
Insperata accident magis saepe quam quae speres. 
(Things you do not expect happen more often than
things you do expect)   Plautus (ca 200(B.C.)

Project no: 027787

DIRAC

Detection and Identification of Rare Audio-visual Cues

Integrated Project
IST - Priority 2

DELIVERABLE NO: D1.7
Incongruence Detection in
Audio-Visual Processing

Date of deliverable:2008-12-31
Actual submission date: 2009-02-10

Start date of project: 01.01.2006 Duration: 60 months

Organization name of lead contractor for this deliverable: ex: 
Czech Technical University CTU

Revision 1

Project co-funded by the European Commission within the Sixth Framework Program (2002-
2006)

Dissemination Level
PU Public
PP Restricted to other program participants (including the Commission Services) X
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission 

Services)



Insperata accident magis saepe quam quae speres. 
(Things you do not expect happen more often than
things you do expect)   Plautus (ca 200(B.C.)

I N C O N G R U E N C E  D E T E C T I O N  I N  A U D I O -
V I S U A L  P R O C E S S I N G

Czech Technical University

A bst r act:

Inte ll igent systems compare the ir inherent mode l of the universe, the “ theory of the 
universe” , w ith observations and measurements they make. In this work we first 
investigate the theory of incongruence detection developed in [27, 32] and try to see 
it as a mechanism for theory testing, falsification, and rectification . N ext we look at 
some examples of incongruences in audio-visual processing, ranging form ‘low-level’ 
to ‘high-level’ analysis.



Insperata accident magis saepe quam quae speres. 
(Things you do not expect happen more often than
things you do expect)   Plautus (ca 200(B.C.)

Tab le of Content

1. O verv ie w of the report 1

2. Importance of Incongruence Detect ion 2
2.1 Theory of Incongruence in C lassificat ion and Reasoning 2
2.2 Build ing and Rebuild ing a “Theory of the U niverse” 7

3. A udio-V isual Speaker Detector 9
3.1 A pplicat ion of the Theory of Incongruence 9
3.2 D irect A udio C lassifier 11
3.2.1 Descript ion of the Speech Detector 11
3.2.2 Features for the A udio C lassifier 13
3.2.3 O ngoing an Future Work 14
3.3 D irect V isual C lassifier 15
3.4 D irect A udio-V isual C lassifier 16
3.4.1 Combinat ion of Features 17
3.4.2 Combinat ion of C lassifiers 17
3.5 Experimental Results 19
3.5.1 A W E A R Data 19
3.5.2 A W E A R 2.0 Data 21

4 Detect ion Incongruences on Sensor and Low-Level 
Signal Processing 26

4.1 Detect ion A bnormal Situat ions in Image Matching
A nd Camera Tracking 29

4.2 Incongruences in Camera Tracking 35

5 Incongruence detect ion in mult iple level-of-detail tracking 35
5.1 M ult i-Body Tracking 36
5.2 A rt iculated Tracking 37
5.3 Incongruence Detect ion 38

6 Conclusion 40
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J. Heller1, A. Torii1, A. Ess2, J.-H. Bach3, H. Kayser3,

J. Anemüller3, P. Van Hengel4

December 19, 2008

Abstract

Intelligent systems compare their inherent model of the universe,
the “theory of the universe”, with observations and measurements
they make. In this work we first investigate the theory of incongruence
detection developed in [27, 32] and try to see it as a mechanism for
theory testing, falsification, and rectification. Next we look at some
examples of incongruences in audio-visual processing, ranging from
‘low-level’ to ‘high-level’ analysis.

1 Overview of the report

This paper consists of two major parts. Section 2 discusses the basic ideas
underlying the work. These tie in with and extend those expounded in earlier
documents by the Dirac consortium about its vision on how to define what
‘rare events’ are. In a nutshell, these are seen to correspond to incongruences
between different classifiers that analyse the same data, and where some
classifiers exploit stronger expectations about the world than others.

The second part of the report exemplifies the ideas and concepts of sec-
tion 2 with some examples. These include experiments on the detection of
incongruence in the analysis of audio-visual signals at different levels (sec-
tion 3, Dirac WPs 1, 2, 5, and 6), on the detection of image acquisition
anomalies (section 4, Dirac WP1), and on the detection of unexpected events
at the level of tracking humans (section 5, Dirac WPs 3 and 6).
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2 Importance of Incongruence Detection

Intelligent systems compare their inherent model of the universe, the “theory
of the universe”, with observations they make. The comparison of conclu-
sions made by reasoning about well established building blocks of the theory
with direct measurements associated with the conclusions allow to falsify [28]
current theory and to invoke a rectification of the theory by learning from
observations or restructuring the derivation scheme of the theory. It is the
disagreement – incongruence – between the theory, i.e. derived conclusions,
and direct observations that allows for developing a richer and better model
of the world.

In particular, we investigate the theory of incongruence detection as al-
ready propounded by the Dirac consortium in earlier publications [27, 32]
and then add comments about alternative forms of incongruence that figure
within the scope of the same framework, but are not Dirac’s focus. Also, we
raise the issues on the actions that would seem an appropriate response to
the different types of incongruences.

2.1 Theory of Incongruence in Classification and Rea-

soning

The contributions [27, 32] proposed an approach to modeling incongruences
between classifiers which decide about occurrence of concepts (events) via
two different routes of reasoning. The first way uses a single direct classifier
trained on complete, usually complex and compound, data to decide about
the presence of an event. The alternative way decides about the event by
using a composite classifier, which combines outputs of several (in [27, 32] di-
rect but in general possibly also other composite) classifiers in a probabilistic
(logical) way.

[27, 32] assume direct classifiers to be independent, and therefore combine
probabilities by multiplication for the “part-membership hierarchy”, resp. by
addition for the “class-membership hierarchy”. Assuming a trivial probabil-
ity space with values 0 and 1, this coincides with logical AND and logical
OR operations. Such reasoning hence corresponds to Boolean algebra [12].
In the sequel we will look at this simplified case. The general case can be
analyzed in a similar way.

According to [27, 32], the “part-membership hierarchy” concludes that
there is an event iff all parts are present. For instance, to derive a dog, there
must be a head, legs, and a tail present. This would be modeled in the set-
theoretical model of Boolean algebra by observing a nonempty intersection
of sets corresponding to the head, the legs, and the tail. In other words,
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dog is the infimum of head, legs, and tail in the partial order induced by the
Boolean algebra used to reason about dogs.

Analogically, “class-membership hierarchy” considers an event to occur
iff at least one of its possible instances has been observed. For instance, to
derive a dog, one of the known specific dog events (Afghan, Beagle, Collie)
has to be present. This would be modeled by observing a nonempty union
of the sets corresponding to Afghan, Beagle, Collie. The dog concept is the
supremum of the Afghan, Beagle, and Collie concepts.

Independence of the direct classifiers implies that the probability Qa(X)
of an event a derived by a direct classifier from observation X must be the
same as the probability Qg

a(X), resp. Qs
a(X) derived by a combination of the

probabilities Qgj
(X), resp. Qsi

(X), of other (lower level) classifiers:

Qa(X)
!
= Qg

a(X) =
∏

j

Qgj
(X)

for the “part-membership hierarchy” and

Qa(X)
!
= Qs

a(X) =
∑

i

Qsi
(X)

for the “class-membership hierarchy”.
Disagreement can appear between different derivations of an event. In

general, there are four situations:

Qg
a(X) ! Qa(X) Qa(X) ! Qg

a(X)

Qs
a(X) ! Qa(X) Qa(X) ! Qs

a(X)

In [27, 32], an observation X is called incongruent iff Qg
a(X) ! Qa(X) or

Qa(X) ! Qs
a(X). In other words, [27, 32] are interested in situations when

infj{gj} ! a and a ! supi{si}.
In [27, 32], classifier Qg

a is considered more general than classifier Qa,
since it is constructed as the infimum of elements greater than a. Analogi-
cally, classifier Qa is considered more general than classifier Qs

a, since Qs
a is

constructed as the supremum of elements lower than a. In this way, “more
general” corresponds to “greater” in the Boolean algebra. The term specific
is dual to the term general, i.e. we can say “more specific” instead of “less
general”.

