 of B)
34: Add polynomial p2 − p1 to B (as 63 row of B)
35: B = ReduceRowInMatrix(B, 63);
36: % create action matrix
37: A(16, :) = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0];
38: A(15, :) = −B(111, [294, 315 : 320, 322 : 330]);
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39: A(14, :) = [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
40: A(13 : −1 : 1, :) = −B([110, 109, 108, 107, 106, 90, 83, 82, 81, 80, 79, 63, 7],

[294, 315 : 320, 322 : 330]);
41: [V, D] = eig(A);
42: SOLS = V (9 : 15, :)./(ones(7, 1) ∗ V (16, :));
43: I = find(not(imag(SOLS(6, :))));
44: lambda = SOLS(6, I);
45: x = SOLS([1, 2, 3, 4, 5, 7], :);
46: Fvec = N(1 : 9, :) ∗ [x; ones(1, 16)];
47: Fvec = Fvec./(ones(9, 1) ∗ sqrt(sum(Fvec.ˆ2)));
48: I = find(not(imag(Fvec(1, :))));
49: Fvec = Fvec(:, I);
50: for i=1:size(Fvec,2)

F{i} = reshape(Fvec(:,i),3,3)’;
end
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Abstract

We study the geometry of the projection with the aim to facilitate stereo-
matching of images acquired by the NIKON fisheye180

◦ field-of-view lens
camera. For the stereo matching, we assume that our target objects are
locally planar. First, we formulate the homography for spherical cameras
since all central omni-directional cameras can be converged to a spheri-
cal camera model. Second, we analyze the mapping between twoomni-
directional images through numerical experiments. Then, we consider the
most suitable image representation of omni-directional images to obtain
stereo-correspondences.

1 Introduction

Image matching plays an important role in object detection,tracking and visual
event analysis. A classical approach [] to perspective image matching uses affine
covariant features which can be repeatably detected and which provide stable de-
scriptors.

Omnidirectional images with180◦ field of view yield very non-linear image
projections. The non-linearity often differs in the centerand at the border of the
image. Thus, a projection of an object to the center of the image may be related
to the projection of the same object at the border of the imageby a mapping
that is far from an affine transform. This is unppleasant for two reasons. Firstly,
some affinely covariant detectors such as [] will not yield image features related
by the image transform induced by the camera pose change. Secondly, even if
the detector was covariant w.r.t. a non-linear image transform, such as MSER []
detector, the affine invariant descriptors would be inapropriate.

In this work we study image transforms that alleviate problems of varying
non-linearity of image projection. We address both issues raised above. First, we
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show a global image transform that makes the varying non-linearity to be closer
to an afine trnasform and secondly we look at local rectification of images close
to detected features.

In this study, we establish the stereo matching method whichis insensitive to
the change of orientation of central omni-directional cameras. Changes of view-
point, i.e. translation and rotation of the viewpoint, induce changes in images.
In a central omni-directional camera system, the changes induced by the rotation
mainly depend on image formation and are fully compensated by back-projecting
the image on a sphere whose center is identical to the viewpoint. It is possible to
map any image obtained by a central camera to the image on a sphere if approx-
imate knowledge of the image formation is available. For example, knowing the
viewing angle is enough for the perspective image and the viewing angle and the
lens or mirror shape are enough for the omni-directional image.

For reconstructing complete scenes, it is necessary to use many perspective
cameras. Using omni-directional cameras calls for using fewer cameras com-
pared to using traditional perspective camera systems. Forthe three-dimensional
reconstruction using multiple (more than three) cameras, we are required to esti-
mate the camera positions and viewing orientations (translation and rotation). If
we reconstruct the same size scene, omni-directional camera systems need fewer
estimations for camera positions and orientations compared to perspective camera
systems. However, it is a problem that omni-directional cameras acquire distorted
and low-resolution images since these observes large field of view. Therefore, it is
necessary to calibrate the catadioptric and dioptric (shapes of mirrors and dioptric
angles) of omni-directional camera systems carefully [7].

If the parameters of a central omni-directional camera system are known, all
the omni-directional images can be transformed in the images onto a sphere in so
called spherical images. The geometric analysis of centralomni-directional sys-
tem can be uniformly studied on the spherical camera systems. In principle, all
image processing can be applied to images on a sphere but it must be re-defined on
an irregular graph to compute image features on it. And the spherical geometry
must be used as proposed in [3]. In this work, we show the geometrical trans-
form of the planar objects, under the change of the viewpointby the rotation and
translation, observed on the images on a sphere.

