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Chapter 1

Introduction

1.1 Motivation

One of the major problems in any spoken communication is the presence of
noise or other acoustic events that may prevent a correct understanding of
the message. Such fact takes place in many daily situations: a conversation
in the street, a telephone call in a supermarket, etc. This problem has worse
e�ects on machines or systems with a Spoken Language Interface, such as
Automatic Speech Recognition systems (ASR).

One of the challenges in the speech recognition area is to provide �clean�
speech streams to the SPL systems, so that it may result in greater recogni-
tion accuracy. This is one the purposes of the speech/non-speech detection,
which, moreover, corresponds to the topic of the present work.

1.2 Objectives

The goal of the project is to review the state of the art of modeling and
detection of unusual audio events, implement a state of the art technique,
and test it on real data. In other words, we want to build a toolbox to
identify some acoustic events.

In particular, we are interested in the speech/non-speech detection. That
means that, given an audio signal, we would like to know if it corresponds
to speech or to any other acoustic event (non-speech). A key step to do
that is to select relevant features from the audio signal. Such features can be
obtained by means of the psychoacustically motivated amplitude modulation

1



2 CHAPTER 1. INTRODUCTION

spectrogram (AMS) [12].
Because there are diverse methods to carry out the previous task, this

work is oriented to observe a novel procedure's performance, based on the
AdaBoost algorithm, which was formulated by Yoav Freund and Robert
Schapire [6]. As any other boosting technique, AB builds a strong classi-
�er by combining several weak learners. The di�erence, nevertheless, is that
the new weak classi�ers are trained to favor those instances misclassi�ed by
previous classi�ers. For that reason, it is hoped to achieve a good accu-
racy in the acoustic detection, with a reasonable number of features or weak
classi�ers.

1.3 Related work

The starting point of the present study is the work presented by Schmidt
and Anemüller [17]. The goal of such work is to determine the features
that perform the best classi�cation and provide a good generalization to new
signals. The feature extraction is carried out by means of the AMS, whereas
the feature selection is based on the support vector machine (SVM).

Feature selection is performed with a standard sequential forward selec-
tion algorithm (SFS), which identi�es the best feature subset for a given
number of features. Those are the features that achieve a higher classi�ca-
tion accuracy. Then, to avoid over�tting, K-fold cross-validation method is
used.

In order to tackle the problem, 3 experiments are carried out. The �rst
one tries to determine the most salient modulation frequency bands. It is
shown that the most salient one is the 3 Hz-band, followed by the 4, 26,
25, 9, 14, 28, 13, 20 Hz-bands. The second experiment tries to reduce the
number of features by selecting the center frequencies, corresponding to the
mentioned most salient fm−bands, that really contribute to the classi�cation
accuracy. At the end of this point, the total number of classi�cation features
has decreased from 493 values to 54. Finally, the third experiment tries to
observe the in�uence of the selected features on the generalization ability
in new acoustic environments. By using the classi�ers trained under the
second experiment, only feature numbers over 50 perform the classi�cation
task decently.

As a conclusion, it is shown that the number of features needed for speech
detection can be reduced by using AMS patterns, which does not entail
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a signi�cant loss of accuracy. Furthermore, the most salient modulation
frequencies for the speech/non-speech classi�cation task are determined.

Krishna, Motlicek and Gatica-Perez [13] is also based on the modulation
spectrum as a feature extraction method to examine the frequency rates
dominant in speech. Then, some classi�cation techniques, such as short-term
energy, short term-energy and zero-crossing based segmentation techniques,
and the multi layer perceptron (MLP) classi�er system, are used to tackle
the problem.

The speech/non-speech detection (SND) is crucial in order to improve the
speech recognition accuracy. Inacurate boundaries cause many errors in this
kind of systems. The proposed approach is based on long-term modulations
to examine the slow temporal evolution of the speech energy. The algorithm
is designed according to one particular characteristic of speech, which says
that the use of components from the range below 2 or above 16 Hz can
degrade the recognition accuracy.

The speech recognition evaluations are performed for all the methods
and varying some parameters such as, signal-to-noise ratio (SNR) or distant
microphone. The results show that the proposed method can be applied for
any mode of speech acquisition and unforeseen conditions.

1.4 About this document

The following report is written to be a reference for the SND task. This
means that all the necessary knowledge to understand the entire process are
included. To make it simpler, it is organized in three main parts. The �rst one
consists in the necessary background theory to understand the work which
is described next. It is based on the documentation found about the current
topic, related work and other complementary material. Acoustics, speech
processing and pattern recognition are some of the discussed knowledge. The
second part is the work itself. Here, all used procedures and algorithms are
detailed, as well as the chosen values for their main parameters. The last part
is the experimental and discussion part. On the appendix, there is additional
information about the results achieved during the classi�cation task, as well
as information about the program used to that end.
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Part I

BACKGROUND THEORY

5





Chapter 2

Nature of sounds and speech

In this section, we review some basic concepts about speech and sound in
general. We will also de�ne production, perception and main features of
both. This information is based on [10] and some other sources that will be
cited at the appropriate moment.

2.1 Sounds

Sound is a longitudinal pressure wave produced by a vibrating object that
travels through a medium and that can be characterized by the general
properties of waves, which are amplitude, frequency, period, wavelength and
speed. It can be perceived by the sense of hearing. Air, water or earth are
examples of such media.

Figure 2.1: Compressions and rarefactions are produced by the application
of the energy and can be described by a sine graph.

7



8 CHAPTER 2. NATURE OF SOUNDS AND SPEECH

As shown in Figure 2.1, This pressure wave is formed of compressions
and rarefactions of air molecules, following a parallel direction to that of
the application of energy. Compressions are zones with high density of air
molecules. On the other hand, rarefactions are zones with low density. The
alternation between compressions and rarefactions of air molecules is some-
times described by the graph of a sine wave, as shown below. Crests of the
sine correspond to compressions and troughs to rarefactions.

The use of a sine curve doesn't mean that sound waves have this shape,
because air particles are oscillating at the same place. Its purpose is only to
indicate pressure variations over time. The speed of a sound pressure wave
depends on the medium through which the wave is crossing. In the air it is
approximately 340 m/s.

2.1.1 Perception of sound

The ear is the part of the body of animals and humans meant to hear. Thus,
perception is accomplished by the sense of hearing. Sounds can be used for
communication or to get information about the surrounding environment.

The audible range includes the frequencies within the range 20 Hz to 20
kHz, so out of this, no sounds can be heard by the human ear. However, this
range depends on each person, on the gender and on the age. Most human
speech communication takes place between 200 and 8,000 Hz and the human
ear is most sensitive to sounds from 1000 to 3,500 Hz (telephonic channel).

The amplitude of a sound is usually given in pressure terms and because
of the wide range of amplitudes that a human ear can detect, a logarithmic
decibel amplitude scale is used. The lowest sound amplitude perceptible by
the ear is about 20 µPa.

2.1.2 Sound pressure

Sound pressure measures the di�erence between the local ambient pressure,
with no sound, and the local ambient pressure in presence of a sound wave.

Due to the wide range of sound amplitudes that the ear is able to detect,
it is convenient to measure them on a logarithmic scale in decibels. Such a
scale is useful to compare two sounds:
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10 log10

(
P1

P2

)
where P1and P2are the two power levels.

On the other hand, sound pressure level (SPL) gives us information about
the absolute pressure level and it can be de�ned, in dB, as:

SPL(dB) = 20 log10

(
P

P0

)
where the reference pressure, P0, is 0 dB and corresponds to the threshold of
hearing (TOH), which is the faintest audible sound. Its value is P0 = 20µPa
for a tone of 1kHz. As a curiosity, the speech conversation level has a SPL
about 60 dB and the loudest sounds tolerated by the human ear are about
120 dB. At Table 2.1. we can see these and other values for common sounds.