According to the primary focus in the Dirac project, an observation X is
incongruent iff the general classifier of an event fires on X and the specific
classifier of the event does not fire on X (see [27, 32] for a more detailed
discussion of this case). Table 1 offers an extension of a table from [27, 32]
by showing the relationship between Qa, Qs

a, and Qg
a.
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General level Specific level possible reason
1 0 " Qg

a " Qa " 0 reject reject noisyX
0 " Qa " Qs

a " 0 new a

2 1 " Qg
a ! Qa " 0 accept reject incongruent a

1 " Qa ! Qs
a " 0

3 0 " Qg
a # Qa " 1 reject accept inconsistent PO

0 " Qa # Qs
a " 1 models wrong/incomplete

4 1 " Qg
a " Qa " 1 accept accept known a

1 " Qa " Qs
a " 1

Table 1: Interpretation of agreement/disagreement of classifiers in [27, 32].

We now go through the different cases that are lined up as rows in Table 1,
also in an effort to take more fully account of the presence of noise in real
data, than in the initial discussion of [27, 32].

• Case 1. The first row, where neither the general nor the specific clas-
sifier detects the targeted pattern, points at the event’s absence (back-
ground) or, otherwise, the presence of strong noise on the observations.
There is little else one can then do than to collect all such cases in the
hope of learning new event types, ideally in an unsupervised way. Noise
will be random enough in order not to be learned as corresponding to
a novel kind of event. That would at least be the expectation.

• Case 3. The third row in the table – “models are wrong / incomplete”
– can be interpreted as “the direct classifiers Qgj

, which are combined
in the composite classifier Qg

a, do not correctly capture all cases that are
captured by the direct classifier Qa”. The situation “inconsistent with
partial order” can be interpreted as “the combination rule of the com-
posite classifier Qg

a is not sufficient”. In general, when the more general
classifier (which less heavily relies on prior knowledge about the world)
does not respond positively to a pattern, but the more specific classi-
fier does, then this points at a situation where the model at the general
level needs to be revised. This is a situation that may happen quite
often in real systems, as knowledge about the world is typically invoked
to gain robustness. The more specific classifier, which calls on stronger
priors one could say, may therefore survive noisy conditions, whereas
the more general classifier can no longer cope. Moreover, the specific
classifier may deal with a strict subset of cases which the general clas-
sifier has to handle. Here, it is useful to think of the class-membership
hierarchy discussed in [27, 32]. As an example, if one has a tracker
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that detects human motion as the general module, then more specific
modules could be specialised on specific types of human motion, like
walking, running, hopping, etc. Whereas each of the specific modules
can carve out a smaller part of parameter space, the general one has
the hard job of enclosing the union of quite diverse activities within
its decision boundaries. Therefore, a somewhat deviant style of walk-
ing may still be picked up by the specialised walking module, which is
able to sufficiently generalise within the rather small subset of patterns,
but not by the general motion one. The possible action in such cases
would be to take the missed pattern as a very interesting one for re-
training the weaker module. This is comparable to giving an increased
weight to misclassified examples in boosting. Picking up these exam-
ples wouldn’t require supervision if such Dirac pipeline is implemented.
The above example is an innocent version of Case 3. Worse would be
if we have trained a human motion detector/tracker and a walking de-
tector/tracker, but walking patterns would have actually never been
observed by the former. Then there is something fundamentally wrong
about our world model. More to this is to follow.

• Case 2. As said, the initial Dirac documents [27, 32], mainly discussed
the situation in the 2nd row. This is indeed the relevant case when one
wants to detect events that are novel or ‘surprising’ to the system. The
general classifier can recognizes the pattern, but the specific one does
not. Taking the tracking example again, the system maybe only has
specific trackers for walking and running so far, but now observes hop-
ping. The general human motion tracker responds positively, but the
specific level lacks the module to deal with this novel case. Something
genuinely new about the world can be learnt by the system. Again, it
could collect such cases and try to cluster similar observations to create
a new, specific hopping detector/tracker. We won’t discuss this case
further here, as indeed it has been covered extensively by the earlier
Dirac documents.

• Case 4. This is a case where the generic and specific levels all recog-
nize the pattern. Normally, the system is operating in cruise mode and
no action is required. Yet, even here a special case may occur. Even if
the general and the specific classifiers recognize the pattern, they may
disagree. This case has not been highlighted in the table, but is nev-
ertheless interesting as well. An example situation could be when two
people cross each other. Blob trackers following each one of the two
people may get confused and after the crossing switch targets. Trackers
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informed about normal walking would object against a sudden reversal
of direction and would show a higher resiliance, sticking to their original
targets. Conflicting interpretations emerge at the different levels, and
at least one must be wrong. Typically, the higher robustness against
noise of the specific classifier may let an arbitration scheme tend to
prefer its interpretation. An example from speech is when a series of
phonemes are recognised by a weaker classifier and a word by a specific
classifier (more informed as it knows about the language spoken). It
would stand to reason to rather believe the latter. Yet, in all such cases
there is a risk that such decision is wrong. If, for instance, the speaker
suddenly utters a word from another language (out-of-vocabulary con-
dition), the specific classifier would be lead astray with high probability.

All direct and composite classifiers and their relationships captured by
the partial order of the Boolean algebra used to derive composite classifiers
from the direct ones can be viewed as currently the best “theory of the uni-
verse”. As to this theory, there is a fundamental difference between cases 2
and 3, as we will now illustrate through the relationship between Qq

a and Qa.
The relationship between Qa and Qs

a is similar.
We have several direct classifiers that generate events (concepts). They are
related as gm, gm−1, . . . , g1 > a > s1, . . . , sn−1, sn. We expect Qg

a " Qa " Qs
a

and thus all other cases contradict our expectation. However, it follows from
the construction of Qg

a, which is obtained as the greatest lower bound (infi-
mum) of gj ≥ a, that Qg

a ≥ Qa. Thus Qg
a ! Qa contradicts our expectation

but is consistent with the fact that the infimum of elements greater than a
(provided it exists) is also greater or equal than a. Such large gap can be
caused by “forgetting” some parts which a consists of. For instance, when
detecting a dog, we should often get higher support for the conjunction of
head, legs, and tail than for a complete dog since we may be ignoring many
important doggish properties, e.g. that the head is above the legs and far
from the tail. The gap is also an indication that we should try to look for
additional concepts which could be added to lower the infimum (which was
too high) and thus improve our “theory of the universe”.
In contradistinction, Qg

a # Qa not only contradicts our expectation, but is
also contradicting the theory itself since it says that the infj{gj} < a for
gj ≥ a, which is impossible in a consistent theory. This means that our “the-
ory of the universe” is wrong and must be repaired, or at the least that there
are flaws in our implementation. Therefore, assuming a consistent theory
in a world with perfect measurements, case 3 is impossible. This does not
mean that it is not interesting in practice. As already noted before, it is as
it points at measures necessary to repair our view of the world, i.e. the ac-
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G S Explanation Action
1 0 " Q

g
a " Qa " 0 × × unknown concept train new direct Qc

0 " Qa " Qs
a " 0 not explained set Qs

c = 0 & Q
g
c = 1

2 1 " Q
g
a ! Qa " 0

√
× known concept augment Q

g
a, Q

s
a

1 " Qa ! Qs
a " 0 not explained to best explain Qa

3 0 " Q
g
a # Qa " 1 ×

√
inconsistent theory remove links of Q

g
a, Qa, Q

s
a

0 " Qa # Qs
a " 1 wrong direct class. discard solitaire Q’s, goto 1

4 1 " Q
g
a " Qa " 1

√ √
known concept update all classifiers

1 " Qa " Qs
a " 1 explained

Table 2: The interpretation of agreement/disagreement of classifiers, which
can be used to build and rebuild the “theory of the universe”.

tions of the classifiers. The “theory” is challenged by this case. Repairing a
complete theory is likely to be much harder than just refining it. No wonder
that these cases are often completely ignored [24]. However, every practi-
cal mechanism for deriving a “theory of the universe” from observations will
require dealing with case 3.

Case 2 [27, 32] boils down to detecting insufficiencies of the “theory”
within the “theory”. Working with case 3 means to work with the “theory”
from outside [15] and to be ready for rejecting the old “theory” and building
a new one. From this point of view, Table 1 can be updated as shown in
Table 2.

2.2 Building and Rebuilding a “Theory of the Uni-

verse”

It would be appealing to use incongruences and inconsistencies between clas-
sifiers as described in Table 2 for building and rebuilding a “theory of the
universe”.

We say that a concept a is known if there exists a corresponding direct
classifier Qa. We say that a concept a is explained if it is derived from other
elements than 0 and 1, i.e. Qs

a '= 0 and Qq
a '= 1.