Since the stereographic projection transforms the image ona sphere to the im-
age on a plane identically as illustrated in Fig. 1 (a), the transformed stereographic
image is suitable for representing the image for the application of standard image
processing techniques.

Under camera rotations, regions in the stereographic imageare mapped con-
formally such that circles map to circles since stereographic transform is a confor-
mal mapping [2]. This circle preserving property is important to describe regions
in the polar coordinates since the image is deformed along circles after normal-
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ization process (removing the scale and rotation) from the corresponding regions
suitable for the wide baseline stereo matching [6]. In practical stereo matching of
omni-directional images, most of planar regions in images can be related by affine
transform. We show that pure rotation of omnidirectional camera induces image
transform that can be well approximated by a similarity for planer regions of size
useful for wide-baseline-stereo matching.

Furthermore, assuming that the regions extracted in image [6] are not too large,
we obtain the centroid in a small region. In stereographic images, the deformation
of corresponding small regions induced by rotation is eliminated if we rotate back
the small region to the center of stereographic image with respect to the centroid.
We call this stereographic image, which is reduced the scaling for rotation,semi-
scaled stereographic image. We show that this semi-scaled stereographic image
also improves the stereo-matching of two omni-directionalimages induced by
translation.

u′

x

y

p
φ

θ

(a)

u′

x

y

p
φ

θ

θ

2

(b)

Figure 1: Stereographic projections of a sphere.

2 Omni-directional image representation for stereo
matching

It is possible to transform central omni-directional images to images on a sphere
[7]. In this study, we use a fish-eye lens camera as an omni-directional camera.
Setu = (u, v)⊤ be a point on the fish-eye camera image andp = (θ, ϕ) be the
corresponding point on a unit sphere expressed in polar coordinates. The mapping
from fish-eye camera image to the spherical image is expressed by the following
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relation, –Spherical transform (transform from fish-eye image to a unit sphere)

p =

(

θ
ϕ

)

=

(

a||u||/(1 + b||u||2)
tan−1(u/v)

)

(1)

wherea andb are the parameters of the fish-eye camera (see [7]).
For employing standard image-processing techniques to omni-directional cam-

era systems, a finite image on a plane is necessary. In practice, a fish-eye camera
observes a hemispherical region. Therefore, the stereographic projection enables
us to transform the image on a sphere to the finite image on a plane identically,
–Stereographic transform

u′ =

(

u′

v′

)

= 2 tan(θ/2)

(

cos ϕ
sin ϕ

)

, (2)

whereu′ = (u′, v′)⊤ is a point on the stereographic image andp = (θ, ϕ)⊤ is
a point on a unit sphere expressed in polar coordinates. If the point on a unit
sphere is expressed asx = (x, y, z)⊤ in Euclidean coordinates, the stereographic
projection is expressed by the equation,

u′ =

(

u′

v′

)

=
2

1 + z

(

x
y

)

, (3)

See Figure 1.
On the other hand, we can transform a spherical image to perspective images.

The perspective projection of pointx on a sphere to a pointu′ on the tangential
plane is expressed by the equation,

u′ =

(

u′

v′

)

=
1

z

(

x
y

)

. (4)

We mention that, in the perspective back projection, it is not possible to map a
whole spherical image onto a finite plane. In practice, it is necessary to project on
some tangent planes of the sphere.

3 Theoretical analysis of images of planar objects
for spherical camera

Geometrical transform of planar objects observed by two spherical cameras is
described in this section. In the pin-hole camera systems, points in the two images
of a plane are related by homography [1]. Since the projection model of omni-
directional camera systems are expressed by a non-linear mapping, the mapping
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of point-to-point is not expressed in the exactly same way asfor the pin-hole
camera systems. We establish homography on spherical cameras since central
omni-directional cameras can be converged to a spherical camera model. This
point-to-point mapping between the spherical images for a planar object is the
fundamental tool for analyzing the stereo matching of omni-directional images.