Sound Sound pressure (Pa) SPL (dB)

Threshold of hearing 0.000020 0
Whisper 0.00006325 10

Normal conversation 0.02 60
Rock music 11.25 115

Threshold of pain 20 120
Rupture of eardrum 2000 160

Table 2.1: Absolute and relative pressures for common sounds

2.2 Speech

Spoken language is the means by which a speaker can communicate to a
listener. It can be used to express feelings, emotions, ideas, etc. Speech
production and perception are the main tasks of an oral communication.
Speech production begins with a thought produced in the brain of the speaker
and with the aim to communicate something. It is in fact, the brain, which
origins the necessary movements in the muscles required to produce sounds.
On the other hand, a listener receive a sound wave through the ear and with
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the help of the auditory system transforms it into the neurological signals
that the brain can understand.

Speech signals are composed of analog sound patterns that will be used
later to achieve our main goal: to distinguish speech from non-speech.

2.2.1 Speech production

We review here the basic concepts, which are used for speech recognition and
speech synthesis systems.

2.2.1.1 The vocal tract

Speech is produced by air-pressure waves coming from the mouth and the
nose of the speaker. After these waves have been generated at a sound source
called larynx, they go through the vocal tract , which is a cavity where the
sound is �ltered [15].

Figure 2.2: The vocal tract

There are two basic kind of sounds:

2 consonants - on its production, the air way out is totally or partially
obstructed by the di�erent articulators
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2 vowels - articulated without major constrictions and obstructions. The
air goes out free.

There are a wide variety of consonant sounds according to the manner (MA)
and the place of articulation (PA). The �rst one refers to the way to how the
air is obstructed; the second one gives us information about the places where
this obstruction takes place.

2.2.1.2 The voicing mechanism

We can do another distinction between sounds depending on if the vocal
cords vibrate or not during the sound production [14]. If these vibrate, then
the sound is voiced. On the contrary, if the vocal folds do not vibrate, the
sound is voiceless.

Voiced sounds, such as vowels and consonants like 'b' or 'd', have a quite
regular time and frequency pattern, which is not like that in voiceless sounds.
Moreover, the �rst ones typically have more energy than the second ones.

The vocal folds vibrate at rates from 60 Hz to 300 Hz. This rate of
cycling (opening and closing) is what we call the fundamental frequency and
will determine the higher frequency harmonics. It also contributes more than
other factors to the perception of the pitch.

The harmonic of a wave is a component frequency of the signal that is an
integer multiple of the fundamental frequency. For example, if the frequency
is f, then the harmonics are at the frequencies 2f, 3f, 4f, etc.

Figure 2.3: Air �ow during vocal fold cycle
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The vocal folds cycle is illustrated in Figure 2.4. At (a), the vocal folds
are closed and the air pressure begins to increase until it overcomes their
resistance. At this point, the folds are moved apart by the air blowing from
the larynx. Then, at (b), the air goes out until the pressure decreases so
much that the vocal folds fall back into the original position, (c), due to
their natural elasticity. The period of the cycle depends on di�erent factors,
such us the amount of air pressure, that can be controlled by the speaker to
vary the perceived frequency of a voiced sound.

2.2.1.3 Spectrograms and formants

The glottal wave 1 is periodic and consists of a fundamental frequency and a
number of harmonics. Thus, and according to the Fourier theory, it can be
analyzed as a sum of sine waves.

When we speak, the shape of the vocal tract changes and so do the res-
onances. Harmonics of the sound wave near the resonances are emphasized.
The resonances of the oral cavities that depend on the con�guration of the
articulators are called formants. We can also de�ne a formant as an energy
concentration around a particular frequency in the speech wave [14].

Figure 2.4: Spectrogram representation of a waveform

1the glottis is the space between the vocal cords
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In the Figure 2.4, we can see a time waveform and its corresponding
spectral analysis at each instant. A spectrogram of a time signal is a very
powerful two-dimensional representation to see the spectral analysis of the
time signal over the time. It displays time in its horizontal axis and frequency
in its vertical axis. A gray scale is typically used to indicate the energy at
each point (t, f), with white representing low energy and black high energy.
Later, in Chapter 3, we will describe the mathematical methods to obtain
the spectrogram of a time signal.

2.2.2 Speech perception

Speech perception refers to process by which humans are able to interpret
and understand the sounds used in language.

The two main components of the auditory perception system are the
peripheral auditory organs (ears) and the auditory nervous system (brain).

Figure 2.5: Representation of hearing

In the scheme of Figure 2.5, we can see the process by which an incoming
acoustic pressure signal is transformed into a mechanical vibration pattern on
the tympanic membrane2 and then transmitted through the bones adjacent
to it, called ossicles, until they reach the cochlea.

2colloquially known as the eardrum
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The cochlea can be roughly regarded as a �lter bank, which performs a
spectral analysis of the incoming signal. Finally, this information is delivered
to the auditory nerve to perform the perceptual extraction of the information.

Figure 2.6: Anatomy of the human ear

The parts of the ear described above are shown in the graphic of Figure
2.6.

2.2.2.1 Physical vs perceptual attributes

Psycho-acoustics distincts between perceptual attributes of a sound and its
measurable physical properties [10]. Each perceptual feature depends mainly
on one physical attribute, but other properties may a�ect the perception. A
list of such a relation is given below, in Table 2.2.

Physical quantity Perceptual quality

Intensity Loudness
Fundamental frequency Pitch

Spectral shape Timbre
Onset/o�set time Timing
Phase di�erences Location

Table 2.2: Relation between perceptual an physical attributes of sound
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One di�erence between physical and perceptual attributes is the phe-
nomenon known as the non-uniform equal loudness perception of tones of
di�ering frequencies. The reason is that the sensitivity of the ear varies with
frequency . That is, two sounds with the same intensity are not perceived
equal if their frequencies are di�erent. The graph of equal loudness curves is
shown in Figure 2.7.

Figure 2.7: Equal-loudness curves

Another interesting fact is the human ability to distinguish two sounds,
with the same loudness and pitch, produced by di�erent objects. It is exactly
the same with speech. The same message produced by di�erent people sounds
di�erent. The perceptual attribute behind it all is the timbre.

2.2.2.2 Frequency analysis

The auditory system acts as a spectral analyzer of sounds. For that reason
researchers attempt to �nd frequency scales that model the response of the
human perceptual system.
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The concept of critical band is very important to understand auditory
phenomena such as loudness, pitch and timbre.

The cochlea can be seen like a bank of overlapping �lters with bandwidths
equal to the critical bandwidth. The values in the table below correspond to
the Bark frequency scale (BFS).

Bark band Edge (Hz) Center (Hz)

1 100 50
2 200 150
3 300 250
4 400 350
5 510 450
6 630 570
7 770 700
8 920 840
9 1080 1000
10 1270 1170
11 1480 1370
12 1720 1600
13 2000 1850
14 2320 2150
15 2700 2500
16 3150 2900
17 3700 3400
18 4400 4000
19 5300 4800
20 6400 5800
21 7700 7000
22 9500 8500
23 12000 10500
24 15500 13500

Table 2.4: Critical bands. The Bark frequency scale
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The objective in using this scale is to achieve similar results to those that
ear does when it processes the spectral information.

Another perceptually motivated frequency scale is the Mel frequency scale
(MFS) [18], which models the non-linear frequency resolution of the human
ear. It is linear up to 1 kHz and logarithmic above. As the rest, the Mel scale
attempts to model the sensitivity of the human ear better than the linear
scales. It has been used a lot in modern speech recognition systems.

2.2.2.3 Masking

Sometimes, a clear and audible sound is masked by other louder sound. When
this two sounds occur simultaneously, this phenomenon is called simultaneous
or frequency masking.

Then, we can say that the frequency masking takes place when one sound
cannot be perceived if another sound, intense enough, is in the same critical
band.
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Chapter 3

Acoustic feature extraction

One of the major requirements in the speech/non-speech discrimination prob-
lem is to construct a data set, from the audio input, in such a way that
simpli�es the task of the classi�er algorithm. To this end, the psychoacousti-
cally motivated amplitude modulation spectrogram (AMS) is used. Actually,
it is the most common technique in current Automatic Speech Recognition
Systems (ASR).