The last column of Table 2 presents the actions that should be taken in
order to build, maintain and rebuild the “theory” from observations:

1. Initialize: Qa by X1, Qs
a = 0 & Qg

a = 1.

2. For each new Xk evaluate Qs
a(Xk), Qa(Xk), Qg

a(Xk) for all a and check
cases from Table 2:

case 1 (unknown concept, not explained)
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• train new direct Qc

• set Qs
c = 0 & Qg

c = 1

case 2 (known concept, not explained)

• augment Qg
a, Q

s
a to best explain Qa

case 3 (inconsistent theory)

• remove links of Qg
a, Qa, Q

s
a

• discard solitaire Q’s, goto case 1 with c:=a

(wrong direct classifier)

• re-train direct Qa

case 4 (known concept)

• update all classifiers

The above algorithm should capture the spirit of the approach rather than
all the details. In particular, it is interesting to study whether and under
which conditions such approach converges and how to avoid infinite cycles.
It is also not clear at the moment how to distinguish incorrect theory from
a wrong direct classifier.

The detection and analysis of incongruences comes almost as a necessary
condition to construct intelligent audio-visual systems that work robustly. It
is generally accepted that a pure bottom-up analysis from signals to semantic
interpretations is not the way to go. Powerful speech recognition hinges on
knowledge about a language and its words. Robust human tracking needs
to exploit knowledge about human behaviour. In Dirac parlance, specific
classifiers need to give feedback to weaker ones, i.e. feedback is an important
control mechanism in this area just as it is in many other disciplines. With
the concept of “cognitive loops”, the Dirac project endeavours to also provide
feedback from higher levels than usual to low levels. If all goes well, feedback
will have its intended, robustifying and stabilizing effect. Yet, erroneous
feedback may also amplify errors. In general, the discussion so far looks
at the results of weaker and specific classifiers as independent outputs, that
then can then be compared. In practice, such classifiers will often be coupled
into a system, where bi-directional influences are part of the design. Finding
out about incongruences should guard the system from getting into error
amplifying modes. For instance, a blob tracker with some loose notion of
continuous trajectories may help a walking tracker to focus on a small area
of interest. The detailed, articulated motion analysis of the latter can help
the blob tracker to better predict where to go next. All goes well, until the
person starts to run. If the system doesn’t have the notion of running (no
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Figure 1: (a) The event “Speaker” is recognized in two ways, both by a holis-
tic (direct) classifier, which is trained directly from complete audio-visual
data, and by a composite classifier, which evaluates the conjunction of “hu-
man sound” and “human look” direct classifiers. (b) “Speaker” is given
by the intersection of sets representing “human sound” and “human look”,
which corresponds to the infimum in the Boolean POSET (c).

specific running tracker to switch to, such switching behaviour has already
been demonstrated by Dirac), then the walking tracker will hold the blob
tracker back, and will actually increase the chance of the target being lost
altogether. Therefore, incongruences can serve as warning flags that business-
as-usual has to be aborted. Again, these are initial ideas.

To get more insights, we shall next study several examples of incongru-
ences.

3 Audio-Visual Speaker Detector

As a first application of the above theory, the following section explores an
audio-visual speaker detector.

3.1 Application of the Theory of Incongruence

Figure 1 shows an example of the “Speaker event” that is recognized in two
ways, either by a direct classifier, which is trained directly from complete
audio-visual data, or by a composite classifier that evaluates the conjunction
of separate “Human sound event” and “Human look event” direct classifiers.
“Speaker” is given by the intersection of the sets representing “human sound”
and “human look” which corresponds to the infimum in the Boolean partially
ordered set (POSET). In the language of [27, 32], the composite classifier
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corresponds to the general level (i.e. to Qg
speaker) while the direct classifier

corresponds to the specific level (i.e. to Qspeaker).

The direct audio classifier (see Section 3.2) detects localized auditory
objects, e.g. from a person speaking, in the scene. It finds the strongest
response and compares it to a threshold. A side-product of the detector is
the position of the strongest audio detection. The direct visual classifier (see
Section 3.3) detects human body shape in an image. It finds the strongest
response and compares it to a threshold. A side-product of the detector is the
position of the strongest visual detection. The direct audio-visual classifier
(see Section 3.4) detects the presence of a speaker. It finds the strongest
response and compares it to a threshold. A side-product of the detector is
the position of the strongest audio-visual detection.

The composite audio-visual classifier is constructed as the conjunction of
the direct audio and visual classifiers, Figure 1. Its decision is constructed
from the decisions of the separate classifiers using logical AND.

Figure 2 shows a scene with a person and a loudspeaker. Two situations
are shown: (i) silent person and speaking loudspeaker, Figure 2(a), and (ii)
speaking person and silent loudspeaker, Figure 2(b).

After presenting a scene with a silent person and speaking loudspeaker,
the composite audio-visual classifier fires but the direct audio-visual classifier
does not give a positive answer, thus creating a disagreement, incongruence,
between classifiers.

This disagreement could be removed in two ways. Either the direct audio-
visual classifier needs to be updated or the compound audio-visual classifier
has to be modified. In the former case, a new positive example should be
presented to the direct audio-visual classifier. In the latter case, a new sound-
and-look concept has to be initiated. The compound audio-visual classifier
is disassociated from the speaker concept, a new sound-and-look concept is
created and associated to the compound classifier. This new concept will be
greater than the speaker concept.

In order to derive the speaker concept from the sound-and-look concept,
another concept – the concept of spatial congruence – would need to be
defined, e.g., by providing its direct classifier. As the simplest direct classifier
is defined by a mere list of examples and the nearest neighbor classification
rule, we set positive examples to those with positive sound-and-look and with
positive response of direct speaker classifier. The negative examples will then
be those with positive sound-and-look response but negative direct speaker
classifier response. Table 3 interprets the results of the speaker detection.
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speaking loudspeaker, silent person silent loudspeaker, speaking person

(a) (b)

Figure 2: Conceptual sketch for speaker detection. (a) Direct audio (green)
and direct visual (red) classifiers accept, so does the composite audio-visual
classifier (magenta). As the direct audio-visual classifier rejects, incongruence
appears. (b) If the direct audio-visual classifier (cyan) also accepts, this
situation is not incongruent.

Composite Qg
a Direct Qa Possible reason

(general level) (specific level)
1 0 " Qg

a " Qa " 0 reject reject empty silent scene

2 1 " Qg
a ! Qa " 0 accept reject silent person

speaking loudspeaker
3 0 " Qg

a # Qa " 1 reject accept inconsistent POSET
wrong model

4 1 " Qg
a " Qa " 1 accept accept speaking person

Table 3: Interpretation of agreement/disagreement for example from Fig-
ure 1.

3.2 Direct Audio Classifier

3.2.1 Description of the Speech Detector

One branch of the audio-only processing pipeline is an automatic speech de-
tector. The detector is part of a more general acoustic source detector and
is based on modulation features. Specifically, we use amplitude modulation
spectrograms (”AMS”, [22, 11]) that have been adapted as outlined below in
order to be largely invariant to speaker and channel variations. The choice
of a modulation-based representation is motivated by the well-known impor-
tance in human and machine recognition of speech [8, 19] of modulation fre-
quencies (fm) in the range between 2Hz and 8Hz. Different modulation-based
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Figure 3: GCC-PHAT correlation of acoustic signal from two microphones.
Signal is normalized independently in each window by dividing by its max-
imum. (a) Superposition of 50 positive examples. (b) Superposition of 50
negative examples.

representation have been employed for several tasks in speech processing and
acoustic scene analysis, see e.g . [5, 26].

The AMS analyzes sound signals with respect to their modulation con-
tent by decomposing them into a 3-dimensional representation along the
axes of time, frequency and modulation-frequency. The variant of the AMS
employed here is tailored to be largely invariant and therefore robust with
respect to (a) pitch variations between different speakers and (b) spectral
distortions (channel noise) of the signal. It is computed (cf. Fig. 3) by first
extracting the spectral envelopes of the acoustic signal via an FFT (32 ms
Hann window, 4 ms shift), squared magnitude and Bark-band computation
[33]. A subsequent logarithmic compression transforms channel noise into an
additive term in each spectral band. A second FFT (1 s Hann window, 500
ms shift) is applied within each spectral band to split it into different mod-
ulation spectral bands. Additive terms are isolated into the DC-band which
is subsequently discarded, thereby making the representation largely invari-
ant with respect to channel noise. The method finishes with an envelope
extraction and log-compression step. A single slice of the amplitude modula-
tion spectrogram captures the spectral and modulation spectral information
within a one second long window. By sliding the window over the signal, the
temporal trajectory of modulation patterns is obtained. Our AMS decompo-
sition uses 17 (Bark-)spectral (50 Hz to 3400 Hz) and 29 modulation-spectral
(2 Hz to 30 Hz) bands, resulting in a 493-dimensional representation of the
signal.