3.1 Transform points on a plane among spherical images

Setting the center of a spherical cameraC, say first camera, to be located at the
origin of the world coordinate system, the center of a spherical cameraC′, say
second camera, is shifted from the origin of the world coordinate system by the
translationt without rotation. These spherical cameras observe a pointX on a
plane,

Π : v⊤X− d = 0, (5)

wherev is the normal vector of this plane andd is the distance among this plane
and the origin of the world coordinate system. The pointX is mapped to points

x =
X

|X|
, (6)

x′ =
X − t

|X− t|
, (7)

on the spherical images, respectively. Assuming that the spherical images are on
the unit sphere, the relation|x| = |x′| = 1 holds. From Eqs. (5) and (6), we
obtain the equation,

X =
d

v⊤x
x. (8)

Substitution of the Eq. (8) to Eq. (7) provides the point-to-point mapping:

x′ =
dx − (v⊤x)t

|dx− (v⊤x)t|
. (9)

More generally,x′ is measured in a different coordinate system, which is related
to the coordinate system in the first camera, by a matrixA.

Ax′ =
dx − (v⊤x)t

|dx − (v⊤x)t|
. (10)

Using the same camera, or, in other words, any Cartesian spherical camera,A
becomes a rotation. Therefore, the mapping of the sphericalimages is expressed
as

x′ = R
dx − (v⊤x)t

|dx− (v⊤x)t|
. (11)

See Figure 2 (a).
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3.2 Equal Observation Angle (EOA) Transform

We would like to establish the approximation of homography on spherical images.
We set the first cameraC to the origin of the world coordinate system and the
second cameraC′ shift by translationt = (0, 0, t)⊤ without rotation. The points
on the spherical images ofC andC′ are expressed as

x =





x1

x2

x3



 =





cos ϕ sin θ
sin ϕ sin θ

cos θ



 , (12)

x′ =





x′
1

x′
2

x′
3



 =





cos ϕ′ sin θ′

sin ϕ′ sin θ′

cos θ′



 , (13)

where0 ≤ θ, θ′ < π and0 ≤ ϕ, ϕ′ < 2π. Since we assumed no rotation between
the coordinate systems ofC andC′,

ϕ = ϕ′, (14)

2γ = θ′ − θ, (15)

whereγ is the bisector angle of∠CXC′. From Eqs. (14) and (15), we obtain the
equations,

sin ϕ′ = sin ϕ cos 2γ + sin 2γ cos ϕ, (16)

cos ϕ′ = cos ϕ cos 2γ − sin 2γ sin ϕ. (17)

Substituting Eqs. (16) and (17) to Eq. (13), we have the relation,

x′ = (cos(2γ)x − sin(2γ)y), (18)

where

y =





(x1x3)/
√

1 − x2
3

(x2x3)/
√

1 − x2
3

−
√

1 − x2
3



 ≈





x1x3

x2x3

1



 . (19)

More generally,x′ is measured in a different coordinate system, which is related
to the coordinate system in the first camera, expressed by a rotation matrixR.

x′ = R(cos(2γ)x − sin(2γ)y), (20)

We call this mapping fromx to x′ Equal Observation Angle (EOA) Transform. If
a point of the first camera is on a plane and the normal vector ofthe plane and the
bisector line are almost equivalent, the transform of points on the small region on
the plane (illustrated as gray-colored region in Figure 2 (b)) is approximated by
this EOA transform with the parameterγ.
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Figure 2: (a) General Plane Transform between spherical cameras. (b) Equal-
Observation-Angle Transform between spherical cameras.

3.3 Analysis of scaling on fisheye-to-stereographic mapping

We formulate the mapping from a fisheye image onto a stereographic image. Let
u = (u, v)⊤ ∈ R

2 andu′ = (u′, v′)⊤ ∈ R
2 be the points on the fisheye and

stereographic images, respectively. Settingp = (θ, ϕ)⊤ for 0 ≤ θ < π and
0 ≤ ϕ ≤ 2π to be a point on a unit sphereS2, the mappingh : u 7→ u′ is
expressed in two steps such thatf : u 7→ p and g : p 7→ u′. In the one-
parametric equidistant projection, the mappingf , which is the reverse mapping of
the equidistant projection, is expressed as

p =

(

θ
ϕ

)

=

(

a‖u‖
tan−1(u

v
)

)

, (21)

wherea is a real positive constant which determines the scaling ratio according to
the equidistant projection. The stereographic projectiong is formulated as

u′ = g(p) =
2 tan( θ

2
)

b

(

cos ϕ
sin ϕ

)

,

whereb is a real positive constant which determines the scaling ratio according to
the stereographic projection. Then, the mappingh : u 7→ u′ is

u′ = g(f(u)) =
tan(a′‖u‖)

b′‖u‖
u,
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wherea′ = a/2 andb′ = b/2. The change of the local area betweenu andu′ is
computed from the determinant of JacobianJ . The Jacobian is

J =

(

∂u′

∂u

∂u′

∂v
∂v′

∂u

∂v′

∂v

)

.