The following lines try to give a general view of the modulation spectrum.
First of all, a description of the relevant components of the speech spectrum
is given. After that, we review the basic mathematical concepts behind the
method and �nally, some hypothesis, drawn from the observation of diverse
acoustic situations, are presented.

3.1 The modulation spectrum

3.1.1 Introduction

Our hearing system is quite sensitive to changes of signal energy over time,
and a lot of information of speech is encoded in them. As those changes
are much slower than the frequencies that carry acoustic signals, they are
termed modulations, or amplitude modulations. They can be di�erent in the
di�erent carrier frequency bands.

Studies on human speech perception show the importance of the previ-
ously mentioned slow changes in the speech spectrum. This is due to the rate
of change of the vocal tract shape. Such changes correspond to low-frequency
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amplitude modulations with rates below 16 Hz.
Traditional representations of speech tend to emphasize the minute spectro-

temporal details of the speech signal. On the contrary, the modulation spec-
trogram [8] is a kind of representation, which tries to be insensitive to the
speaker variability and acoustic distorsion. A key step to do that is to focus
on the elements of the signal encoding phonetic information and suppress the
irrelevant ones.

With this, the modulation spectrum of continuous speech can be seen as
a way of displaying and encoding the signal in terms of the distribution of
slow modulations across time and frequency [8]. It can be obtained by the
spectral analysis of temporal trajectories of spectral envelopes of speech [9].
It is mainly constituted by components between 2 Hz and 16 Hz, re�ecting
the syllabic and phonetic temporal structure of speech [7]. It is interesting
to indicate that the human auditory system is most sensitive to modulation
frequencies around 4 Hz [4] [11] and that signi�cant speech intelligibility
remains even if only modulations up to 16 Hz are preserved [1].

Figure 3.1: The modulation spectrum of speech [9]

The �gure above describes the di�erent steps that allow to go from the
time representation of the signal to the modulation spectrum of speech. The
process can also be regarded as the �ltering of each time sequence of the
spectral parameters (TSSP). For that reason, the TSSP spectrum has been
called modulation spectrum [16].
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3.1.2 Algorithm

The algorithm used to compute the modulation spectrum is derived directly
from the de�nition given above and from [2]. This section gives general
de�nition, whereas the concret parameters are described in detail in 5.2.2:

Given a digitalised audio signal, x [n], the MS is obtained by:

2 Compute the spectrogram of the signal, following the next steps:

1. Break the signal into overlapping chunks, xm [n], where m is the
chunks index.

2. Calculate the short-time Fourier transform (STFT ) of each chunk:

STFT {xm [n]} ≡ X (m, ω) =
∞∑

n=−∞

xm [n] e−jωn

If we de�ne the short-time signal xm [n] as

xm [n] ≡ x [n] wm [n]

the product of x [n] by a Hamming window function wm [n], which
is same for all chunks (1) and equals zero everywhere except in a
few samples (2):

(1) wm [n] ≡ w [m− n]

(2) w [n] = 0 ∀ |n| > N/2

Then:
xm [n] = x [n] w [m− n]

Thus, we can �nally de�ne the STFT as:

X (m, ω) =
∑

x [n] w [m− n] e−jωn

And the magnitude of the spectrogram at each point (t, f)correspond
to the magnitude of the STFT of the corresponding chunk:

s {xm [n]} ≡ |X (m, ω)|2
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2 Compute the modulation spectrum:

For k = 1, . . . , the number of frequencies :

1. Compute Fourier transform at the present center frequency, ωk,
along the time dimension of the spectrogram:

MS {x [n]} ≡ X (θ, ωk) =
∞∑

m=−∞

|X (m, ωk)|2 e−jθm

2. Compute modulation power over center frequency, modulation fre-
quency and time:

|X (θ, ωk)|2

3.1.3 Experiments

Once we have described the main features of the MS and why we use it, we
would like to see what we obtain from it. That is, given some acoustic events,
how does the MS look like?

To that end, we choose the audio �les to be enough representative of all
the situations that we want to be able to detect. Single and several persons
speaking, one or multiple cars moving in presence of speech or not, and
environmental noise are the selected situations.

Figure 3.2: Modulation spectrogram of a single person speaking
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The Figure 3.2 shows the MS of a single person's voice recorded in an
isolated environment. The Figure 3.3, in contrast, shows a conversation that
takes place between several people.

Figure 3.3: Modulation spectrogram of several persons speaking

The next two �gures represent the MS of single and multiple cars in
movement. In comparison with the previous situations, now, we can't observe
the presence of an energy bar (light blue) at modulation rates round 10 Hz.

Figure 3.4: Modulation spectrogram of a car moving
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Figure 3.5: Modulation spectrogram of several cars moving

In the following situation, a man speaking is recorded while several cars
are moving. This time, the MS contains again an energy bar at the mentioned
frequencies in the �rst experiments.

Figure 3.6: Modulation spectrogram of a single person speaking and several
cars moving

Finally, with environmental noise, the MS graphics are very similar to
those produced by cars. No energy bars at rates of 15 Hz are present.
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Figure 3.7: Modulation spectrogram of environmental noise

3.2 Conclusions

There is a common feature observed for all the experiments in which a single
person o more persons are speaking. For all the carrier frequency bands, and
for modulation frequencies between 10 - 15 Hz, the energy is lower than that
for frequency rates below (light blue energy bar), but higher than the energy
of the modulation frequencies above 15 Hz. On the other hand, this fact does
not occur in non-speech sounds.

Therefore, it seems that the presence of energy in this range of modulation
frequencies discriminates quite well speech sounds. For that reason, it is
expected that the best selected features by the classi�er algorithms are going
to be in that range.
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Chapter 4

Pattern recognition

The sound processing task relies heavily on pattern recognition, which is in
fact, one of the most challenging problems for machines. We would really
like to incorporate the ability to reliably recognize patterns or regularities
in the nature to our work and life, so machines become much powerful and
easier to use.

There are many learning algorithms and techniques for pattern recogni-
tion and one normal question that can be formulated is which one is �best�.
If one studies in depth the problem, will see that no pattern recognition
method is inherently superior to any other. It is the nature of the problem,
prior data distribution and other information, the ones that determine which
algorithm is going to provide the best performance. In spite of that, some
algorithms can be chosen because of their lower computational complexity;
others because they take into account some prior knowledge of the form of
the data.

In this chapter, we will concentrate in one technique called AdaBoost [6].
Such technique is an adaptative boosting algorithm. It is interesting because
of two main reasons. In �rst place, it focuses on the most di�cult examples
of available data, so that they can be classi�ed. And in second place, it does
not depend upon a particular classi�er or learning method. For that reason,
it can be used with di�erent algorithms. Then, in the last part of the chapter,
we will discuss a way to validate the analysis through the cross-validation
(CV) method. Later, in the next chapter we will compare this technique to
others used in similar works, e.g. the support vectors machine (SVM), to see
if the results provided by the �rst one are similar to those achieved by the
second one.
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4.1 Introduction

4.1.1 Basic concepts

First of all, we shall review some basic concepts about classi�ers and pattern
recognition in general [5].

A pattern is a set of instances which share some regularities and are
similar to each other. A pattern usually happens repeatedly. A pattern can
also be seen as a feature present in the set of elements or classes that we
want to be able to recognize. We will work with data bases and vectors.
Each dimension of the vector corresponds to a feature.

Mathematically, we can de�ne the previous concepts as it follows:

1. Patterns: xi ∈ X = Rd

2. Classes: yi ∈ Y = {−1, +1}, because we are going to work with 2
classes: speech and non-speech.

3. Training data set:(x1, y1) , . . . , (xN , yN)

4. Learned function: f : Rd → R

5. Classi�er: hf (x) = sign (f (x)) : Rd → Y

It would be desirable to have a great number of vectors, each one of which
with so few dimensions as it is possible. Thus, the task of the classi�er is
easier in the sense that, given a �xed number of vectors or points, it is simpler
to handle them when the dimension of the space in which we are working is
low.