The classification backend employed consists of a standard support-vector-
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machine classifier (libSVM), which was used with a linear kernel as pilot ex-
periments did not clearly indicate a significant gain with non-linear kernels
on these data. Classifier accuracy during the feature selection stage has been
determined using five-fold cross-validation. The cross-validation folds have
been chosen as contiguous parts of the training data to avoid artificially high
cross-validation accuracy scores.

This classifier shows very good results even in very adverse conditions
(SNRs down to -20dB) and outperforms a standard voice activity detection
scheme by far [1].

3.2.2 Features for the Audio Classifier

The direct audio classifier is based on the minimization of the L2 norm of the
difference of the Generalized Cross Correlation with Phase Transform (GCC-
PHAT) [23] and a model of a positive response. The GCC is an extension
of the cross power spectral density function, which is given by the Fourier
transform of the cross correlation. Given two signals x1(n) and x2(n), it is
defined as:

G(n) =
1

2π

∫ ∞

−∞

H1(ω)H∗
2 (ω) · X1(ω)X∗

2 (ω)eiωndω, (1)

where X1(ω) and X2(ω) are the Fourier transforms of the respective signals
and the term H1(ω)H∗

2 (ω) denotes a general frequency weighting.
In the case of PHAT, the amplitudes of the input signals are normalized to
unity, H1(ω)H∗

2 (ω) = 1
|X1(ω)X∗

2
(ω)| :

GPHAT (n) =
1

2π

∫ ∞

−∞

X1(ω)X∗
2 (ω)

|X1(ω)X∗
2 (ω)|

eiωndω, (2)

such that only the phase difference between the input signals is preserved.
Technically, a 320-dimensional GCC-PHAT vector is provided for every video
frame, covering an angular field of 180◦ in front of the camera having the view
direction at 90◦, see Figure 5.

A model of a positive GCC-PHAT response, M , was computed as a point-
wise mean of 29 manually annotated positive responses – 51-dimensional
subvectors of several GCC-PHAT vectors from training sequences, see Fig-
ure 4. Notice the peak and the ringing, the characteristic shape of a positive
GCC-PHAT response.

The direct audio classifier compares the model M to the scaled GCC-
PHAT subvectors G in a sliding window fashion:

EA(x) =
25

∑

k=−25

∥

∥

∥

∥

M(i) −
G(x + k)

maxl∈〈−25,25〉(|G(x + l)|)

∥

∥

∥

∥

2

. (3)
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Figure 4: (a) The model of a positive GCC-PHAT response for the direct
audio classifier. (b) Example of several normalized subvectors of a G function
classified as negative.

An example of the vector EA for a given vector GCC-PHAT G is shown in
Figure 5. The response of the direct audio classifier is decided by comparing
min(EA) to a threshold value TEA

. If G is a GCC-PHAT vector incident to
a frame f :

min(EA) < TEA
: There is a sound incident to the frame f,

min(EA) ≥ TEA
: There is no sound incident to the frame f.

We trained with TEA
:= 0.35 in our experiments, which is rather conservative.

Therefore several false negatives may appear.

3.2.3 Ongoing and Future Work

Current work concentrates on the enhancement of the GCC-algorithms and
postprocessing techniques such as oversampling to increase angular resolu-
tion, short time averaging and thresholding. Preliminary experiments are
promising.

With results from the GCC-based angle estimation, the implementation
of an angle-dependent source predictor is the next step: The GCC is used to
produce a feature vector for each angle as follows. A window is slid over the
whole correlation pattern assigning the data points within the window as a
feature vector to that particular angle. The feature vectors for each angle are
associated with a boolean label (source present or not) to compile a labelled
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Figure 5: Blue: Example of GCC-PHAT cross-correlation of a stereo audio
recording incident to a video frame. Red: L2 norm of a difference of the model
of a positive GCC-PHAT response and 51 degrees wide sliding window scaled
to 1; green diamond represents the minimum.

data set. The resulting data set is used to train a Support Vector Machine,
which will then be used to indicate appearance of sound sources at specific
angles. By sliding through all available angels (-90 to +90), we construct a
detector for simultaneously active localized sound sources whose number is
only limited by practical concerns.

An obvious step to integrate some of the the algorithms developed so far is
to couple this knowledge about source positions with the source classification
framework. One conceivable approach to this end is to employ beamformer
algorithms to acoustically “look” in the directions of interest as indicated by
the GCC estimation. This angle-dependent data could then be fed into a
slightly adopted hierarchical version of the classificator.

3.3 Direct Visual Classifier

Figure 8 shows a rectified large FOV image from the the AWEAR acquisition
setup reprojected using cylindrical rectification [31]. The view field covers
180◦ horizontally.

The state-of-the-art paradigm to visual human detection [6] classifies ev-
ery reasonable image window as containing a human-like shape or not, on the
basis of HOG features. Here we adopt the assumption that the ground plane
is parallel to the image, which can be achieved e.g. by correcting for camera
motion using camera tracking and pose estimation [30]. Therefore, one can
confine the search to rectangles that get taller with human proportions, like
150-190 cm tall and 50-80 cm wide, while standing on the ground plane.
HoG (see Figure 6) visual features can be computed in each such rectangle
as described below.
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Figure 6: Histograms of oriented Gradients (HoG) features used inside the
direct visual classifier. Image courtesy of [6].

The INRIA OLT detector toolkit [16] was chosen to detect the person. It
is based on the histograms of oriented gradients (HoG) algorithm presented
by Dalal and Triggs [6]. The method superimposes a dense grid over the
detection window, producing a 3780 dimensional vector (see below). These
vectors are used to train a linear SVM classifier. A detection window of
64×128 pixels is divided into cells of 8×8 pixels. Each group of 2×2 cells is
then integrated into overlapping blocks. Each cell consists of 9-bin HoG that
are concatenated for each block and normalized using the L2 norm. Each
detection window consists of 7 × 15 blocks resulting in 3780 features. See
Figure 8 for an example of the feature vector of a detection window. As the
cylindrical projection image is locally sufficiently similar to the perspective
one, the detector was trained on perspective images, for which data are more
readily available.

The response of the direct visual classifier is decided by comparing the
confidence of the best detection to a threshold. We obtained a threshold equal
to 0.01 during training, which is quite optimistic. Several false positives may
appear.

3.4 Direct Audio-Visual Classifier

In this paragraph we describe possible ways of how to obtain a direct audio-
visual classifier, i.e. a detector of objects that look like a human being pro-
ducing human-like sounds, e.g. a speaking person.

Contrary to combining the results of visual detectors of humans, either
generative [9] or discriminative [6], with speech sound detection [29] using
Boolean logic or some uncertainty modeling, we aim at combining visual

16



and acoustic measurements on a lower level in a way suitable for detecting
incidence of human-like shape and human-like sound. We wish to investigate
inherent correlations between such shapes and sounds and test whether we
can obtain a more reliable or a more specific detector compared to combining
just the decisions of the two detectors. This approach has been proven useful
in some other situation when detecting audio-visual events [20].

The direct combined detector takes audio and visual features computed
in each angular window and returns a decision about the presence of a sound-
ing human in that window. This can in principle be done (i) by combining
features into a common feature space (normed linear space) or (ii) by com-
bining the soft decisions (confidences) of individual classifiers together with
tuning their parameters in order to achieve the best performance on training
data. Next we investigate these two approaches.

3.4.1 Combination of Features

In principle, features can be directly combined into a common feature space
in which a single (e.g. SVM) classifier can be trained. Acquiring such train-
ing data, however, is not trivial. In particular, it is difficult to record a large
number of sounding people. On the other hand, it is no problem to construct
such data by combining image and sound separately. Positive examples can
be constructed by concatenating positive visual examples with positive au-
dio examples, i.e. sounding human shapes. The negative examples are then
constructed by the three remaining combinations, i.e. silent human shapes,
as well as sounding and silent non-human shapes.

Visual and acoustic data are of a different physical nature and it thus
hardly makes sense to just concatenate them into a common array. We need
suitable feature transformations to obtain comparable distributions.