The Jacobian determinant|J | is

|J | =
a′

b′2‖u‖

| sin(a′‖u‖)|

| cos3(a′‖u‖)|
.

Since for0 ≤ θ < π sin(a′‖u‖) ≥ 0 andcos3(a′‖u‖) ≥ 0, then

|J | =
a′

b′2‖u‖

sin(a′‖u‖)

cos3(a′‖u‖)
. (22)

Hereafter, we derive the scaling ratio of the mappingh that satisfies the con-
dition |J | <= 1. We setR andR′ are the maximum radii of the fisheye and
stereographic images. Settingθmax to be the maximum angle of the equidistant

projection,a = θmax/R andb =
2 tan( θmax

2
)

R′
. At the point of image center, i.e.

|u| = 0, L’Hospital’s rule leads that

|J ||u‖→0 =
a′2 cos(a′‖u‖)

b′2(cos3(a′‖u‖) − 3a′‖u‖ cos2(a′‖u‖) sin(a′‖u‖))
= (

a′

b′
)2 = (

a

b
)2.

Therefore, we have

|J ||u‖→0 = (
R′

R

θmax

2 tan( θmax

2
)
)2.

For instance, whenθmax = 95◦ andR = 600, R′ ≤ 789.8194 to satisfy|J | ≤ 1.
Finally, it is possible to computeR′ to satisfy the inequality

|J | =
R′

R

θmax

2 tan( θmax

2
)

sin( θmax‖u‖
R

)

cos( θmax‖u‖
R

)
≤ 1.

4 Experimental Analysis

We use the algorithm for extracting affine invariant characterization of DR [5, 4].

1. compute first and second order statistics of MR

2. transform MR to have a unit covariance matrix

3. express data of normalized MR in polar coordinates,
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4. apply one-dimensional FFT alongθ-axis and keep only magnitude of com-
plex numbers,

5. combine coefficients alongr-axis according to polynomialPk(r).

This algorithm gives us a measurement vector for each DR. Using the measure-
ment vectors, we establish tentative correspondence [5, 4].

In this study, for the original fish-eye image and the transformed stereographic
images, we would like to observe how the objects on a plane in the scene are re-
lated for the transforms to polar coordinates if we assume the affine and similarity
transform, respectively.

Figures 7 and 8 show the enlarged parts which include a planarobject (tar-
get: a black circle on white paper) in the rotational and translational sequences,
respectively.

In Figure 7 (a) (also (i)), the normal vector of the plane (target) is almost
identical to the optical axis of spherical camera, i.e. the center of target is at the
center of the image. (See Figure 4 (b).) In Figure 7 (b) (also (j)), the normal vector
is directed perpendicular to the optical axis due to the purerotation of the camera.
Since the target is on the edge of the image, it is significantly affected by the
distortion of fish-eye lens. If stereo correspondences are yielded by a transform
between these two images, we can obtain the stereo correspondences from any two
rotational sequences. In Figure 7, (e) and (f) ((m) and (n)) are the stereographic
images transformed from (a) and (b) ((o) and (p)), respectively. Furthermore,
in Figure 7, (c), (d), (g) and (h) are the polar patches must beexplored from
(a), (b), (e) and (f) based on similarity transform, respectively, and (k), (l), (o),
and (p) are the polar patches obtained from (i), (j), (m), and(n) based on affine
transform. For the two original images related by pure rotation, the polar patches
rectified by a full affine transform yield stereo correspondences but those based on
similarity do not. For the two stereographic images relatedby pure rotation, both
of the polar patches rectified by a similarity and an affine transform yield stereo
correspondences, since, on the stereographic images, circles on a plane are always
observed as a circles (not ellipses).

In Figure 8 (a) (also (i)), the normal vector of the plane (target) is almost iden-
tity to the optical axis of spherical camera. In Figure 8 (b) (also (j)), the normal
vector is directed parallel to the optical axis but the center of target is shifted due
to the pure translation of the camera. (See Figure 4 (d).) Since the target is shifted
to the edge of the image, this target is significantly affected by the distortion of
fish-eye lens. In Figure 7, (e) and (f) ((m) and (n)) are the stereographic images
transformed from (a) and (b) ((o) and (p)), respectively. Furthermore, in Figure 7,
(c), (d), (g) and (h) are the polar patches obtained from (a),(b), (e) and (f) based
on similarity transform, respectively, and (k), (l), (o), and (p) are the polar patches
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obtained from (i), (j), (m), and (n) based on affine transform. For the two orig-
inal images and their stereographic images related by pure translation, the polar
patches rectified by a full affine transform yield stereo correspondences but those
based on similarity do not. In this case, circles on a plane are not mapped as a
circles.