Figure 4.1: The classi�cation process
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The �gure above shows the classi�cation process with its corresponding
steps. First of all, a pre-processing is required in order to prepare the sig-
nal. We need to convert the physical inputs into signal data. In our case,
the sounds recorded with a microphone are transformed into digital signals,
after individual processes of sampling and quanti�cation. After that, the
feature extractor measures object properties that can be useful for the classi-
�cation process. The modulation spectrum, described in detail in Chapter 3,
performs such a task and provides a set of vectors to be analyzed by the Ad-
aBoost classi�er. This one uses these features to assign the vectors obtained
before to a category, that can be speech or non-speech.

4.1.2 Feature selection

Sometimes, the design of the feature extractor can have more in�uence on
the classi�cation error than the classi�er itself.

A low number of features results in:

2 Simpler decision boundaries

2 Simple structure of classi�ers

It is interesting to �nd distinguishing features to be able to perform the clas-
si�cation with the minimum number of them. Features must provide similar
measured values for objects pertaining to the same category and di�erent
values between objects of di�erent categories. That is, high variability inter-
classes and low variability intra-classes.

4.1.3 The classi�er

The task of the classi�er is to use the feature vector provided by the feature
extractor to assign the object to a category.

Part of the di�culty in the classi�cation task depends on the variability
in the feature values for objects in the same or di�erent category. This
variability is due to noise, which can be classi�ed to the intrinsic noise to the
classes or the noise due to the erroneous measurements.

The next diagram shows the traditional steps in a classi�cation process.
First of all, the data base must be divided into a set of training and a set
of test. After that, we choose and train an algorithm on the training set.
Finally, we evaluate the classi�er on the test set.
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Figure 4.2: Steps to design the classi�er

The �rst step in the process is to split the available data into training
and test sets. The �rst group will be used to set the classifying function and
the decision boundaries. These must be suitable for our data. The second
set will be used to verify the previous results.

After we choose an algorithm, we have to train it. In this phase, a series of
parameters must be adjusted for the determined application from a training
set by means of feature vectors. As we are only going to work with supervised
learning, we know a priori the class or the category to which such vectors
belong to. That means that we have a vector of labels, yi ∈ Y = {−1, +1},
with information on the class for each vector.

The evaluation of the classi�er must be done according to the selected
design criterion: either the minimun classi�cation error or the minimum of
a cost function.

After all this process, we should obtain something similar to what we can
see in the illustrative example of Figure 4.3. In this situation, we assign one
of the three possible categories to each one of the vectors in the data set. On
the contrary, in our work, although the proceeding is the same, we work with
2 classes instead of working with 3. These classes are speech and non-speech
and to detect them correctly constitutes the core of the current work.
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Figure 4.3: Process of assigning a category, 3 in this example, to each one of
the vectors of the set

4.2 Boosting

Boosting is a machine learning meta-algorithm, developed to improve the
accuracy of any given learning algorithm. It is based on the fact that it is
possible to �nd a better classi�er by combining �weak� classi�ers [3].

A weak classi�er is a classi�er usually chosen to be simple and often works
better than a random classi�cation.

4.2.1 Boosting algorithms

Most boosting algorithms are iterative and add weak learners at each round
to build a �nal strong learner. At every iteration, a weak classi�er learns
the training data with respect to a distribution and then is added to the
�nal strong classi�er. A way of doing that is by means of weighting the
weak learners and the data points, using the weak learner's classi�cation
error. This means that the misclassi�ed vectors gain weight and the correctly
classi�ed lose weight. Thus, the successive weak classi�ers will focus more on
the previously misclassi�ed vectors to try to correctly assign them to their
corresponding category in the next rounds. After adding a new weak learner
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to the �nal strong classi�er, the data weights are changed in order to focus
on the still misclassi�ed examples.

There are many boosting algorithms. The original ones were proposed by
Rob Schapire and Yoav Freund and were not adaptative. The main di�erence
between them is their way of weighting training data points. AdaBoost,
LPBoost and TotalBoost are the most popular.

The following lines will concentrate on the AdaBoost algorithm [6].

4.2.2 AdaBoost

4.2.2.1 General description

Adaboost means Adaptative Boosting and was formulated by Yoav Freund
and Robert Schapire. It is an algorithm that can be used with other learning
algorithms to improve their performance.

AdaBoost is a way for constructing a strong classi�er as a linear combi-
nation of weak classi�ers:

f(x) =
∑

αht(x)

where ht(x) : X → {−1, +1} is the simple classi�er. An example can be seen
in Figure 4.4, where a 1-d weak learner separates the points from 2 classes.

Figure 4.4: Weak classi�er separating two classes
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AdaBoost is adaptative in the sense that subsequent classi�ers are built
with more emphasis on the misclassi�ed data. In this way, it can be said that
it focuses on the informative or di�cult patterns. Furthermore, so many weak
classi�ers as it is necessary can be added until the desire classi�cation error
is achieved.

4.2.2.2 Algorithm [5]

Given: (x1, y1) , . . . , (xm, ym), where xi ∈ X, yi ∈ Y = {−1, +1}
Initialize the data weights D1 (i) = 1

N

For t = 1, . . . , T :

2 Find the classi�er ht(x) that minimizes the error with respect to the
weights Dt:

ht = arg min
hj∈H

εj =
m∑

i=1

Dt (i) [yi 6= hj (xi)]

2 Continue if εt ≤ 1/2, otherwise stop

2 Choose αt ∈ R, typically αt = 1
2
ln 1−εt

εt
, where εt is the weigthed error

rate of classi�er ht

2 Update the data weights:

Dt+1 (i) = Dt(i)
Zt

×
{

e−αt , ht (xi) = yi (if correctly classified)
eαt , ht (xi) 6= yi (if incorrectly classified)

where Ztis a normalization factor.
Finally, the �nal output classi�er:

H (x) = sign

(
T∑

t=1

αtht (x)

)
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4.2.2.3 Method description

We start with a data distribution that belongs to the training set. To make
things clearer we will use an illustrative example of a 2-d space with vectors
of two classes (in our situation, it would be speech/non-speech).

Figure 4.5: Illustrative example of a data distribution in a 2-d space, to be
classi�ed by the AdaBoost algorithm

The �gure above shows two classes distributed randomly. In principle, it
is not obvious to see how a linear classi�er could separate the two classes.

We initialize the data weights D1 (i) = 1
N
, so that all the points in the

space are equally important.
We iterate for all the classi�ers, For t = 1, . . . , T :

1. Train a weak learner using the data weights, Dt, and obtain ht.

(a) At the beginning, with T = 1, all the vectors or examples in the
space are equally probable.

(b) In the next rounds, it is more probable to select the misclassi�ed
examples (those which make the classi�er fail).
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Figure 4.6: Best T weak classi�ers selected after the training phase in the
AdaBoost algorithm

2. Choose a weight (con�dence value) αt ∈ R. It is the relative importance
of the weak classi�er in the round t. Those classi�ers that achieve lower
classi�cation errors are weighted higher.

(a) If εt is the error associated to ht

εt = PrDt [ht (xi) 6= yi]

(b) The value of αt comes from trying to optimize such error and
equals to:

αt =
1

2
ln

(
1− εt

εt

)
> 0
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3. Update distribution over training set. We will increase the weigths of
the misclassi�ed examples by the current weak classi�er,ht, and de-
crease the weights of the correctly classi�ed examples.

Dt+1 (i) =
Dt (i)

Zt

A

where A can take the following values:

if ht (xi) = yi =⇒ A = e−αt

if ht (xi) 6= yi =⇒ A = eαt

Figure 4.7: Decision boundaries given by the strong classi�er in the AdaBoost
algorithm

In Figure 4.6, we can see the decision boundaries originated by the strong
classi�er. It is possible to appreciate that the separation of the classes is
better performed than with one single weak learner.

Finally, the classi�cation error can be calculated by counting the di�er-
ences the number of misclassi�ed examples.
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4.3 Data validation

We are interested in �nding the generalization rate of a classi�er on a given
problem to see if it performs well enough to be useful.