This approach was tested on data recorded with the AWEAR platform
(see Section 3.5.1). Unfortunately, we were unable to find such transfor-
mations that would bring the features into a common normed linear space.
Hence, the training of the direct audio-visual classifier using this approach
was not successful.

3.4.2 Combination of Classifiers

In the past years, several methods to combine classifiers have been devel-
oped [21, 4, 3]. Two popular approaches worth mentioning are adaptive
boosting [4] and Neyman-Pearson optimal combination [3].

These two approaches are complementary in what can be done to the
classifiers that are combined. Adaptive boosting looks for the optimal linear
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combination of the decisions of iteratively re-trained classifiers [4]. It is there-
fore sensible to use it only if the (weak) classifiers can be modified. If that
is not the case, the Neyman-Pearson optimal combination is a better choice.
Barruno et al. [3] presented an optimal way to combine binary classifiers in
the Neyman-Pearson sense: for a given upper bound on false alarms (false
positives), they find the set of combination rules maximizing the detection
rate (true positives). This forms the optimal ROC curve of a combination of
classifiers.

When processing AWEAR 2.0 [13] data (see Section 3.5.2), we used the
following approach. Confidences of the best detections from the direct au-
dio and direct visual detectors were put into a 4D feature vector together
with their respective angular positions. The basic idea was that the classi-
fier will infer the fact that positive training examples are those which have
both confidences high and whose angular positions are equal. Since posi-
tive and negative feature vectors of this type are not linearly separable, we
transformed the feature space in order to use linearly separable 3D feature
vectors.

Let us examine the construction of the feature vector in greater detail.
For the classifier to be able to separate two classes – “a sounding human”
vs. not “a sounding human” – we construct all features so that the lower the
value of the feature, the higher the confidence that the feature describes a
sounding human. In the following, a feature vector F for a frame f will be
constructed.

The first component of the feature vector represents the confidence of
the best direct audio detection and is constructed from the vector EA, see
Equation 3. As this is actually an error measure and not a confidence, the
best detection is the one with the smallest value, min(EA).

To construct the second component of the feature vector, the best direct
visual detection (i.e. the one with the highest confidence), let’s denote it c,
is selected. To follow the “the lower the value, the higher the confidence”
rule, we use the reciprocal value of the confidence 1

c
. In case no positive

detection is obtained by the direct visual detector, the second component of
the feature vector is set to a random, yet sufficiently high value in order to
be less confident than any true detection.

The third component of the vector F exploits the proximity of the audio
and visual detections. Let ϕ ∈ 〈0, 180〉 be the direction of the audio detection,
i.e. E = min(EA). Let ψ ∈ 〈0, 180〉 be the direction of the visual detection
taken as the middle of the of the rectangle provided by the direct visual
detector denoting the position of the human. Then the third component of
the feature vector is set to ‖ϕ − ψ‖.

To resume the previous description, the 3D feature vector F for a frame
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Direct Audio Classifier

ϕ = arg min(EA)

Direct Video Classifier

c = max(CV )E = min(EA) ψ = arg max(CV )

F =
(

E 1

c
‖ϕ − ψ‖

)

Figure 7: Construction of the 3D feature vector for the direct audio-visual
classifier. First component comes from the best audio detection, second from
the best visual detection, and the third one is the angular distance of the
best detections.

f (see Figure 7) can be schematically written as:

F =
(

E 1
c

‖ϕ − ψ‖
)

.

3.5 Experimental Results

We present experiments using the direct audio-visual detector with AWEAR
and AWEAR 2.0 data sequences.

3.5.1 AWEAR Data

The first data sets have been recorded using the AWEAR system [2]. Several
3fps sequences were acquired by two Kyocera FineCam M410R cameras with
a custom mounted Nikon FC-E9, 183◦ FOV, lenses together with two hearing
aids worn by a person standing behind the right camera. See Figure 8 for
the details of the recording setup.

The GCC-PHAT was sampled with steps of 8ms, resulting in 42 samples
per video frame as the cameras were set up to expose every 336ms. The
180◦ angle covered by the omnidirectional microphones was divided into 36
windows of 5◦. The Oldenburg team also processed both channels of audio
data by a speech detector resulting in a speech/no speech binary decision
provided every 12ms. See Figure 9 for details on the audio timings. The audio
and video streams were synchronized manually. Both video and sound data
descriptions are rather idealized, since it was impossible for technical reasons
to properly synchronize the sound and the video acquisition. Furthermore,
the cameras did not allow for manual exposure settings, so the exposure times
varied.

We experimented with the sound data in order to meaningfully combine
the HoG and sound feature spaces. Since the recorded audio available for the
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Mic 1 Mic 2

36 windows per 5◦

−85◦ 90◦

HOG of selected window

Figure 8: Left: The recording setup for AWEAR. Two Kyocera FineCam
M410R cameras with custom mounted Nikon FC-E9, 183◦ FOV, lenses to-
gether with two hearing aids worn by a person standing behind the right
camera. Right: HoG of selected window.

Images

Sound

Speech

0s

0 1 2 3 4

1s

0 42 84 126 168

0 28 56 84 112

336 ms

8 ms

12 ms

Figure 9: Audio and video timings of AWEAR sequences. As the frequency
of sound data is much higher than the framerate of the cameras used, we
gathered sound data incident to a video frame together.

experiments was of poor quality, we aimed to improve the discriminability of
the data as well. Several combinations of averaging and thresholding were
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examined. Since this preprocessing step was rather heuristic in nature, no
measurements of the quality of the audio data improvement were produced.
The most promising combination for the audio data preprocessing was to
produce a 36-dimensional feature vector per video frame combined only from
the 42 x 36 GCC-PHAT values incident to that frame’s time slot. Each of
the 36 values corresponded to one angular direction.

The results of the speech detector – 28 per video frame – were not con-
sidered at this stage as they were global for the whole video frame and it was
impossible to obtain the angular localization of the detection as the detection
results for the left and right audio channels were the same for most of the
frames.

The best way to combine the audio and visual data on the feature level
is yet to be researched.

3.5.2 AWEAR 2.0 Data

Platform. On November 24–26, 2008 the first recordings were made us-
ing the new AWEAR 2.0 recording platform [7]. This recording platform
has been designed based on the experiences gathered with the prototype
AWEAR system. The AWEAR 2.0 system, shown in Fig. 10, is more mobile
and gives the ability to deal with more realistic outdoor scenes. The AWEAR
2.0 system consists of 3 computers with recording space for up to 7 hours, 2
high-resolution video cameras with fish-eye lenses, and 4 microphones con-
nected to a high-quality audio digitizer. Due to the 4 lead-gel batteries, the
autonomy is about 4 hours. The computers are networked and can be con-
trolled wirelessly via an internet tablet. The whole system is mounted on a
rigid frame backpack to ensure portability.

Specifications:

• 2 video channels 12fps effectively at 2Mpixel/image

• approximately 180 × 120◦ (HxV) field of view

• recording up to 7 audio and 1 synchronisation channels up to 96kHz
sampling rate

Main components:

• 2x video recording computers with each 2GB ram, 570GB diskspace
and Turion64 X2 TL-56 dual core

• 2x AVT Stingray F-201c 2Mpixel 14fps color IEEE1394b video camera

• 2x Fujinon FE185CO86HA1 fish-eye lens
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Figure 10: Left: CAD sketch of the AWEAR 2.0 platform. Right: actual
platform as used for recording.

• 1x audio recording computer with 1GB ram and 250GB diskspace and
Mobile Sempron 2100+

• 1x Focusrite Saffire Pro 10 I/O 8-channel 96kHz audio recording device
with microphone pre-amps and phantom power supplies

• 4x T-Bone EM700 condenser microphone with directional characteris-
tic, sensitivity -42dB (7,9 mV/Pa) and max SPL 135 dB

The first set of recordings involved one or two people in the field of view.
A loudspeaker mounted on a tripod was placed on a fixed position serving as
a non-human speech source. Either the person was speaking or speech was
played over the loudspeaker. The first case is considered normal, whereas
the second is considered incongruent, as the speech is not coming from the
person. A second recording session was held on January 19, 2009. A similar
setup was used as described before, cf. Fig. 11. This time the positions of
loudspeaker and persons relative to the position of the AWEAR 2.0 recording
system was carefully mapped, and more different persons took part.