If the black colored circle is printed on center of a piece of square paper,
the white colored region in the polar patches is symmetrical. However, in this
experiment, since the black colored circle is printed on a piece of rectangle paper,
the white colored region in the polar patches is not symmetrical.

These observations leads to the following conclusion. For the two fish-eye
camera images obtained by pure rotation, it is possible to express the transform
of planar objects using similarity if the original images are transformed to stereo-
graphic images. For the images obtained by pure translation, it is necessary to use
full affine transform. However, we have to mention that affinetransform “free”
may be still unnecessarily.

4.1 Feature representation of extracted region

We denote(λi
1, λ

i
2)

⊤ to be the square root of eigenvalues of covariance matrix
related to theith distinguished region (say DR). Assuming that0 ≤ λi

2 ≤ λi
1, DR

will be the interesting region as illustrated in Figure 15 if the eigenvalues satisfy
that,

• λmin ≤ λi
2: λmin is related to the discritization sampling and filtering of

images.λmin(δ, ∆) is defined by∆ ≤ δ to avoid the aliasing. See Figure
15.

• λi
1 ≤ λmax: the view field is practically limited.

Here, we focus on DRs obtained from a steregraphic image. We would like to
reduce the ditortion caused by pure rotation applying geometric transform to each
DR.

We assume that, before pure rotation, as illustrated in Figure 18 (a), we have
a circle on a unit sphere and the centre of the circle corresponds to the pole on
the unit sphere. We denote the radius of the circle asα using the angle. By the
stereographic projection from the north pole to south pole,the circle on the unit
sphere is mapped asc0 onto the stereographic plane which is the tangential plane
at the south pole. We set the radius of the mapped circlec0 asro. We have the
relation between the radiusα andro,

tan(α/2) = r0/2. (23)
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After the pure rotation, that is, the surface of the unit sphere is rotated, as illus-
trated in Figure 18 (b), it is possible to express the rotation asβ on the plane
which passes through the pole of the unit sphere and center ofthe circle on the
unit sphere. After this rotation, the circle on the unit sphere is mapped onto the
stereographic plane asc. We set the radius ofc asr and the distanced between
the center of image and the centroid of the circler in the stereographic image. We
have the relation among the radiusr, the distanced, the angleα of the circle on
the unit sphere and the angle of rotationβ,

r + d = 2 tan(α/2 + β/2), (24)

tan(β/2) = d/2. (25)

Using Eqs. (23) to (24), we have the equation,

r0 =
22r

22 + d2 + rd
. (26)

For ellipses on a stereographic image, we apply this transform to reduce the
distortion induced by pure rotation as approximation. For aDR, we have the
singular valuesλ = (λ1, λ2)

⊤ (assumeλ1 ≥ λ2), which corresponds to the major
axis and minor axis of ellipse, and the distanced which is the distance between
the centroid of the DR and origin of the stereographic image.

We defineσ = (σ1, σ2)

σ1 =
22λ1

22 + d2 + λ1d
, σ2 =

22λ2

22 + d2 + λ2d
, (27)

Figure 15 (b) illustrates the graph on whichσ1 andσ2 are mapped. If(σ1, σ2)
is not included in the colored region in the graph, the distinguished region is too
small or too large to use for stereo matching.

Figure 19 (a) and (b) showσ1 andσ2 of all distinguished regions of the first
original and stereographic image in Fig. 5. Figure 19 (c) and(d) showλ1 andλ2

of all distinguished regions of the first original and stereographic image in Fig. 5.
Figure 20 (a) and (b) showσ1 andσ2 of all distinguished regions of the sixth

original and stereographic image in Fig. 5. Figure 20 (c) and(d) showλ1 andλ2

of all distinguished regions of the sixth original and stereographic image in Fig.
5.