Data validation is the process of ensuring that a program, routine or
algorithm works with clean and useful data. In other words, it veri�es that
the data used as an input for the system is correct and meaningful. Although
there are di�erent types of routines, we are only going to work with the so-
called cross-validation technique.

We randomly split the initial sample of data into two subsets: one is used
as the training set for adjusting learning model parameters in the classi�er.
The other set is the validation or testing set and it is used to con�rm and
validate the initial analysis and to estimate the generalization error. The
algorithm is trained until we reach the minimum validation error.

The K-fold cross-validation is a generalization of the method described
above in which the original data set is partitioned into K disjoint subsets of
equal size N/K, being N the total number of examples. Of the K subsets we
use K-1 to train the model an the other one to test it. The cross-validation
process is then repeated K times (folds), with a di�erent validation set, of
the total K subsets, each time. The K results from each iteration can be
averaged or combined to produce a single estimation.
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Part II

EXPERIMENTAL WORK
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Chapter 5

Experimental evaluation

In this section, we use the background theory described in previous chapters
to build a system able to discriminate speech from other sounds. The purpose
of the experiments is to see the results achieved by the AB technique and to
compare them with those obtained by related works [17].

We start describing the data used in the classi�cation process: the kind
of experiments, the way to collect it and how we use it. Then, we give a
brief description of the method used in this work, as well as the parameters
chosen for the signal processing techniques and the classi�cation algorithms.
Finally, we present and discuss the experimental results.

5.1 Data acquisition

5.1.1 Introduction

We have worked with two di�erent sets of audio signals. The �rst set, or
the preliminary one, was used to observe the di�erent kind of signals on
the frequency domain and derive their main properties. With the help of
the modulation spectrogram, we could make some hypothesis (see 3.1.3).
For modulation frequencies round 10 Hz, we observed that speech signals
presented a higher power level than the rest of sounds. Thus, it wouldn't be
surprising to �nd distinguishing features at that frequency rates. This fact
will be con�rmed in further sections. The second set was used to train and
adjust the parameters of the AB classi�er and also to test or validate the
results.
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All the experiments were performed by means of a digital camera Canon
XM 1 at a sampling rate of 48 kHz. We recorded both, audio and video,
separated them into di�erent �les and concentrated solely in the audio ones.

Figure 5.1: Digital camera Canon XM 1

5.1.2 Preliminary data set

The experiments consisted in di�erent recordings, about 30 seconds each one
that, later on, would allow us to see the spectral properties of the sounds that
we want to be able to recognize at the end of this work. These experiments
are the following:

2 Single person speaking.

2 Single person speaking and di�erent background tones.

2 Several persons speaking.

2 Several cars.

2 Several cars and a single person speaking.

Such experiments were recorded in three places. Single and several persons
speaking, in isolated and co�ee rooms respectively; Experiments related to
cars, in one concurred street in the Prague city, with continuous tra�c.
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5.1.3 Training and test set

For the AB algorithm training and test phases, a bigger amount of data is
required. Now, we will use 45 minutes of audio divided as it follows:

2 15 minutes of several persons speaking.

2 15 minutes of several cars

2 15 minutes of environmental noise

The �rst experiment was carried out in a co�ee room, the second one, as in
5.1.2, in one concurred street in Prague, and the third one, in a quiet place
with none of the previous kind of sounds.

5.2 Method description

5.2.1 General principles

The method used for the speech/non-speech discrimination task is based on
the following general ideas:

2 Spectral analysis of the incoming audio �les.

2 Mel-scale transformation.

2 Computation of an average modulation spectrum for speech and non-
speech sounds.

2 AdaBoost decision algorithm.

5.2.2 Method used in the present work

The modulation spectrum of the incoming audio data is obtained by the
spectral analysis of temporal trajectories of spectral envelopes of speech. It
is accomplished by means of two FFT-calculations in the following way:

1. The incoming audio, sampled at 48 kHz and properly labeled, is loaded
into a vector. Then, it is divided into chunks of one second length. In
order to minimise the edge e�ect, each one of these chunks overlaps
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with the previous one a 50 % of the time. Such chunks will be assigned
to the same class as the sound that they come from. They are the basis
for the speech/non-speech decision task.

2. Then, the short-time Fourier transform (STFT) or spectrogram is com-
puted for each chunk. It uses a Hamming window to compute the FFT
over 256 points. Again, the overlapping between adjacent frames is
used to reduce the edge e�ect, by shifting windows 128 samples or the
50 %.

3. The Mel-scale transformation is applied to the magnitude vectors re-
sulting from the previous analysis. It converts the spectrogram, with
linear frequency axis, to one with logarithmic �Mel� frequency axis, to
approximate the frequency response of the ear, linear up to 1000 Hz
and logarithmic thereafter.

4. After that, the modulation spectrum is performed by computing the
spectrogram over all input signal's subbands. A Hamming window,
shifted by 48 samples (75 %), is used to compute the FFT over 64
samples.

5. For each incoming audio signal, this process returns a 18*33 dimensions
matrix that can be seen as a vector with 594 features. This vector
consists of the modulation power over each center frequency.

6. Since the dimension is very big and to make the classi�cation problem
more accessible, we will reduce the number of features in the following
way:

(a) Keep the modulation frequencies up to 40 Hz, because the useful
information is contained in them. This means that we will use the
�rst 8 frequencies of the 33 returned by the previous analysis.

(b) Make an average of the central frequencies in such a way that one
from each pair of consecutive frequencies is obtained. Thus, we
are going to transform the initial 18 ones into 9.

With these two steps we have achieved 72 feature vectors and, although
they are still big, they are much smaller and manageable than the
original ones.
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7. The total number of vectors, which depends on the data used in each
experiment, will be randomly divided into two subsets: training and
test.

Once we have completed the feature extraction, it's the turn for the feature
selection and the classi�cation. That is, �nding the minimum number of
features that allow us to achieve a �xed error. To this end, we will use the
AdaBoost technique (see 4.2.2), which builds a strong classi�er as a linear
combination of weak or simple classi�ers.

The �rst step is to construct the set of weak learners. Our starting point
will be 72 dimensional planes, parallel to the axis of the features. Since the
present work tries to be a reference for future works, we will start using very
simple weak classi�ers. In particular, we will use projections of the planes
over all and each one of the 72 dimensions. The result will be one random
line by each dimension.

Figure 5.2: Initial 1-D random thresholds in the classi�cation algorithm

The Figure 5.2 shows the mentioned thresholds plotted all together on
the same graphic. It does not mean that these are projections over the same
coordinate, but a means to visualize them simultaneously.
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After we have got the random thresholds, they must be trained in such
a way so that, for each dimension, the points from the two possible classes
are separated in an optimal way. In other words, given a projection of the
data set over one dimension, the AB algorithm trains a weak classi�er (single
threshold) and places it where fewer misclassi�ed examples are obtained.

Figure 5.3: Data projection over 1-D and misclassi�ed points with one weak
learner

The �gure above shows the points corresponding to the vectors of the
training set, projected over one of their dimensions. False negatives are the
speech examples classi�ed as non-speech; false positives are the non-speech
examples classi�ed as speech. The weak classi�er is trained until the lowest
classi�cation error is achieved.

The Figure 5.4 shows the best weak classi�ers for a given training set.
These will be used by the algorithm to build the strong classi�er, which
will be used for the speech/non-speech discrimination task. Again, they are
plotted together on the same graphic.
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Figure 5.4: Best weak classi�ers selected by AB to build the strong classi�er

Finally, the total training and test errors come from the di�erence between
the labels assigned by the classi�er to each chunk or vector of the two data
sets, and the original labels, manually entered before the process.

5.3 Experimental results

5.3.1 Classi�cation errors

At this point, we have already described the entire process. We have seen
how the data was collected and prepared to extract features by means of
the modulation spectrogram. The classi�cation method, with the AdaBoost
algorithm, has been described too.

Next we give the description of the di�erent tests carried out and their
performance. To make it clearer, ROC curves, training and test error graph-
ics and the best selected features, are also presented.