Both recording sessions took place in the KAS room in Oldenburg, which
is a specially designed room where the acoustics can be controlled by means
of a multi-microphone setup, connected to a multi-channel loudspeaker sys-
tem over a matrix-delay-computer steering system. In order to give optimal
performance for different simulated acoustic situations, the walls, floor and
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Figure 11: Layout used for Oldenburg recording on Jan 19, 2009.

ceiling of the room are made acoustically absorbing, which produces rela-
tively little reflection in combination with relatively large size. The data
and first results are available to the consortium via the DIRAC database
web-page. In the recordings acquired using the AWEAR 2.0 platform, the
new 4-microphone setup proved to be up to the task. The acoustic direc-
tion of arrival estimation was adapted by using a free field model (instead
of the previously used HRTFs). This configuration showed improved perfor-
mance due to, on the one hand, less internal noise in the microphones which
provide a larger cross section surface compared to hearing aid microphones.
On the other hand, the well controlled scenarios offered a constant acoustic
environment yielding a better SNR throughout the recordings.

Experiments. First, audio-visual data consisting of a speaking person and
empty silent scene were taken as the two classes and direct audio, resp. di-
rect visual classifiers were trained to respond positively if there was a human
sound, resp. a human shape detected anywhere in the image. The compos-
ite audio-visual classifier was constructed as the conjunction of the direct
classifiers.

The direct audio-visual classifier is based on a combination of features
provided by the INRIA OLT visual detector and the direct audio detector
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Cases from Tab. 2 1 2 3 4
¬(A&V )&¬F (A&V )&¬F ¬(A&V )&F (A&V )&F

SPEAKER 159 23 0 107
sequence
LOUDSPEAKER 26 154 0 1
sequence

Table 4: Results of agreement/disagreement of classifiers for SPEAKER and
LOUDSPEAKER sequences. As SPEAKER is a congruent sequence there
are much more ’case 4’ (speaking person) frames then ’case 2’ (incongruent)
frames. In LOUDSPEAKER sequence, there is only one ’case 4’ frame at the
very end of the sequence when the person comes to the loudspeaker but a lot
of ’case 2’ frames. Notice that there are no ’case 3’ (wrong model) frames in
both sequences.

into one 3D feature vector per video frame. Such feature vectors, annotated
from several sequences captured by AWEAR 2.0 were used to train a linear
classifier using SVM light [18]. Such a direct audio-visual classifier is able
to detect up to one sounding human in an audio-visual frame. The video
frames were rectified using the cylindrical projection in order to easily match
the spatial positions of audio and visual detections in an angular measure,
e.g. degrees.

As the video data come from the left camera, there is a discrepancy
between the camera position and the apparent position of a virtual listener
to which the GCC-PHAT is computed, which is the center of the acquisition
platform. To compensate for this error, the distance to the sound source and
the distance between the virtual listener and the camera need to be known.
The listener–camera distance can be computed as 22.5cm from the known
setup of the rig. The distance to the sound source is now assumed to be 1.5m
from the camera. The corrected angle can then be trivially computed from
the camera–listener–sound source triangle using a line–circle intersection.

The direct audio classifier, the direct visual classifier and the direct audio-
visual classifier were used to classify two indoor sequences captured by the
AWEAR 2.0 device. Sequence SPEAKER is a 289 frames (approximately
24s) long sequence showing a talking person, standing at the right side of the
image and a silent loudspeaker at the left side. Sequence LOUDSPEAKER
is a 181 frames (approximately 15s) long sequence showing a silent person
standing at the right side of the image and a sounding loudspeaker at the left
side. At the end of the sequence, the person moves in front of the loudspeaker.
See Figure 12 and Figure 13 for sample frames from sequences SPEAKER
and LOUDSPEAKER respectively.
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Figure 12: Sample frame from sequence SPEAKER together with the results
of the classifiers. The letter ‘A’ denotes positive response of the direct audio
classifier, the character ‘V’ denotes positive response of the direct visual
classifier and character ‘F’ denotes positive response of the direct audio-
visual classifier – the frame depicts a sounding human. The video frame
is resampled using the cylindrical projection. The white graph represents
the incident GCC-PHAT vector, see Equation 2, the yellow graph is the
incident EA vector, see Equation 3, and the green line denotes the position
of min(EA). The rectangle around the person represents the position of the
positive visual response.

Table 4 resumes the quantitative results of the experiment. As SPEAKER
is a congruent sequence there are much more case 4 (speaking person) frames
than case 2 (incongruent) frames. In the LOUDSPEAKER sequence, there
is only one case 4 frame at the very end of the sequence when the person
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comes to the loudspeaker but a lot of case 2 frames. Notice that there are
no case 3 (wrong model) frames in either sequence.

The results could be further improved by incorporating the temporal
information present in the video sequence. As the framerate is quite high,
people do not move much between consecutive frames. Sound data have a
temporal dependence also, furthermore, using temporal information would
help to bridge negative detector responses present when the speaker breathes
and therefore stops speaking for a very short while. The classical solution
using a Hidden Markov Model Chain (HMMC) would assign consistent labels
to individual frames if trained correctly. Using HMMC for the detectors is
part of our future work, as a refinement to our incongruence detection.

4 Detecting Incongruences on Sensor and Low-

Level Signal Processing

One of the goals of low-level processing is to preprocess incoming signals
and extract reliable information. In particular, the processing should be able
to detect when some of the incoming information is wrong or when it is
too unreliable to be used in further processing. Why should the result of
processing be wrong? There may be various reasons. For instance, one (or
more) of the following problems may present themselves:

1. one or both cameras may fail to provide images,

2. one or both lenses may be out of focus,

3. one or both cameras may lose their calibration,

4. cameras may get be out of sync,

5. the epipolar geometry (EG) of the cameras may change.

The above items represent a number of events that can be detected by
comparing the results of processing with expectations learned from previous
situations.

Another possibility of detecting incongruences comes from the fact that
AWEAR 2.0 cameras observe the same scene, only from slightly different
viewpoints. Thus, the results on the left and right images should, at least
for certain types of processing, be comparable.

As the processing follows the standard path, we may add a number of
detectors based on statistics of the results:

26



Figure 13: Sample frame from sequence LOUDSPEAKER together with the
results of the classifiers. See Figure 12 for the description of the drawings and
their colours. Notice the positive responses of both the direct audio and the
direct visual classifiers, denoted by letters ‘A’ and ‘V’. There is no positive
response of the direct audio-visual classifier, the situation is incongruent.

1-1 Detect features in camera 1

1-2 Feature statistics in camera 1

2-1 Detect features in camera 2

2-2 Feature statistics in camera 2

12-3 Tentative matches between camera 1 & 2

12-4 Tentative matches statistics
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12-5 Matches (M) by unconstrained epipolar geometry (UEG) between cam-
era 1 & 2

12-6 Statistics on M by UEG

12-7 Matches by known EG (KEG) between cameras

12-8 Statistics on M by KEG

1-9 Tentative matches between consecutive images (CI) in camera 1

1-10 Tentative matches statistics of CI camera 1

2-9 Tentative matches between consecutive images in camera 2

2-10 Tentative matches statistics of CI camera 2

1-11 Matches by UEG in consecutive images in camera 1

1-12 Statistics on M by UEG in CI camera 1

2-11 Matches by unknown EG in consecutive images in camera 2

2-12 Statistics on M by UEG in CI camera 2

The simplest statistics (detectors, classifiers) can be constructed by look-
ing at the number of detected features, tentative matches, and matches ver-
ified by epipolar geometries. More advanced might be various quality mea-
sures, for instance the measure based on apical angles and view field coverage
as is used in randomized structure from motion (SfM) [13].

We will first design detectors of the above five problems using the number
of matches. These numbers we can plot into graphs, as a function of the frame
number. Since our current sequences do not exhibit abnormal events at this
sensor level, we simulate the following 5 abnormal events:

1. Camera fails: replace image in camera 1 by almost black image with a
small random noise.

2. Camera out of focus: blur one of the images.

3. Cameras out of sync: shift the camera 1 image stream by 3 frames
w.r.t. the camera 2 image stream.

4. Camera calibration wrong: use slightly wrong camera 1 calibration.

5. Camera rig calibration wrong: use slightly wrong epipolar geometry of
the rig.
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Figure 14: Frames 1, 50, 100, 150, and 200 of the PEDCROSS sequence. Top
row: camera 1 (left camera). Bottom row: camera 2 (right camera).