Figure 21 (a) and (b) showσ1 andσ2 of all distinguished regions of the first
original and stereographic image in Fig. 6. Figure 21 (c) and(d) showλ1 andλ2

of all distinguished regions of the first original and stereographic image in Fig. 6.
Figure 22 (a) and (b) showσ1 andσ2 of all distinguished regions of the eighth

original and stereographic image in Fig. 6. Figure 22 (c) and(d) showλ1 andλ2

of all distinguished regions of the eighth original and stereographic image in Fig.
6.
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(a) (b) (c)

Figure 3: Fisheye camera.
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Figure 4: Experimental settings.
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Figure 5: Sequences of images captured by pure rotation. Toptow row shows the
sequence of original images. Bottom tow row shows the sequence of stereographic
images.
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Figure 6: Sequences of images captured by pure translation.Top tow row shows
the sequence of original images. Bottom tow row shows the sequence of stereo-
graphic images.
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Similarity Transform Affine Transform
Original Stereographic Original Stereographic

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure 7: Enlarged parts of rotational images and their polar patches. (a) to (d):
original images and their polar patches estimated by similarity transform. (e) to
(h): stereographic images and their polar patches estimated by similarity trans-
form. (i) to (l): original images and their polar patches estimated by affine trans-
form. (e) to (h): stereographic images and their polar patches estimated by affine
transform.

Similarity Transform Affine Transform
Original Stereographic Original Stereographic

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure 8: Enlarged parts of translational images and their polar patches. (a) to
(d): original images and their polar patches estimated by similarity transform.
(e) to (h): stereographic images and their polar patches estimated by similarity
transform. (i) to (l): original images and their polar patches estimated by affine
transform. (e) to (h): stereographic images and their polarpatches estimated by
affine transform.
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Original Rotational Images

Polar Patches by Similarity Transform

Polar Patches by Affine Transform

Figure 9: Original rotational images (top row), polar patches estimated by sim-
ilarity transform (middle row), and polar patches estimated by affine transform
(bottom row).
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Stereographic Rotational Images

Polar Patches by Similarity Transform

Polar Patches by Affine Transform

Figure 10: Stereographic rotational images (top row), polar patches estimated by
similarity transform (middle row), and polar patches estimated by affine transform
(bottom row).
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Original Translational Images

Polar Patches by Similarity Transform

Polar Patches by Affine Transform

Figure 11: Original translational images (top row), polar patches estimated by
similarity transform (middle row), and polar patches estimated by affine transform
(bottom row).
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Stereographic Translational Images

Polar Patches by Similarity Transform

Polar Patches by Affine Transform

Figure 12: Stereographic translational images (top row), polar patches estimated
by similarity transform (middle row), and polar patches estimated by affine trans-
form (bottom row).

Perspective Rotational Images

Polar Patches by Affine Transform

Figure 13: Perspective rotational images (top row), and polar patches estimated
by affine transform (bottom row).
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Original Translational Images

Polar Patches by Similarity Transform

Figure 14: Perspective translational images (top row), andpolar patches estimated
by affine transform (bottom row).
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Figure 15: Interesting Regions.
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Figure 16:λ of DR of the rotational (left) and translational (right) image sequence.
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Figure 17:σ of DR of the rotational (left) and translational (right) image sequence.
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Figure 18: Pure rotation and stereographic projection
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Figure 19: (a) and (b):σ1 andσ2 of all distinguished regions of the first original
and stereographic image in Fig. 5. (c) and (d):λ1 andλ2 of all distinguished
regions of the first original and stereographic image in Fig.5.
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Figure 20: (a) and (b):σ1 andσ2 of all distinguished regions of the sixth original
and stereographic image in Fig. 5. (c) and (d):λ1 andλ2 of all distinguished
regions of the sixth original and stereographic image in Fig. 5.
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Figure 21: (a) and (b):σ1 andσ2 of all distinguished regions of the first original
and stereographic image in Fig. 6. (c) and (d):λ1 andλ2 of all distinguished
regions of the first original and stereographic image in Fig.6.
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Figure 22: (a) and (b):σ1 andσ2 of all distinguished regions of the eighth original
and stereographic image in Fig. 6. (c) and (d):λ1 andλ2 of all distinguished
regions of the eighth original and stereographic image in Fig. 6.
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gions for wide-baseline stereo. Research Report CTU–CMP–2001–33, Cen-
ter for Machine Perception, K333 FEE Czech Technical University, Prague,
Czech Republic, November 2001.

[6] Jiřı́ Matas, Ondřej Chum, Martin Urban, and Tomáš Pajdla. Robust wide-
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