For all the experiments, we will use the training and test data set, de-
scribed in 5.1.3. That implies that, if we use one second length chunks,
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overlapped a 50 %, we will get 5145 vectors with 72 dimesions. These vec-
tors will be randomly divided into two halfs. One half will be assigned to the
training set and the other one to the test set.

In the �rst experiment, we will perform 20 analysis, with both training
and test phases. For each analysis, a di�erent split of the data set, with
di�erent training and test sets each time, will be used. Thus, we will be able
to observe a more general behaviour of the algorithm.

The Figure 5.5 represents the ROC curves obtained from 20 analysis,
using a strong classi�er formed by 40 weak learners. It represents false neg-
atives versus false positives. False negatives stand for examples labeled as
speech but classi�ed as non-speech. On the contrary, false positives stand
for examples labeled as non-speech but classi�ed as speech. Finally, the blue
points represent the train errors and the red ones, the test errors.

Figure 5.5: ROC curves for 20 analysis performed with a strong classi�er
formed by 40 weak classi�ers

The �rst that can be said about the graphic is that test errors are greater
than train errors. Furthermore, once the points that look anomalous have
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been discarded, we can observe that test errors are much more dispersed than
the training ones. This is all coherent, since the AB algorithm focuses only
on the training set in order to adjust the parameters of the classi�er and
build the decision boundaries. For that reason, the points of this group are
better classi�ed than the rest.

Finally, we can see that the errors achieved using 40 features are relatively
low: 2,5 % - 3 % for the training set and 3,5 % - 4 % for the test set.

In addition, we performed another experiment consisting in 100 analysis
and using a classi�er formed by 40 weak learners as well. The results are
similar to those in the previous experiment.

Figure 5.6: ROC curves for 100 analysis performed with a strong classi�er
formed by 40 weak classi�ers

The following picture shows the curves for the training and test errors as
a function of the number of features selected. Each one represents a di�erent
data split. Again, the blue and red lines represent the training and test error,
respectively.
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Figure 5.7: Training and test errors curves, for 20 analysis, as a function of
the number of weak classi�ers selected to build the strong one

It is very di�cult to draw some conclusion from this graph because there
are many curves and the errors cannot be seen clearly. For that reason,
an statistical analysis will be performed over the results by means of the
matlab tool, boxplot. At every point of the horizontal axis, a box with a line
inside is plotted. It represents the median of the train or test errors and
its dispersion around the median value. Outliers are values beyond the box
limits and probably represent anomalous situations that must be discarded.
The statistical analysis can be seen in Figure 5.7 and in Figure 5.8, for the
train and test errors, respectively.

The Figure 5.7 shows the boxplot analysis of the training errors achieved
by the classi�er as its number of components increases. We can distinguish
three di�erent regions. The �rst one, from one to three features, is a constant
section. Up to 9 features, we can observe an oscillating error. From this point,
the error shows a decreasing tendency, that is somehow similar to an inverse
exponential function. It is signi�cantly decreasing up to 27 features. From
here on, the increase of the number of features entails a very small diminution
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of the error. It is only a 0,6% when all 40 features are used. It is not much
if we think in the computational complexity added to the problem.

Figure 5.8: Statistical distribution of the training error curves as a function
of the number of weak classi�ers selected

Finally, the test error boxplot is shown above. This situation is quite
similar to the one described in Figure 5.7. There are also three di�erent
regions. The �rst one is constant up to 3 features. The second one presents
an oscillating error up to 9 or 11 features. From here, and unlike the previous
situation, the error decrease is practically insigni�cant. As examples, the
error di�erence from using 20 features to using 40 is a 0,8 % or a 0,55 % from
22 to 40.
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Figure 5.9: Statistical distribution of the test error curves as a function of
the number of weak classi�ers selected

5.3.2 Best features

The last step in the training process is to select one strong classi�er with its
corresponding weak learners. This strong classi�er will be the one which will
�nally perform the speech/non-speech decision. By agreement, we choose
the strong classi�er that better performs in the test phase. That means that
we implicitly choose the best features or dimensions in our 72-dimensional
space. In other words, such features are those which best separate the data
vectors from our training data and, as a consequence, achieve a lower test
error. This does not mean that this classi�er is the best for all the situations
but for our training data.

The next �gure shows the MS for a speech chunk with the best selected
features. In white, the step or iteration at which the feature was selected
(importance) is represented; in black, the number of the feature, from 1 to
72. For practical reasons, only the �rst 20 best features are represented. The
complete list is found in A.1:
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Figure 5.10: Best 20 features of the classi�er used in this work

We can observe that from the best 20 features, 14 features are within
the range 5-15 Hz, 5 above 15 Hz and only one below 5 Hz. That means
that the most important features for the speech detection correspond to the
modulations rates in the range 5-15 Hz, which corresponds to the results
obtained by [7]. Furthermore, it also supports our initial hypothesis, that
the third column in the MS, 10-15 Hz, should contain some distinguishing
features.

5.4 Toolbox for acoustic event detection

5.4.1 General description

As it was said at the beginning, our goal was to build a toolbox for the acous-
tic event detection. At this point, we have already trained the classi�er and
adjusted its parameters from our data set. Furthermore, we have observed
its performance on such data. Now, we would like to see the classi�er's re-
sponse to any input signal. To that end, we will use some audio �les from
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the preliminary data set, described in 5.1.2, and which haven't been used for
the training phase.

This process is accomplished by means of a matlab routine, AudioClas-
sif.m. It can be described as it follows:

[vecLabels,vecTimes,vecMgn] = AudioClassif (data,fs,data_labels)

Given a digital audio signal, data, sampled at fs Hz, and optionally la-
beled, in data_labels, the function constructs an avi video, described in detail
in Appendix C, and returns 3 outputs variables. A vector of labels, vecLabels,
with the labels assigned by the classi�er to each chunk. A vector of times,
vecTimes, with the corresponding times to each chunk. And, �nally, a vector
of magnitudes, vecMagn. This last vector measures the level of speech or
non-speech, with positive or negative values, respectively. The higher it is
the magnitude, the more reliable becomes the classi�cation. With respect
to the video, it is formed by a representation of the magnitude through the
time, with blue and red points representing speech and non-speech respec-
tively. They are located at the times indicated in the vecTimes vector. The
decision line is placed at the magnitude with value 0. On this line, and if the
audio �le was previously labeled, we can see thee false positives in cyan and
the false negatives in magenta.

5.4.2 Experiments and results

In this section we will describe the results for two input signals correspond-
ing to the two extreme situations: a speech situation (more_people1.wav)
and a mixed situation, but with higher presence of non-speech sounds (mul-
tiple_cars2.wav).

The �rst signal, which has been manually labeled, corresponds to a con-
tinuous speech that takes place in a closed room. For that reason, most of
the labels have been assigned to the �speech� class, whereas very few to the
�non-speech� class. In particular, non-speech can be heard in the following
time segments: 24.0-25.5 seconds, 35.5-37.5 seconds and 59.0-60.5 seconds.

The following �gure shows a picture of the video created by the toolbox.
It represents the time evolution of the speech/non-speech magnitude:
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Figure 5.11: Speech signal classi�ed by AB, with the misclassi�ed points

As it was expected, most of the points have been assigned to the speech
class. However, some misclassi�ed points can be observed. The total error
is about 9 % (11/121), which is much higher than the error achieved in the
test phase (3.5 %) described in 5.3.

If we look at the �gure attentively, we realize that most of the errors cor-
responds to false positives (6.6 %). That is, non-speech classi�ed as speech.
Then, if we listen to the audio �le, we observe that the time segments 24.0-
25.5 and 59.0-60.5 correspond to people laughing, whereas the segment 35.5-
37.5 corresponds to silent. If we assume that for the training phase we used
speech signals containing either people laughing or silent, then we can a�rm
that the classi�er performed good and that the problem is due to a bad la-
beling of the data in the training and data set. As a consequence, if we don't
consider such mistakes, now, the total error would be 2.5 % (3/121), which
is below the average error obtained in the test phase. In addition and since
the audio signal used to test the toolbox was manually labeled, some other
mistakes could have been done. We can also observe two false positives close
or on the decision line, which can di�cult the decision.