Once events (problems) are detected, the next step is to take an action
that will remove (if possible) the cause of the abnormality. For instance, we
can try to recalibrate individual cameras as well as the camera rig. In fact,
this action might be a part of the detection as well. For instance, when we
detect that we can successfully track individual cameras but cannot track the
rig, we can either expect a problem in rig calibration or in synchronization.
Then, we may try to recalibrate or shift frames and choose the action that
will better fit to incoming data. However, if none of these actions improves
the results, we can conclude that we are not dealing with these particular
problems, start collecting these images, and from these try to learn a model
of the situation (e.g. by clustering in the feature space provided by the
statistics), which is to be added as a new phenomenon. Next we will study
how much can be done by looking at the number of features and matches.

4.1 Detecting Abnormal Situations in Image Matching

and Camera Tracking

Figure 15 shows the numbers of detected regions, tentative matches, and
matches supported by epipolar geometry verification as the statistics of the
PEDCROSS sequence, see Figure 14, which is 228 frames long. Figure 15(a),
(b), and (c) show the statistics of the original sequence acquired under cor-
rect (normal) behavior of the system. (a) shows the number of detected
SURF features. Red and blue colours correspond to camera 1 and camera 2,
respectively. (b) shows the number of matches between camera 1 and camera
2 in the stereo pair, i.e. between camera 1 and 2 of the same frame. The
graph shows tentative matches (red), matches supported by an unconstrained
epipolar geometry (UEG) computed in every frame (blue), and a known EG
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1 2 3 4 5 6
C1T1#Features H L L H H H
C1C1#Tent Mtch H L L H H H
C1C1#Veri Mtch UEG H L L H H H
C2T1#Features H H H H H H
C2C2#Tent Mtch H H H H H H
C2C2#Veri Mtch UEG H H H H H H
C1C2#Tent Mtch H L L H H H
C1C2#Veri Mtch UEG H L L H H H
C1C2#Veri Mtch KEG H L L L L L

Table 5: Distinguishable abnormalities.

(KEG) computed using the precalibrated stereo rig configuration (green). (c)
shows the number of matches between consecutive images of camera 1 and
camera 2 sequences. The graph shows tentative matches of camera 1 (red)
and camera 2 (blue) and matches supported by an UEG of the consecutive
images of the camera 1 (magenta) and camera 2 (cyan), respectively.

The abnormal situations were simulated by tampering with the images or
system parameters. In all situations, four subsequences comprising frames 51-
60, 101-110, 151-160, and 201-210, resp. were modified to simulate abnormal
situations. The rest of the sequence was left unaltered to visualize the impact
of the abnormal situations.

The following abnormal situations were generated:

1. C1 fails: Images were 78% darkened and 1000 salt&pepper noise peaks
were added, see Figure 17(b) and Figure 15(d), (e), and (f).

2. C1 out of focus : Images were artificially blurred by a 2D Gaussian
filter, see Figure 17(c) and Figure 15(g), (h), and (i).

3. C1 calibration wrong : The optical center in the mathematical camera
model was shifted by 10 pixels in both x and y direction, Figure 15(m),
(n), and (o).

4. C1 C2 out of sync: Frames were desynchronized by shifting frames of
one camera by three, e.g. frame 51 in camera 1 corresponded to frame
54 in camera 2, Figure 15(j), (k), and (l).

5. C1 C2 rig calibration wrong: 10deg rotation of camera 1 was applied
to the precomputed stereo geometry, Figure 15(p), (q), and (r).
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Figure 15: Abnormalities in the PEDCROSS sequence. (a) shows the number
of detected SURF features. (b) shows the number of matches between camera
1 and camera 2 in the stereo pair, i.e. between camera 1 and 2 of the same
frame. (c) shows the number of matches between consecutive images of
camera 1 and camera 2 sequences. Colour codes are explained in the text.
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The numbers of matches reported in Figure 15 yield patterns as shown
in Table 5, that distinguish between 3 types of situations (corresponding to
the 3 different patterns), depending on the following abnormalities:

1. correct function of the rig tracking,

2. camera 1 fails,

3. camera 1 out of focus,

4. cameras out of sync,

5. camera 1 looses the calibration,

6. wrong calibration of the camera rig,

with Ci-Ck standing for cameras i and j, Ci-Tx for camera i at time x, H for
a high number, and L for a low number. The three pattern types correspond
to the three sets {1}, {2, 3}, and {4, 5, 6}.

The above table can only be used when we can decide what H and L are
supposed to mean. This varies from scene to scene. Therefore, we plan to
develop a feature mapping from raw numbers of detections and matches into
a space which is (more) invariant to scene variations.

Let us suggest to use the following features, with #F the number of
extracted features, #TM the number of matches found between two images,
#VMU the number of matches verified by unconstrained EG, and #VMK
the number of matches verified by known EG:

1. #F(C1T1)

2. #F(C1T2)

3. #TM(C1T1,C1T2)/min(#F(C1T1),#F(C1T2))

4. #VMU(C1T1,C1T2)/#TM(C1T1,C1T2)

5. #F(C2T1)

6. #F(C2T2)

7. #TM(C2T1,C2T2)/min(#F(C2T1),#F(C2T2))

8. #VMU(C2T1,C2T2)/#TM(C22)

9. #TM(C1T1,C2T1)/min(#F(C1T1),#F(C2,T1))
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10. #VMU(C1T1,C2T1)/#TM(C1T1,C2T1)

11. #VMK(C1T1,C2T1)/#TM(C1T1,C2T1)

and then train a classifier for each feature that would be able to distinguish
what is L and what H. The outputs of these classifiers might be combined,
e.g. by boosting.

Alternatively, we could train two SVM classifiers, one for the feature
space (#F(C1T1), #F(C1T2), #F(C2T1), #F(C2T2)) and the other for the
feature space of all other features in the above list. This is meaningful since
the first feature space would combine absolute numbers and the second one
would combine relative fractions. The output from the two classifiers would
be combined by boosting.

The next open question is how to distinguish abnormalities {2, 3} and
{4, 5, 6}. There may be many ways how to learn about problems 2 and 3
or one can also try to lift problem 3 by evaluating the image sharpness and
applying the appropriate inverse filter. However, these are problems that
require physical interaction with the device for their true solution, and thus
it should be sufficient to set an alarm and use the remaining, correct camera
when it is sufficient.

Distinguishing between {4, 5, 6} is more interesting since calibrations can
be automatically updated from matches. One could suggest repairing indi-
vidual camera calibrations as well as the camera rig calibration by a few steps
of bundle adjustment [14] or other autocalibration techniques and compare
the obtained results.

The next level of analysis of anomalies would look at the time dependences
of the detections. Decisions of individual classifiers could be modeled by a
Markovian Chain.

Figure 16 shows the normalization of the raw statistics from Figure 15.
The normalized statistics of the original sequence is shown in (a) for the
stereo matching:

(red) #TM(C1T1,C2T1)/min(#F(C1T1),#F(C2T1))

(blue) #VMU(C1T1,C2T1)/#TM(C1T1,C2T1)

(green) #VMK(C1T1,C2T1)/#TM(C1T1,C2T1)

and in (b) for the sequential matching:

(red) #TM(C1T1,C1T2)/min(#F(C1T1),#F(C1T2))

(blue) #TM(C2T1,C2T2)/min(#F(C2T1),#F(C2T2))
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Figure 16: Normalization of the raw statistics from Figure 15. (a) for the
stereo matching. (b) for the sequential matching. Colours are explained in
the text.

(magenta) #VMU(C1T1,C1T2)/#TM(C1T1,C1T2)

(cyan) #VMU(C2T1,C2T2)/#TM(C2T1,C2T2)
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In the same way, the second to the fifth rows correspond to the sequences
of ’C1 fails’, ’C1 out of focus’, ’C1 calibration wrong’, ’C1 C2 out of sync’,
and ’C1 C2 rig calibration wrong’.

We can see that the normalization rendered the values of the features
more independent for the actual pair of images, i.e. for the actual scene used
to compute the camera motion. We can also see that it works as a change
detector in Figure 16(d) and (f). We conclude that the proposed feature
transformation gave promising results.

4.2 Incongruences in Camera Tracking

Camera tracking provides an interesting and (in signal processing) quite com-
mon situation for detecting incongruences. The specialty of the situation lies
in the fact that the results of the processing are passed from lower to higher
levels. It is thus impossible, e.g., to encounter the situation when there would
be many matches verified by an epipolar geometry but few tentative matches
or even few detected features.

Therefore, a falsification of predicate #TM(C1T1, C2T1) ⇒ #F(C1T1)∧
#F(C2T1), which would lead to the case 3, i.e. to breaking the “theory”,
can never be performed as it is equivalent to ¬#F(C1T1) ∨ ¬#F(C2T1) ⇒
¬#TM(C1T1, C2T1) being falsified by the case when there is a lack of fea-
tures in one of the images but it was still possible to find a lot of tentative
matches between them, which is impossible.

On the other hand, predicate #F(C1T1)∧#F(C2T1) ⇒ #TM(C1T1, C2T1)
can be easily falsified by #F(C1T1) ∧ #F(C2T1) ∧ ¬#TM(C1T1, C2T1),
which leads to the [27, 32] incongruence, corresponding to the situation when
there are features in both images but there are no tentative matches found
which can easily happen for scenes with strong repetitive structures.

Similar reasoning can be used for predicate #VMU(C1T1, C2T1) ⇒
#TM(C1T1, C2T1) which can never be falsified, while the other predicate
#TM(C1T1, C2T1) ⇒ #VMU(C1T1, C2T1) can be falsified when there is a
lot of tentative matches found but no epipolar geometry could verify them,
this situation is incongruent in the sense of [27, 32].

5 Incongruence detection in multiple level-

of-detail tracking

Another example application of the incongruence framework has been imple-
mented in the area of tracking humans. Although the final goal is a far more
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(a) (b) (c)

Figure 17: Sample images representing abnormal situations. (a) Original
image. (b) Darkened image. (b) Blurred image.

elaborate scheme with 4 or so levels of tracking, we will here discuss some
preliminary results on the basis of just two such levels.

In the course of WP3, tracking modules for analyzing various levels of
detail in human motion have been developed. However, as visual data often
suffers from noise, small scales, or occlusions, stronger models need to be
employed to allow a more detailed analysis. WP3 thus was first concerned
with the multi-body blob-level tracking of humans [9, 25], with a focus on
extracting independent motions of pedestrians. In this general model, pedes-
trians are considered blobs that move according to a constant-velocity mo-
tion model. Their body pose, or articulation, is dealt with in a more specific
tracking model [17, 10] that—due to above stated reasons of noise, as well as
spatial and temporal image resolution—assumes periodic movement of the
limbs, as is e.g. the case with walking. The two approaches are reviewed in
the sections below.

Clearly, these two models fit in with the theory of incongruence detec-
tion presented in Section 2. Specifically, we expect the general model to
track most kinds of human motion, including erratic ones, while the artic-
ulated tracker’s specific model might be able to handle the most common
movement—walking—but will inevitably fail on any other motion, thus rep-
resenting an incongruent event according to Table 2 in such a case. An ex-
perimental result demonstrating this concept is thus presented in Section 5.3.

5.1 Multi-Body Tracking

Our multi-body tracker [9, 25] is based on the same pedestrian detector [6]
as used for the audio-visual speaker detector. With the help of Structure-
from-Motion, object detections are placed into a common world coordinate
system. The actual tracking system then follows a multi-hypotheses ap-
proach, where detections of the current and past frames are accumulated in
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a space-time volume. This volume is analyzed by growing many trajectory
hypotheses using independent bi-directional Extended Kalman filters (EKFs)
with a holonomic constant-velocity model.

By starting EKFs from detections at different time steps, an overcomplete
set of trajectories is obtained, which is then pruned to a minimal consistent
explanation using model selection. This step simultaneously resolves conflicts
from overlapping trajectory hypotheses by letting trajectories compete for
detections and space-time volume. In a nutshell, the pruning step employs
quadratic pseudo-boolean optimization to pick the set of trajectories with
maximal joint probability, given the observed evidence over the past frames.
This probability

• increases as the trajectories explain more detections and as they better
fit the detections’ 3D location and 2D appearance through the individ-
ual contribution of each detection;

• decreases when trajectories are (partially) based on the same object
detections through pairwise corrections to the trajectories’ joint like-
lihoods (these express the constraints that each pedestrian can only
follow one trajectory and that two pedestrians cannot be at the same
location at the same time);

• decreases with the number of required trajectories through a prior fa-
voring explanations with fewer trajectories – balancing the complexity
of the explanation against its goodness-of-fit in order to avoid over-
fitting (“Occam’s razor”).

For the mathematical details, we refer to [25]. The most important features
of this method are automatic track initialization (usually, after about 5 de-
tections) and the ability to recover from temporary track loss and occlusion.

This method proved to reliably detect independent motions for smooth
and even erratic movements, thus constituting our general model of track-
ing. However, by the ways of the detector [6], it only has the knowledge of
the existence of a person, while for a more detailed analysis of the scene,
the person’s pose would be necessary. As the multi-body tracker is more
concerned with data association between world objects and measurements,
direct inclusion of body pose would be infeasible. We thus handle it in a
separate tracker.

5.2 Articulated Tracking

The articulated tracking framework, first introduced in [17], constitutes a
stronger model of human locomotion, but is constrained to a single person
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and only specific motion patterns.
A generative model is used to learn the regression between a low-dimensional

representation of the body pose and the actual pose, the pose and its corre-
sponding image descriptor, as well as the temporal regression between two
subsequent poses. Using a particle filtering approach on a low-dimensional
manifold, periodic motions such as walking or running can be tracked. Typ-
ically, a separate global optimization is performed on the entire sequence to
obtain the final result that enforces smooth walking cycles without “switching
legs”.

The original system relies on silhouettes as image descriptors, as they can
be easily obtained in environments with static cameras using background sub-
traction. For moving cameras, obtaining these silhouettes is more intricate,
was however demonstrated in conjunction with the multi-body blob tracker
[10]. To decrease dependence on additional processing steps to obtain silhou-
ettes, future versions of this module will investigate other image descriptors
such as the HOG descriptor [6] already used throughout several other parts
of the project.

While the articulated tracker provides a more informative analysis of
human locomotion, it is unable to handle non-periodic or other unknown
motions. This is the key to detecting incongruencies, as discussed below.

5.3 Incongruence Detection

When applied to an image sequence, both tracking systems will output a
probability how well the image fits their world model. For the multi-body
tracking, this number is derived from the detection’s score, the temporal con-
sistency in appearance (i.e., color histogram similarity between frames), and
the smoothness of the trajectory. For the articulated tracker, the probability
is obtained from the data likelihood (i.e., similarity of the image descriptor
with the predicted model descriptor), as well as the dynamic model.

A sample sequence is shown in Fig. 18. The bounding boxes are the out-
put of the multi-body tracker. The body pose estimated for the person in the
front is shown in the lower right, with the articulated tracker’s probability
shown as a bar next to it (the more red, the less certain the tracker is). At
first, both trackers deliver stable performance, as the subject follows a typical
walking pattern across the image. However, as the man reaches the street, he
startles due to a passing bicycle, thus interrupting the walking cycle. As can
be seen, the articulated tracker fails to obtain an suitable explanation and
gets stuck at a pose with a low probability, whereas the multi-body tracker
successfully continues operation. This thus consistutes an incongruent event
according to Table 2, as the general model has a considerably higher proba-
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Figure 18: Example tracking result on sequence
0 PedCrossStreet90 2Ped v2. The yellow bounding box indicates the
result of the general classifier (blob tracker), the lower right corner shows
the result of the specific classifier (articulated tracker). See text for details.
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bility than the specific one. Also note that at the beginning of the sequence,
the articulated tracker also reports a comparably low probability due to the
partial visibility of other limbs. In some sense, this can also be regarded as
incongruency, as this does not occur in the world model of the articulated
tracker: it just assumes a single person without any partial occlusions.

Ideally, if such events occur more often, the system will be able to learn
such behavior and adapt accordingly, as described in Section 2. As the
current tracking system however depends on motion capture data for training,
this needs to be investigated further. Furthermore, it will be interesting to
explore the opposite case where the general model fails (e.g. due to over-
reliance on appearance) whereas the stronger model survives.

6 Conclusion

In this research report, we recapitulated and extended the theory of incongru-
ences originally suggested in [32] and showed its application to various parts
of the audio-visual processing pipeline envisioned in the DIRAC project.
Specifically, we investigated the tasks of “human speaker” detection using
either a composite audio-visual classifier or two separate audio and visual
classifiers; detecting incongruences on the feature level in camera tracking;
and the task of human locomotion analysis by using both a general blob
tracker as well as a specific articulated tracker tuned to walking. These
preliminary results underline the usefulness of the proposed theory in the
application of self-learning and robust systems that should be able to cope
with events that are incongruent to their world model.
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