The second experiment uses an audio signal with greater presence of car
sounds. However, some speech segments are present and correspond to the
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following time segments: 1.0-2.0 seconds, 10.5-11.5 seconds, 36.0-36.5 seconds
and 39.0-39.5 seconds.

The Figure 5.12 shows the speech/non-speech level for each chunk. Re-
member that each chunk has a duration of 1 second, and as a consequence,
if the current audio signal has a duration of 1 minute, then the number of
chunks is equal to 120.

Figure 5.12: Car sounds signal classi�ed by AB, with the misclassi�ed points

Once more, most of the points have been assigned to the dominant class,
non-speech. But now the performance of the classi�er is worse, since the total
error is much higher, approx. 30% (23/79). Again, almost errors correspond
to fp (26 %).

If we observe the �gure, we realize that most of the errors (15/23) are
points very close to the decision boundary. When we listen to the audio �le,
the sounds that can be heard at such points or time instants don't correspond
much to the sounds used as non-speech class for the training phase of the
algorithm. Thus, the errors may come now for using very little representative
sound samples for the non-speech class.
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5.5 Comparison with related work

We will now use the software provided by [17]1 to compare our results, for
the previous signals, with the results accomplished by their classi�er. In A.2
are attached two tables showing the labels or classes assigned by the two
classi�ers for each chunk.

For the speech signal more_people1.wav, there is a di�erence between the
labels of a 6.6 % (8/121). It is not strange to �nd so little di�erence between
the two methods because the signal is speech (mainly) and both classi�ers
are trained with enough samples for this class. The Figure 5.13 shows the
time instants where these di�erences occur:

Figure 5.13: Classi�cation di�erences between the two works for the signal
more_people1.wav

On the contrary, the di�erences raise up to 30 % (24/78) for the sound
multiple_cars2.wav. In this case, the task was more di�cult due to the high
variability for this class. There are so many sounds that can go into the

1DIRAC partner
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non-speech class, that it is almost impossible to train the algorithm with all
of them. The Figure 5.14 shows such di�erences:

Figure 5.14: Classi�cation di�erences between the two works for the signal
multiple_cars2.wav

As a conclusion, it has been observed that [17] and our classi�er were
comparable on speech data but on non-speech data [17] performed better
since it yielded less false positives.
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Discussion and future work

6.1 Discussion

One of the main goals in this work was to observe the performance of a
method never used before for the speech/non-speech detection, the adapta-
tive boosting algorithm or AdaBoost.

We have found that a quite low error in the train and test phases can
be obtained with a reasonable number of features. For the training data, a
4.5 % of the examples are misclassi�ed using 12 features, a 3.5 % with 22
features or only a 2.4 % with 40 features. On the other hand, for the test
data, as it was expected errors were just a little bit higher: 5 % when 12
features are used, 4 % with 22 features and 3.5 % with 40 features.

We have also con�rmed our initial intuitions. The best and more distin-
guishing features for this task are found for modulation frequencies between
5 and 15 Hz, which is consistent with the results found in another works,
such as in [7].

Finally, after observing the results from the toolbox, we have been able
to draw some conclusions about the data used to adjust the parameters of
the classi�er. First of all, most of the errors in speech signals occur due to
a bad labelling of the training data. If we listen to an speech signal and
at the same time we observe how it has been classi�ed, we see that some
acoustic events, such as laughter or pauses, are assigned to the speech class.
This is not strange if we assume that the training data used for that class
contains this kind of events. In addition, other errors related to non-speech
signals are due to an insu�cient number of audio samples to represent this

59
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class in the training data. There are many acoustic events that should be
assigned to this class, but we have only trained the classi�er with car sounds
and environmental noise.

6.2 Future work

The �rst that should be done is to train the classi�er with appropriate data
sets. That is, correctly labeled samples for each class and an enough number
of representative situations for both speech and non-speech.

Once we observe the results based on the new training data, we could
rede�ne the weak classi�ers to see if there is any improvement in the per-
formance. In the present work we have used 1 dimensional classi�ers or
thresholds to build the strong classi�er. Probably, using higher dimensional
classi�ers would entail a greater accuracy.
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Tables

A.1 Best features

The next table represents the 40 best features selected from a analysis con-
sisting in 20 data splits, each one with its corresponding strong classi�er:

iteration feature

1 19
2 24
3 10
4 13
5 14
6 18
7 13
8 15
9 54
10 13
11 5
12 54
13 68
14 24
15 19
16 20
17 69

61
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18 50
19 17
20 10
21 11
22 26
23 15
24 27
25 20
26 49
27 59
28 15
29 14
30 64
31 66
32 5
33 11
34 18
35 8
36 10
37 24
38 59
39 19
40 3

Table A.2: Best 40 features of the strong classi�er used in this work

A.2 Classi�cation error

Here, we present two tables in order to compare the labels obtained by our
classi�er and the classi�er from [17] for two acoustic situations. The �rst one
mainly consists of speech; the second one of non-speech with some segments
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of speech. The di�erences are emphasized in red and bold. The next table
corresponds to the signal more_people1.wav:

#feature us [17]

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1
10 1 1
11 1 1
12 1 -1
13 1 1
14 1 1
15 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 1 1
21 1 1
22 1 1
23 1 1
24 1 1
25 1 1
26 1 1
27 1 1
28 1 1
29 1 1
30 1 1
31 1 1
32 1 -1
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33 1 1
34 1 1
35 -1 1
36 1 1
37 1 1
38 1 1
39 1 1
40 -1 1
41 1 1
42 1 1
43 1 1
44 1 1
45 1 1
46 1 1
47 1 1
48 1 1
49 1 1
50 1 1
51 1 1
52 1 1
53 1 1
54 1 1
55 1 1
56 1 1
57 1 1
58 1 1
59 1 1
60 1 1
61 1 1
62 1 1
63 1 1
64 1 1
65 1 1
66 1 1
67 1 1
68 1 1
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69 1 1
70 1 1
71 1 1
72 -1 1
73 -1 -1
74 1 -1
75 1 1
76 1 1
77 1 1
78 1 1
79 1 1
80 1 1
81 1 1
82 1 1
83 1 1
84 1 1
85 1 1
86 1 1
87 1 1
88 1 1
89 1 1
90 1 1
91 1 1
92 1 1
93 1 1
94 1 1
95 1 1
96 1 1
97 1 1
98 1 1
99 -1 1
100 1 1
101 1 1
102 1 1
103 1 1
104 1 1
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105 1 1
106 1 1
107 1 1
108 1 1
109 1 1
110 1 1
111 1 1
112 1 1
113 1 1
114 1 1
115 1 1
116 1 1
117 1 1
118 1 1
119 1 1
120 1 1
121 1 -1

Table A.4: Comparison between the labels obtained by our classi�er and the
labels obtained by [17] for the audio signal more_people1.wav

The table below corresponds to the audio �le multiple_cars2.wav :

#features us [17]

1 1 -1
2 1 -1
3 1 1
4 1 -1
5 -1 -1
6 -1 -1
7 -1 -1
8 -1 -1
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9 -1 -1
10 -1 -1
11 -1 -1
12 -1 -1
13 -1 -1
14 1 -1
15 1 -1
16 -1 -1
17 -1 -1
18 1 -1
19 1 -1
20 1 -1
21 1 -1
22 1 -1
23 -1 -1
24 -1 -1
25 -1 -1
26 1 -1
27 -1 -1
28 -1 -1
29 1 -1
30 1 -1
31 -1 -1
32 -1 -1
33 -1 -1
34 -1 -1
35 -1 -1
36 -1 -1
37 -1 -1
38 -1 -1
39 -1 -1
40 -1 -1
41 -1 -1
42 1 -1
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43 -1 -1
44 -1 -1
45 -1 -1
46 -1 -1
47 1 -1
48 -1 -1
49 -1 -1
50 -1 -1
51 -1 -1
52 -1 -1
53 1 -1
54 -1 -1
55 -1 -1
56 -1 -1
57 1 -1
58 1 -1
59 1 -1
60 -1 -1
61 -1 -1
62 -1 -1
63 1 -1
64 -1 -1
65 -1 -1
66 1 -1
67 -1 -1
68 -1 -1
69 -1 -1
70 1 -1
71 -1 -1
72 1 -1
73 -1 1
74 -1 -1
75 -1 -1
76 -1 -1
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77 -1 -1
78 1 1

Table A.6: Comparison between the labels obtained by our classi�er and the
labels obtained by [17] for the audio signal multiple_cars2.wav
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Appendix B

Program user's guide

B.1 Introduction

The goal of the program is to detect and classify some acoustic events. In
particular, we want to be able to distinguish speech from other kind of sounds.
In order to make the program more accessible to everyone, and to avoid
understanding in detail each part of the code, we have developed a graphical
user interface (GUI), which consists in two main menus.

The �rst menu is used to carry out the feature extraction, as well as some
basic operations, such as load and save data. The second menu uses the
values generated by the �rst one to perform, besides other tasks, the feature
selection and the acoustic classi�cation.

B.2 Menus description

B.2.1 Audiorecog menu

The matlab �le audiorecog.m is the main program. It invokes the window
that can be seen on Figure 2.1. This window has two columns. On the
left, the labels indicate the operations that can be performed by the main
program. In order to carry out any of these operations, the corresponding
button on the right must be selected and the red button on the top, labelled
as �A-RECOG�, pushed.
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Figure B.1: Main program window. It performs feature extraction

The following lines give a broader description of all the operations avail-
able in this menu:

2 Load: it loads previously saved data. We are asked to enter the name
of the �le to load (without extension) in theMatlab Command Window.

2 Params: it allows the user to de�ne the way in which the modulation
spectrogram analysis is going to be performed. It can be done through
the following graphical interface and consists in three options:

• Path: only for single analysis. It is the name (with extension)
of the wav audio �le to analyse. It must be stored in the Audio
Signals folder. See MultipAn to see how must the audio name be.

• TimeChunk and NumChunks refers to the number of pieces in
which we want to split the original audio signal. Each one of these
chunks is going to be analysed separately. If a speci�c time resolu-
tion is desired, then the TimeChunk button must be pushed and
the time, in seconds, must be entered in the box below. Its value
by defect is 1 second. On the other hand, the NumChunks button
must be pushed if we are not worried about the time length of each
chunk, but in the total number of them. In spite of everything,
they are two di�erent ways to do the same thing.
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Figure B.2: The parameter menu allows to con�gure the analysis

2 MultipAn: it performs the modulation spectrogram analysis of several
�les. They must be labelled and stored in the Audio Signals folder in
the following way: �soundXX.wav�, where XX is the number of the
�le. The labels �le, �d.txt�, must contain the class or category of each
sound: 1 for speech sounds and -1 for non-speech sounds.

2 ModSpec: it performs the modulation spectrogram analysis of a single
sound. Its name must be entered in the Params menu. In this case,
the label of the sound signal is not required.

2 ShowModSpec: it shows the modulation spectrogram graphics of an
audio signal or of its chunks. That means that a previous analysis
must have been performed. On the contrary we are warned to do it.
This option has been designed to show single �le's graphics, so if it is
selected after performing a multiple analysis, we will only see the �rst
signal's graphics.

2 PCA: it performs the Principal Components Analysis over one single
�le, indicated in the Params menu.

2 ShowPCA: it shows the PCA graphic. Again, the PCA must have
been previously performed.

2 AdaBoost: it calls the second main menu, which will be explained in
detail in the next section. It uses the data provided by MultipAn.

2 Save: it saves the variable �variables� of the Workspace into a .mat
�le, with the name writen in the Path box, followed by �_out�. For
example, if the name in the Path is sound1.wav, the output �le will
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be �sound1_out.mat�. This option can be used for single or multiple
analysis.

2 Exit: it exits the program.

B.2.2 ADB menu

The �le xadb.m is invoked and the window shown in Figure 2.3 appears. It is
an implementation of the AdaBoost algorithm, used in this work in order to
distinguish speech from non-speech. The program uses the values obtained
by the modulation spectrogram analysis performed over several �les. To run
any of the options, push the button beside the text label and the red button
on the top.

Figure B.3: The AdaBoost menu

A full description of the program's options is given below:

2 SplitData: for single classi�cation only. It splits randomly the avail-
able data vectors into two subsets: train and test.

2 SplitNum: the number written in the box on the right is the percent-
age of vectors that will be assigned to the training set.
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2 ShowData: it shows the graphics of the data projections over each
one of the 72 dimensions of the vectors. It is only for the training set.

2 ClassNum: the maximum number of weak learners to be selected in
order to build the strong classi�er.

2 Classify: for single classi�cations only (only one partition), it trains
the AB algorithm and adjusts the parameters, given a training set. It
shows the following graphics:

• The �rst �gure: in blue, the trained weak learners, and in green,
the best ones or those that will be combined to build the strong
classi�er. Remember that each one of these best weak classi�ers
corresponds to a feature or coordinate in the 72-dimensional space.
We can also see the training errors achieved by the strong and the
�rst weak classi�ers.

• The second �gure: the �rst weak classi�er in green and the test
errors achieved by the strong and the �rst weak classi�ers.

• The rest of the graphics show the data projections over the most
distinguishing coordinates of the vectors and their corresponding
weak classi�er, for training and testing data. Absolute and rel-
ative errors are shown as well. This means that we can see the
misclassi�ed points on the graphic and the total training or test
error.

2 ShowGraphs: it shows the graphics of the ROC (false negatives vs
false positives) and the total error as a function of the number of ex-
amples used, for one unique partition of the data.

2 ShowModSpec: it shows one single modulation spectrogram graphic
with labels on the most distinguishing features selected by the classi�er.
In white, it is represented the step in which the feature was selected
(relative importance), and in black, the number of feature. This last
number can go from 1 to 72, the maximum number of features of the
data.

2 MultipROC: it performs the classi�cation process over di�erent data
partitions. Since each time a di�erent data partition is used, di�erent
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error values are achieved. These are shown in the ROC and total error
graphics all together.

2 NumROC: it indicates the number of times that the task described
in MultipROC must be done.

2 BestK: it shows a graphic with di�erent curves. Each one represents
the training and test error achieved by the classi�er for each data parti-
tion as a function of the number of features selected to build the strong
classi�er.

2 NumK: it indicates the number of times that the analysis in BestK
must be done. Once per each partition.

2 Exit: goes back to the �audiorecog� menu.
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Visualizaion of results

This appendix describes the process to go from an input data, previously
labeled or not, to a video showing the chosen class for each chunk. It is
accomplished by means of the matlab function AudioClassif.m, which was
introduced in 5.4.1. It consists in:

1. Classi�cation of the input signal, previously split into overlapping chunks
of 1 second.

2. If the signal was labeled, then the routine calculates the classi�cation
errors by comparing both labels, the original one and the one provided
by the classi�er, for each chunk.

3. Create a sequence of frames to visualize the results. There are as many
frames as chunks. Each frame consists in the following representations:

(a) Vector of magnitudes, vecMagn, in black. It represents the evolu-
tion of the speech/non-speech level through the time.

(b) The chosen classes for each time chunk. Speech in blue, and non-
speech in red.

(c) The classi�cation errors, if they are available.

(d) A vetical green line over the current chunk.

(e) A number on the down left corner showing the current chunk.

4. Join the frames to build an avi video. Since we have 2 chunks per
second, we hace chosen a frame rate of 2 fpm.
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78 APPENDIX C. VISUALIZAION OF RESULTS

Figure C.1: Visualization of the classi�cation results

Finally, if we play the video we will observe a line moving through the time,
which indicates the class assigned by the classi�er for the current time in-
stant. Such time instant can be seen on the down left corner. An example is
presented in Figure C.1:
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